FormulaEvaluator Contributors guide

This section is if you are contributing to the FormulaEvaluator API functionality.

Currently the contribution is desired for implementing the standard MS excel functions. Place holder classes for these have been created, contributors only need to insert implementation for the individual “evaluate()” methods that do the actual evaluation.

This section is organized as follows:

· Overview of FormulaEvaluator

· Walkthrough of an “evaluate()” implementation.

· Unit testing framework and writing unit tests (every function implementation class must be accompanied by corresponding unit test class)

Overview of FormulaEvaluator:

Briefly, a formula string (along with the sheet and workbook that form the context in which the formula is evaluated) is first parsed into RPN tokens using the FormulaParser class in POI-HSSF main. (If you dont know what RPN tokens are, now is a good time to read this.)

The big picture:

RPN tokens are mapped to Eval classes. (Class hierarchy for the Evals is best understood if you view the class diagram in a class diagram viewer.) Depending on the type of RPN token (also called as Ptgs henceforth since that is what the FormulaParser calls the classes) a specific type of Eval wrapper is constructed to wrap the RPN token and is pushed on the stack.... UNLESS the Ptg is an OperationPtg. If it is an OperationPtg, an OperationEval instance is created for the specific type of OperationPtg. And depending on how many operands it takes, that many Evals are popped of the stack and passed in an array to the OperationEval instance's evaluate method which returns an Eval of subtype ValueEval.Thus an operation in the formula is evaluated. (Note: An Eval is of subinterface ValueEval or OperationEval. Operands are always ValueEvals, Operations are always OperationEvals). OperationEval.evaluate(Eval[]) returns an Eval which is supposed to be of type ValueEval (actually since ValueEval is an interface, the return value is instance of one of the implementations of ValueEval). The valueEval resulting from evaluate() is pushed on the stack and the next RPN token is evaluated.... this continues till eventually there are no more RPN tokens at which point, if the formula string was correctly parsed, there should be just one Eval on the stack – which contains the result of evaluating the formula.

Ofcourse I glossed over the details of how AreaPtg and ReferencePtg are handled a little differently, but the code should be self explanatory for that. Very briefly, the cells included in AreaPtg and RefPtg are examined and their values are populated in individual ValueEval objects which are set into the AreaEval and RefEval (ok, since AreaEval and RefEval are interfaces, the implementations of AreaEval and RefEval – but you'll figure all that out from the code)

OperationEvals for the standard operators have been implemented and atleast basic testing has been done – so I will not talk about that here.

FunctionEval and FuncVarEval

FunctionEval is an abstract super class of FuncVarEval. The reason for this is that in the FormulaParser Ptg classes, there are two Ptgs, FuncPtg and FuncVarPtg. In my tests, I did not see FuncPtg being used so there is no corresponding FuncEval right now. But in case the need arises for a FuncVal class, FuncEval and FuncVarEval need to be isolated with a common interface/abstract class, hence FunctionEval.

FunctionEval also contains the mapping of which function class maps to which function index. This mapping has been done for all the functions, so all you really have to do is implement the evaluate method in the function class that has not already been implemented. The Function indexes are defined in AbstractFunctionPtg class in POI main.

Walkthrough of an “evaluate()” implementation.

So here is the fun part – lets walk through the implementation of the excel function... AVERAGE() !!! :)

· My evaluate implementation for AVERAGE is like this:

public Eval evaluate(Eval[] operands) {

 double d = 0;

 int count = 0;

 ValueEval retval = null;

 for (int i = 0, iSize = operands.length; i < iSize; i++) {

 if (operands[i] == null) continue;

 if (operands[i] instanceof AreaEval) {

 AreaEval ap = (AreaEval) operands[i];

 Object[] values = ap.getValues();

 for (int j = 0, jSize = values.length; j < jSize; j++) {

 if (values[j] == null) continue;

 if (values[j] instanceof NumberEval) { // inside areas, ignore bools

 d += ((NumberEval) values[j]).getNumberValue();

 count++;

 }

 else if (values[j] instanceof RefEval) {

 RefEval re = (RefEval) values[j];

 ValueEval ve = re.getInnerValueEval();

 if (ve != null && ve instanceof NumberEval) {

 d += ((NumberEval) ve).getNumberValue();

 count++;

 }

 }

 }

 }

 else if (operands[i] instanceof NumericValueEval) { // for direct operands evaluate bools

 NumericValueEval np = (NumericValueEval) operands[i];

 d += np.getNumberValue();

 count++;

 }

 else if (operands[i] instanceof RefEval) {

 RefEval re = (RefEval) operands[i];

 ValueEval ve = re.getInnerValueEval();

 if (ve instanceof NumberEval) { // if it is a reference, ignore bools

 NumberEval ne = (NumberEval) ve;

 d += ne.getNumberValue();

 count++;

 }

 }

 }

 if (retval == null) {

 retval = (Double.isNaN(d)) ? (ValueEval) ErrorEval.ERROR_503 : new NumberEval(d / count);

 }

 return retval;

 }

Here's an explanation of how it was written:

1. Open java file for the AVERAGE function in the package xxxx.hssf.record.formula.functions named Average.java. (Every excel function has a corresponding java source file in the above package)

2. If you open the file for a function thats not yet implemented, you will see one un-implemented method:

“public Eval evaluate(Eval[] operands) {}”

3. Since the excel Average() function can take 1 or more operands, we iterate over all operands that are passed in the evaluate method:

for (int i=0, iSize=operands.length; i<iSize; i++) {

}

4. inside the loop, you will do the following:

· Do a null check: if (operands[i] == null) continue;

· Next we figure out the actual subtype of ValueEval that the operands implements. The possible types that you will encounter in an evaluate() are: NumberEval, BoolEval, StringEval, ErrorEval, AreaEval, RefEval, BlankEval.

