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Cryptanalysis at the design phase

I All known cryptanalysis as applicable to the new design
I Add reasonable security margin

For example, add more rounds to iterated block ciphers
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Lightweight ciphers

I Optimized with respect to platform specific performance
requirements

I Secure: Resistant against all known cryptanalytic attacks

⇒ Minimize security margins
⇒ Must acquire better estimates for complexity of cryptanalytic
attacks
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Statistical cryptanalysis of iterated block ciphers

Differential cryptanalysis1

I chosen-plaintext attack
I data complexity upperbounded based on the best

differential probability
I historical note: ciphertext-only differential cryptanalysis

using index of coincidence [Friedman 1922]

Linear cryptanalysis1

I known-plaintext attack
I data complexity upperbounded based on the largest

magnitude of linear correlation (or bias, “linear probability)

1 Obvious references omitted
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Differential probability of cipher E
I α difference in plaintext x
I β difference in ciphertext E(x)
I Pr[α→ β] probability that given α we observe ciphertext

difference β
E(x + α) + E(x) = β

Pr[α→ β] =
∑
χ

pχ(α→ β)

where χ = (α = χ0, χ1, . . . , χr = β) is a differential
characteristic χ from α to β and (assuming round
independence)

pχ(α→ β) =
r∏

i=1

Pr[χi−1 → χi ]
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Linear correlation of cipher E
I u linear mask on plaintext x
I v linear mask on ciphertext E(x)
I cor[u → v ] correlation between u · x and v · E(x)

cor[u → v ] =
∑
θ

cθ(u, v)

where θ = (u = θ0, θ1, . . . , θr = v) is a linear characteristic
from u to v and

cθ(u, v) =
r∏

i=1

cor[θi−1 → θi ]

Assuming round independence

cor2[u → v ] =
∑
θ

c2
θ (u, v) =

∑
θ

r∏
i=1

cor2[θi−1 → θi ]
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Computing good estimates

Computation of exact values takes multiplications of huge
2n × 2n matrices

I transition matrices of Markov processes
[Lai-Murphy-Massey 1991]

I correlation matrices [Daemen 1994], or
I matrices of squared correlations [N 1994]

see also

A. Canteaut, C. Carlet, P. Charpin, C. Fontaine. On cryptographic properties of the cosets of r(1, m). IEEE

Trans. IT 47(4), 14941513 (2001)

N. Linial, Y. Mansour and N. Nisan. Constant depth circuits, Fourier transform, and learnability. Journal of

the ACM 40 (3), 607-620 (1993).
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Computing good estimates

In some cases it is possible to exploit the structure of the cipher

I to make these computations feasible; or
I to obtain good estimates, or
I reasonable upperbounds (for security claims)
I reasonable lower bounds (to bound attack complexity)

In some cases this is really hard

AES: The best known upperbounds for 4 and more rounds
obtained by Keliher (2005), Canteaut (2015)
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Provable security theorem

N-Knudsen: Crypto 1992 Rump Session, J Crypt 1995

Theorem ( KN -Theorem) It is assumed that in a DES-like
cipher with F : Fm

2 → Fn
2 the round keys are independent and

uniformly random. Then the probability of an s-round
differential, s ≥ 4, is less than or equal to 2p2

max .

Here
pmax = max

β
max
α 6=0

Pr[α F→ β]
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CRADIC
Cipher Resistant Against Differential Cryptanalysis
(KN -Cipher)

6-round Feistel cipher with round function f : F32
2 → F32

2 based
on the power three operation in F33

2

Jakobsen & Knudsen FSE1997 break it with
I with 512 chosen plaintexts and 241 running time,
I or with 32 chosen plaintexts and 270 running time
I using higher order differential cryptanalysis

Round-function based on the inverse mapping not any more resistant.
This approach was then abandonded
... higher algebraic degree does not help if the inverse has a low
degree [Boura-Canteaut IEEE Trans. IT 2013].

Round functions based on the exponent function in Fp yet to be
explored. Previously used for IDEA and SAFER family.
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DEAN

I Proposed by Baignères et al. 2007
I Encrypts blocks of nine elements from the additive group

Z10 × Z10.
I Not a complete cipher, no key schedule, 8 rounds
I One round:

S S S

MixColumns

S S S

MixColumns

S S S

MixColumns

+ + + + + + + + +
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Linear setting of DEAN

I Select suitable linear approximation trails through DEAN
I Use MDS property of MixColumns and cover all trails for a

minimum number of active S-boxes
I Restrict the (squared) correlation matrix to this subset
I obtain an upper bound to the data complexity and also an

attack for this data complexity
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Linear approximation of DEAN

S S S S S S S S S

* 0 * * * 0 0 0 0

* 0 * * * 0 0 0 0

* * 0 * 0 * 0 0 0

MixColumns MixColumns MixColumns

0 * * * 0 * 0 0 0

S S S S S S S S S
0 * * * 0 * 0 0 0

0 0 0 * 0 * 0 * *

MixColumns MixColumns MixColumns

0 0 0 * * 0 0 * *

S S S S S S S S S
0 0 0 * * 0 0 * *

0 * * * * 0 0 0 0

MixColumns MixColumns MixColumns

* 0 * * * 0 0 0 0
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Data complexity estimates

Full code book 1018 ≈ 261.
Estimated number of rounds needed to exceed full code book
data complexity for a linear distinguisher:

designers single trail estimate four rounds

Hakala et al max two MixColumns seven rounds
Inscrypt 2012 wide trails and

multiple approximations
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PRESENT

I Proposed by Bogdanov et al. 2007
I designers: single linear and differential characteristics over

more 15 rounds not effective
I specification has 31 rounds, that is, 16 round margin
I linear attack on 26 rounds [Cho 2010]
I the structure allows very accurate estimates of squared

linear correlations over any number of rounds [Leander
2011].

