Data Validations.

hssf.usermodel.

Check the value a user enters into a cell against one or more predefined value(s).

The following code will limit the value the user can enter into cell A1 to one of three integer values, 10, 20 or 30.

 HSSFWorkbook workbook = new HSSFWorkbook();

 HSSFSheet sheet = workbook.createSheet("Data Validation");

 CellRangeAddressList addressList = new CellRangeAddressList(

 0, 0, 0, 0);

 DVConstraint dvConstraint = DVConstraint.createExplicitListConstraint(

 new String[]{"10", "20", "30"});

 DataValidation dataValidation = new HSSFDataValidation

 (addressList, dvConstraint);

 dataValidation.setSuppressDropDownArrow(true);

 sheet.addValidationData(dataValidation);

Drop Down Lists:

This code will do the same but offer the user a drop down list to select a value from.

 HSSFWorkbook workbook = new HSSFWorkbook();

 HSSFSheet sheet = workbook.createSheet("Data Validation");

 CellRangeAddressList addressList = new CellRangeAddressList(

 0, 0, 0, 0);

 DVConstraint dvConstraint = DVConstraint.createExplicitListConstraint(

 new String[]{"10", "20", "30"});

 DataValidation dataValidation = new HSSFDataValidation

 (addressList, dvConstraint);

 dataValidation.setSuppressDropDownArrow(false);

 sheet.addValidationData(dataValidation);

Messages On Error:

To create a message box that will be shown to the user if the value they enter is invalid.

 dataValidation.setErrorStyle(DataValidation.ErrorStyle.STOP);

 dataValidation.createErrorBox("Box Title", "Message Text");

Replace 'Box Title' with the text you wish to display in the message box's title bar and 'Message Text' with the text of your error message.

Prompts:

To create a prompt that the user will see when the cell containing the data validation receives focus

 dataValidation.createPromptBox("Title", "Message Text");

 dataValidation.setShowPromptBox(true);

The text encapsulated in the first parameter passed to the createPromptBox() method will appear emboldened and as a title to the prompt whilst the second will be displayed as the text of the message. The createExplicitListConstraint() method can be passed an array of String(s) containing integer, floating point, dates or text values.

Further Data Validations:

To obtain a validation that would check the value entered was, for example, an integer between 10 and 100, use the DVConstraint.createNumericConstraint(int, int, String, String) factory method.

 dvConstraint = DVConstraint.createNumericConstraint(

 DVConstraint.ValidationType.INTEGER,

 DVConstraint.OperatorType.BETWEEN, "10", "100");

Look at the javadoc for the other validation and operator types; also note that not all validation types are supported for this method. The values passed to the two String parameters can be formulas; the '=' symbol is used to denote a formula

 dvConstraint = DVConstraint.createNumericConstraint(

 DVConstraint.ValidationType.INTEGER,

 DVConstraint.OperatorType.BETWEEN, "=SUM(A1:A3)", "100");

It is not possible to create a drop down list if the createNumericConstraint() method is called, the setSuppressDropDownArrow(false) method call will simply be ignored.

Date and time constraints can be created by calling the createDateConstraint(int, String, String, String) or the createTimeConstraint(int, String, String). Both are very similar to the above and are explained in the javadoc.

Creating Data Validations From Spread sheet Cells:

The contents of specific cells can be used to provide the values for the data validation and the DVConstraint.createFormulaListConstraint(String) method supports this. To specify that the values come from a contiguous range of cells do either of the following:

 dvConstraint = DVConstraint.createFormulaListConstraint("A1:A3");

or

 Name namedRange = workbook.createName();

 namedRange.setNameName("list1");

 namedRange.setRefersToFormula("A1:A3");

 dvConstraint = DVConstraint.createFormulaListConstraint("list1");

and in both cases the user will be able to select from a drop down list containing the values from cells A1, A2 and A3.