· As an aside, note that we are interested only in numeric types for the purpose of evaluating the function AVERAGE. Also sometimes, Excel treats Bools as the numbers 0 and 1 (for F and T resply). Hence BoolEval and NumberEval both implement a common interface: NumericValueEval (since numbers and bools are also valid string values, they also implement StringValueEval interface which is also implemented by StringEval).

· A bit about how excel AVERAGE (seems to) work:

Strings are ignored. Booleans are ignored!!! (damn Oo.o! I was almost misled here - nevermind). Actually here's the info on Bools:

if you have formula: “=TRUE+1”, it evaluates to 2.

So also, when you use TRUE like this: “=SUM(1,TRUE)”, you see the result is: 2.

So TRUE means 1 when doing numeric calculations, right?

Wrong!

Because when you use TRUE in referenced cells with arithmetic functions, it evaluates to blank – meaning it is not evaluated – as if it was string or a blank cell.

eg. “=SUM(1,A1)” when A1 is TRUE evaluates to 1.

So you have to do this kind of check for every possible data type as a function argument for any function before you understand the behaviour of the function. The operands can be entered in excel as comma separated or as a region specified like: A2:D4. Regions are treated as a single token by the parser hence we have AreaEval which stores the ValueEval at each cell in a region in a 1D array. So in our function if the operand is of type AreaEval we need to get the array of ValueEvals in the region of the AreaEval and iterate over each of them as if each of them were individual operands to the AVERAGE function.

The ValueEval inside an AreaEval can be one of:

NumberEval, BoolEval, StringEval, ErrorEval, BlankEval.

So you must handle each of these cases.

Similarly, RefEvals have a property: innerValueEval that returns the ValueEval at the referenced cell. The ValueEval inside a RefEval can be one of: NumberEval, BoolEval, StringEval, ErrorEval, BlankEval. So you must handle each of these cases - see how excel treats each one of them.

· Finally before returning the NumberEval wrapping the double value that you computed, do one final check to see if the double is a NaN, if it is return ErrorEval.ERROR_503 (see the javadoc in ErrorEval.java for description of error codes – it is html so you might as well generate the javadocs)

--- unit testing info on next page ---

Unit testing framework

Ideally you should write Unit tests before you code, but since you wouldnt know how to test before you write your first “evaluate()” implementation (unless you are smarter than me ofcourse :), I am describing how you would write unit tests after you code the evaluate() method.

Rapid unit testing:

A pre-filled excel sheet with sample data and formulas based off of that data is used. The formulas to test are in one row and the expected value of the formula evaluation is in the next row. So eg. Ifyou have formula in cell F25, the expected value should be in cell F26 (ie. you have to put the expected value in cell F26). Thus a pair of rows should be sufficient to store unit tests for a particular function. Here's a sample below showing test data for testing the Add operator (+):

	AVERAGE
	FORMULA
	0
	100000.01
	-0.1

	
	EXPECT
	0
	100000.01
	-0.1

Although you dont see it here, in the top row the values are:

“=0+0”, “=999999+1.001” and “=-8888+8887.9” resply, while cells in bottom row have the values resulting from the excel actions: “copy + pasteSpecial > values” on the top row – ie. The values in the bottom cells are exactly as you see them.

Your unit test code will use this data and will extend from BaseFormulaTestCase class.

eg. TestAddEval (which tests the + operator) is as follows:

public class TestAddEval extends BaseFormulaEvalTestCase {

 // the value of this cell will be different for different tests depending

 // on where the test data is in the excel file.

 protected static final CellReference BEGIN_AT_CELL = new CellReference("D24");

 public void testAdd() throws Exception {

 // workbook is initialized in the BaseFormulaEvalTestCase.setUp()

 HSSFSheet s = workbook.getSheetAt(0);

 HSSFRow r = s.getRow(BEGIN_AT_CELL.getRow());

 short endcolnum = r.getLastCellNum();

 HSSFFormulaEvaluator evaluator = new HSSFFormulaEvaluator(s, workbook);

 HSSFCell c = null;

 for (short colnum=BEGIN_AT_CELL.getCol(); colnum < endcolnum; colnum++) {

 c = r.getCell(colnum);

 assertEquals("Sanity check input cell type "

 , HSSFCell.CELL_TYPE_FORMULA, c.getCellType());

 HSSFFormulaEvaluator.CellValue actualValue =

 evaluator.evaluate(c.getCellFormula());

 HSSFCell expectedValueCell = getExpectedValueCell(s, r, c);

 assertEquals("Formula result check ", expectedValueCell, actualValue);

 }

 }

}

To write a new unit test for your function implementation:

1. Modify the path to the test xls (named FormulaEvalTestData.xls) to whatever is appropriate for your environment by changing the property: FILENAME in the file BaseFormulaEvalTestCase.java (This is a one time change per new environment)

2. Write the test cases in excel file (FormulaEvalTestData.xls) as explained above. No Java code is required.

3. Done! Thats how quick it is to write the test cases.