I estimates of differential attacks hard to achieve
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Correlation matrix of S-box of PRESENT

cor[u S→ v ]

by focusing on single-bit masks
u\v 1 2 3 4 5 6 7 8 9 a b c d e f

1 0 0 0 0 −2−1 0 −2−1 0 0 0 0 0 −2−1 0 2−1

2 0 2−2 2−2 −2−2 −2−2 0 0 2−2 −2−2 0 2−1 0 2−1 −2−2 2−2

3 0 2−2 2−2 2−2 −2−2 −2−1 0 −2−2 2−2 −2−1 0 0 0 −2−2 −2−2

4 0 −2−2 2−2 −2−2 −2−2 0 2−1 −2−2 −2−2 0 −2−1 0 0 −2−2 2−2

5 0 −2−2 2−2 −2−2 2−2 0 0 2−2 2−2 −2−1 0 2−1 0 2−2 2−2

6 0 0 −2−1 0 0 −2−1 0 0 −2−1 0 0 2−1 0 0 0
7 0 0 2−1 2−1 0 0 0 0 −2−1 0 0 0 0 2−1 0
8 0 2−2 −2−2 0 0 −2−2 2−2 −2−2 2−2 0 0 −2−2 2−2 2−1 2−1

9 2−1 −2−2 −2−2 0 0 2−2 −2−2 −2−2 −2−2 −2−1 0 −2−2 2−2 0 0
a 0 2−1 0 2−2 2−2 2−2 −2−2 0 0 0 −2−1 2−2 2−2 −2−2 2−2

b −2−1 0 0 −2−2 −2−2 2−2 −2−2 −2−1 0 0 0 2−2 2−2 2−2 −2−2

c 0 0 0 −2−2 −2−2 −2−2 −2−2 2−1 0 0 −2−1 −2−2 2−2 2−2 −2−2

d 2−1 2−1 0 −2−2 −2−2 2−2 2−2 0 0 0 0 2−2 −2−2 2−2 −2−2

e 0 2−2 2−2 −2−1 2−1 −2−2 −2−2 −2−2 −2−2 0 0 −2−2 −2−2 0 0
f 2−1 −2−2 2−2 0 0 −2−2 −2−2 −2−2 2−2 2−1 0 2−2 2−2 0 0
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PRESENT structure
I single-bit masks give high correlations over the S-box
I linear layer is a bit permutation
I trails with masks of more than one bit can be ignored



Haifa 2015

21/35

Outline

Cryptanalysis and lightweight ciphers

Using one differential or linear approximation
Examples

Enhancements using several differentials and linear
approximations

Newer statistical cryptanalysis
Recent links
Multidimensional linear and truncated differential
Collision probability as nonuniformity measure

Sampling without replacement

Conclusions



Haifa 2015

22/35

Statistical attacks
LINEAR CONTEXT DIFFERENTIAL CONTEXT

Differential Cryptanalysis [Biham, Shamir 90]Linear Cryptanalysis [Tardy, Gilbert 92] [Matsui 93]

Differential-Linear Cryptanalysis [Langford, Hellman 94]

Truncated Differential Cryptanalysis [Knudsen 94]

Higher Order Differential cryptanalysis [Lai 94] [Knudsen 94]

Square Attack, Integral · · · [Daemen, Rijmen, Knudsen 97]

Statistical Saturation [Collard, Standaert 09]

Impossible Differential Cryptanalysis [Knudsen 98]Zero Correlation [Bogdanov, Rijmen 11]

Multiple Differential Cryptanalysis [Albrecht, Leander 12]
[Blondeau, Gérard, Nyberg 12]

Multiple Linear Cryptanalysis
[Biryukov, de Cannière, Quisquater 04]

Multidimensional Linear Cryptanalysis [Cho, Hermelin, Nyberg 08]

· · · · · · · · · · · ·
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Truncated differential cryptanalysis

--

--

EkEk

x ′x

y ′y

6?

6?