The data does not have to be on the same sheet as the data validation. To select the data from a different sheet however, the sheet must be given a name when created and that name should be used in the formula. So assuming the existence of a sheet named 'Data Sheet' this will work:

 Name namedRange = workbook.createName();

 namedRange.setNameName("list1");

 namedRange.setRefersToFormula("'Data Sheet'!A1:A3");

 dvConstraint = DVConstraint.createFormulaListConstraint("list1");

as will this:

 dvConstraint = DVConstraint.createFormulaListConstraint(

 "'Data Sheet'!A1:A3");

whilst this will not:

 Name namedRange = workbook.createName();

 namedRange.setNameName("list1");

 namedRange.setRefersToFormula("'Sheet1'!A1:A3");

 dvConstraint = DVConstraint.createFormulaListConstraint("list1");

and nor will this:

 dvConstraint = DVConstraint.createFormulaListConstraint("'Sheet1'!A1:A3");

xssf.usermodel

Data validations work similarly when you are creating an xml based, SpreadsheetML, workbook file; but there are differences. Explicit casts are required, for example, in a few places as much of the support for data validations in the xssf stream was built into the unifying ss stream, of which more later. Other differences are noted with comments in the code.

Check the value the user enters into a cell against one or more predefined value(s).

 XSSFWorkbook workbook = new XSSFWorkbook();

 XSSFSheet sheet = workbook.createSheet("Data Validation");

 XSSFDataValidationHelper dvHelper = new XSSFDataValidationHelper(sheet);

 XSSFDataValidationConstraint dvConstraint = (XSSFDataValidationConstraint)

 dvHelper.createExplicitListConstraint(new String[]{"11", "21", "31"});

 CellRangeAddressList addressList = new CellRangeAddressList(0, 0, 0, 0);

 XSSFDataValidation validation =(XSSFDataValidation)dvHelper.createValidation(

 dvConstraint, addressList);

 // Here the boolean value false is passed to the setSuppressDropDownArrow()

 // method. In the hssf.usermodel examples above, the value passed to this

 // method is true.

 validation.setSuppressDropDownArrow(false);

 // Note this extra method call. If this method call is omitted, or if the

 // boolean value false is passed, then Excel will not validate the value the

 // user enters into the cell.

 validation.setShowErrorBox(true);

 sheet.addValidationData(validation);

Drop Down Lists:

This code will do the same but offer the user a drop down list to select a value from.

 XSSFWorkbook workbook = new XSSFWorkbook();

 XSSFSheet sheet = workbook.createSheet("Data Validation");

 XSSFDataValidationHelper dvHelper = new XSSFDataValidationHelper(sheet);

 XSSFDataValidationConstraint dvConstraint = (XSSFDataValidationConstraint)

 dvHelper.createExplicitListConstraint(new String[]{"11", "21", "31"});

 CellRangeAddressList addressList = new CellRangeAddressList(0, 0, 0, 0);

 XSSFDataValidation validation = (XSSFDataValidation)dvHelper.createValidation(

 dvConstraint, addressList);

 validation.setShowErrorBox(true);

 sheet.addValidationData(validation);

Note that the call to the setSuppressDropDowmArrow() method can either be simply excluded or replaced with;

 validation.setSuppressDropDownArrow(true);

Prompts and Error Messages:

These both exactly mirror the hssf.usermodel so please refer to the 'Messages On Error:' and 'Prompts:' sections above.

Further Data Validations:

To obtain a validation that would check the value entered was, for example, an integer between 10 and 100, use the XSSFDataValidationHelper(s) createNumericConstraint(int, int, String, String) factory method.
 XSSFDataValidationConstraint dvConstraint = (XSSFDataValidationConstraint)

 dvHelper.createNumericConstraint(

 XSSFDataValidationConstraint.ValidationType.INTEGER,

 XSSFDataValidationConstraint.OperatorType.BETWEEN,

 "10", "100");

The values passed to the final two String parameters can be formulas; the '=' symbol is used to denote a formula. Thus, the following would create a validation the allows values only if they fall between the results of summing two cell ranges

 XSSFDataValidationConstraint dvConstraint = (XSSFDataValidationConstraint)

 dvHelper.createNumericConstraint(

 XSSFDataValidationConstraint.ValidationType.INTEGER,

 XSSFDataValidationConstraint.OperatorType.BETWEEN,

 "=SUM(A1:A10)", "=SUM(B24:B27)");

It is not possible to create a drop down list if the createNumericConstraint() method is called, the setSuppressDropDownArrow(true) method call will simply be ignored.

Please check the javadoc for other constraint types as examples for those will not be included here. There are, for example, methods defined on the XSSFDataValidationHelper class allowing you to create the following types of constraint; date, time, decimal, integer, numeric, formula, text length and custom constraints.

Creating Data Validations From Spread Sheet Cells:

One other type of constraint not mentioned above is the formula list constraint. It allows you to create a validation that takes it value(s) from a range of cells. This code

XSSFDataValidationConstraint dvConstraint = (XSSFDataValidationConstraint)

 dvHelper.createFormulaListConstraint("A1:F1");

would create a validation that took it's values from cells in the range A1 to F1.

The usefulness of this technique can be extended if you use named ranges like this;

 XSSFName name = workbook.createName();

 name.setNameName("data");

 name.setRefersToFormula("B1:F1");

 XSSFDataValidationHelper dvHelper = new XSSFDataValidationHelper(sheet);

 XSSFDataValidationConstraint dvConstraint = (XSSFDataValidationConstraint)

 dvHelper.createFormulaListConstraint("data");

 CellRangeAddressList addressList = new CellRangeAddressList(

 0, 0, 0, 0);

 XSSFDataValidation validation = (XSSFDataValidation)

 dvHelper.createValidation(dvConstraint, addressList);

 validation.setSuppressDropDownArrow(true);

 validation.setShowErrorBox(true);

 sheet.addValidationData(validation);

OpenOffice Calc has slightly different rules with regard to the scope of names. Excel supports both Workbook and Sheet scope for a name but Calc does not, it seems only to support Sheet scope for a name. Thus it is often best to fully qualify the name for the region or area something like this;

 XSSFName name = workbook.createName();

 name.setNameName("data");

 name.setRefersToFormula("'Data Validation'!B1:F1");

This does open a further, interesting opportunity however and that is to place all of the data for the validation(s) into named ranges of cells on a hidden sheet within the workbook. These ranges can then be explicitly identified in the setRefersToFormula() method argument.

ss.usermodel.

The classes within the ss.usermodel package allow developers to create code that can be used to generate both binary (.xls) and SpreadsheetML (.xlsx) workbooks.

The techniques used to create data validations share much in common with the xssf.usermodel examples above. As a result just one or two examples will be presented here.

Check the value the user enters into a cell against one or more predefined value(s).

 Workbook workbook = new XSSFWorkbook(); // or new HSSFWorkbook

 Sheet sheet = workbook.createSheet("Data Validation");

 DataValidationHelper dvHelper = sheet.getDataValidationHelper();

 DataValidationConstraint dvConstraint = dvHelper.createExplicitListConstraint(

 new String[]{"13", "23", "33"});

 CellRangeAddressList addressList = new CellRangeAddressList(0, 0, 0, 0);

 DataValidation validation = dvHelper.createValidation(

 dvConstraint, addressList);

 // Note the check on the actual type of the DataValidation object.

 // If it is an instance of the XSSFDataValidation class then the

 // boolean value 'false' must be passed to the setSuppressDropDownArrow()

 // method and an explicit call made to the setShowErrorBox() method.

 if(validation instanceof XSSFDataValidation) {

 validation.setSuppressDropDownArrow(false);

 validation.setShowErrorBox(true);

 }

 else {

 // If the Datavalidation contains an instance of the HSSFDataValidation

 // class then 'true' should be passed to the setSuppressDropDownArrow()

 // method and the call to setShowErrorBox() is not necessary.

 validation.setSuppressDropDownArrow(true);

 }

 sheet.addValidationData(validation);

Drop Down Lists:

This code will do the same but offer the user a drop down list to select a value from.