δ

∆

Input difference δ
Output difference ∆

Set of input differences: δ ∈ C

Set of output differences: ∆ ∈ D

Probability of truncated differential

1
|C|

∑
δ∈C

∑
∆∈D

P[δ
F→ ∆]
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Multidimensional linear cryptanalysis

x

y = Ek(x)
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Multidimensional linear approximation:

Set of masks (u,w) ∈ U ×W

Capacity:
∑

u∈U

∑
w∈W

corx (u · x + w · y)2 − 1
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Recent links

[Leander EC2011] :

Statistical Saturation⇔ Multidimensional Linear

[Bogdanov et al AsiaCrypt2012] :

Integral⇔ Zero Correlation Linear

[Blondeau-N EC2013] :

Zero Correlation Linear⇔ Impossible Differential

[Blondeau-N EC2014] :

Multidimensional Linear⇔ Truncated Differential
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Splitting the spaces

s︷ ︸︸ ︷ t︷ ︸︸ ︷

q
︸ ︷︷ ︸

r
︸ ︷︷ ︸

Ek

m

n

︸ ︷︷ ︸

︷ ︸︸ ︷
Focus on the left side:

multidimensional linear context

I all non-zero input and output masks

truncated differential context

I zero input and output differences

Don’t care about the right side:

multidimensional linear context

I zero input and output masks

truncated differential context

I all input and output differences
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Zero correlation linear

Fs
2

Fq
2

s︷ ︸︸ ︷ t︷ ︸︸ ︷

q
︸ ︷︷ ︸

r
︸ ︷︷ ︸

as 0

bq 0

?

6

Zero Correlation

Zero Correlation Linear :

corx ((as,0), (bq,0)) = 0

for all (as,bq) ∈ Fs
2 × Fq

2 \ {(0,0)}
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Impossible differential

Ft
2

Fr
2

s︷ ︸︸ ︷ t︷ ︸︸ ︷

q
︸ ︷︷ ︸

r
︸ ︷︷ ︸

0 δt

0 ∆r

?

6

Truncated

Truncated Differential:∑
δt∈Ft

2

∑
∆r∈Fr

2

Pr [(0, δt )→ (0,∆r )] = 2t−q

If t=q and δt 6= 0

Impossible Differential:

Pr [(0, δt )→ (0,∆r )] = 0

for all (δt ,∆r ) ∈ Ft
2 × Fr

2 \ {(0,0)}
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Zero correlation linear and impossible Differential

Ft
2

Fr
2

s︷ ︸︸ ︷ t︷ ︸︸ ︷

q = t
︸ ︷︷ ︸

r
︸ ︷︷ ︸

0 δt

0 ∆r

?

6

Impossible

If t = q

Zero Correlation Linear Distinguisher

is equivalent to

Impossible Differential Distinguisher
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Multidimensional linear and truncated differential

s︷ ︸︸ ︷ t︷ ︸︸ ︷

q
︸ ︷︷ ︸

r
︸ ︷︷ ︸

?

6

Multidim Lin
?

6

Truncated Diff

Multidimensional Linear Distinguisher

is equivalent to

Truncated Differential Distinguisher
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The mathematical link
Capacity C is defined as

C =
∑

(us,wq)6=0

cor[(us,0)→ (wq,0)]2.

Truncated differential probability P equals

P = 2−t
∑
δt∈Ft

2

∑
∆r∈Fr

2

Pr [(0, δt )→ (0,∆r )]

Then it holds [Blondeau-N 2014]

Theorem

P = 2−q(C + 1) = 2s
∑
xs,yq

Pr(xs, yq)2.
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Focus on distributions
Distribution of values (xs, yq) ∈ Fs

2 × Fq
2

Multidimensional linear attack
I samples plaintexts x and corresponding ciphertexts y and

examines the nonuniformity of the distribution of values
(xs, yq)

Truncated differential attack
I samples in pairs of plaintexts
I counts collisions in values (xs, yq)

These are just different approaches to sampling of the cipher
data and measuring the nonuniformity of the distribution of
(xs, yq) ∈ Fs

2 × Fq
2.
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Corollary

Assume that the cipher is secure against classical linear and
differential attacks.

Corollary
The cipher is secure against multidimensional linear attacks if
and only if it is secure against truncated differential attacks.
Proof: Provable security requires accurate estimates of
correlations of linear approximations (or probabilities of
differentials).
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Application to PRESENT

I PRESENT allows accurate estimation of correlations of its
linear approximations over any number of rounds

I capacities of multidimensional linear approximations can
be accurately evaluated

I The best known linear distinguisher is for 23 rounds and it
seems that there is nothing better.

It follows that there is an efficient truncated differential
distinguisher for 23 rounds, which can be used in a chosen
plaintext key recovery attack.
If PRESENT is secure against linear attacks (as it seems) then
it is also secure against differential attacks.
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Sampling without replacement
I critical for zero-correlation cryptanalysis etc
I any statistical method gains in accuracy when close to full

codebook [Blondeau-N WCC 2015]
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Zero-correlation distinguisher on LBlock (Small Variant)
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Conclusions

I Lightweight ciphers should allow accurate estimation of
resistance against attacks to reduce unnecessary security
margins

I In this respect, PRESENT turns out to be very good
I This goal sets also requirements to attack models, which

must be accurate. To improve accuracy, use
I subsums of linear hulls and differentials instead of single

linear and differential characteristics
I multiple linear approximations or truncated differentials

instead
I estimate performance assuming non-repeating plaintext, in

particular, when data complexity is close to full codebook.
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