 Workbook workbook = new XSSFWorkbook(); // or new HSSFWorkbook

 Sheet sheet = workbook.createSheet("Data Validation");

 DataValidationHelper dvHelper = sheet.getDataValidationHelper();

 DataValidationConstraint dvConstraint = dvHelper.createExplicitListConstraint(

 new String[]{"13", "23", "33"});

 CellRangeAddressList addressList = new CellRangeAddressList(0, 0, 0, 0);

 DataValidation validation = dvHelper.createValidation(

 dvConstraint, addressList);

 // Note the check on the actual type of the DataValidation object.

 // If it is an instance of the XSSFDataValidation class then the

 // boolean value 'false' must be passed to the setSuppressDropDownArrow()

 // method and an explicit call made to the setShowErrorBox() method.

 if(validation instanceof XSSFDataValidation) {

 validation.setSuppressDropDownArrow(true);

 validation.setShowErrorBox(true);

 }

 else {

 // If the Datavalidation contains an instance of the HSSFDataValidation

 // class then 'true' should be passed to the setSuppressDropDownArrow()

 // method and the call to setShowErrorBox() is not necessary.

 validation.setSuppressDropDownArrow(false);

 }

 sheet.addValidationData(validation);

Prompts and Error Messages:

These both exactly mirror the hssf.usermodel so please refer to the 'Messages On Error:' and 'Prompts:' sections above.

As the differences between the ss.usermodel and xssf.usermodel examples are small - restricted largely to the way the DataValidationHelper is obtained, the lack of any need to explicitly cast data types and the small difference in behaviour between the hssf and xssf interpretation of the setSuppressDropDowmArrow() method, no further examples will be included in this section.

Advanced Data Validations.

Dependent Drop Down Lists.

In some cases, it may be necessary to present to the user a sheet which contains more than one drop down list. Further, the choice the user makes in one drop down list may affect the options that are presented to them in the second or subsequent drop down lists. One technique that may be used to implement this behaviour will now be explained.

There are two keys to the technique; one is to use named areas or regions of cells to hold the data for the drop down lists, the second is to use the INDIRECT() function to convert between the name and the actual addresses of the cells. In the example section there is a complete working example- called LinkedDropDownLists.java - that demonstrates how to create linked or dependent drop down lists. Only the more relevant points are explained here.

To create two drop down lists where the options shown in the second depend upon the selection made in the first, begin by creating a named region of cells to hold all of the data for populating the first drop down list. Next, create a data validation that will look to this named area for its data, something like this;

 CellRangeAddressList addressList = new CellRangeAddressList(0, 0, 0, 0);

 DataValidationHelper dvHelper = sheet.getDataValidationHelper();

 DataValidationConstraint dvConstraint = dvHelper.createFormulaListConstraint(

 "CHOICES");

 DataValidation validation = dvHelper.createValidation(

 dvConstraint, addressList);

 sheet.addValidationData(validation);

Note that the name of the area - in the example above it is 'CHOICES' - is simply passed to the createFormulaListConstraint() method. This is sufficient to cause Excel to populate the drop down list with data from that named region.
Next, for each of the options the user could select in the first drop down list, create a matching named region of cells. The name of that region should match the text the user could select in the first drop down list. Note, in the example, all upper case letters are used in the names of the regions of cells.
Now, very similar code can be used to create a second, linked, drop down list;

 CellRangeAddressList addressList = new CellRangeAddressList(0, 0, 1, 1);

 DataValidationConstraint dvConstraint = dvHelper.createFormulaListConstraint(

 "INDIRECT(UPPER(A1))");

 DataValidation validation = dvHelper.createValidation(

 dvConstraint, addressList);

 sheet.addValidationData(validation);

The key here is in the following Excel function - INDIRECT(UPPER(A1)) - which is used to populate the second, linked, drop down list. Working from the inner-most pair of brackets, it instructs Excel to look at the contents of cell A1, to convert what it reads there into upper case – as upper case letters are used in the names of each region - and then convert this name into the addresses of those cells that contain the data to populate another drop down list.

