
1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 1/50

JavaFX CSS Reference Guide

Contents
Introduction

CSS and the JavaFX Scene Graph
Limitations
Inheritance
Examples
Understanding Parser Warnings

Types
inherit
<boolean>
<string>
<number> & <integer>
<size>
<length>
<percentage>
<angle>
<point>
<color-stop>
<uri>
<effect>

<paint>
<color>

Nodes
javafx.scene

Group
Node
Parent
Scene

javafx.scene.image
ImageView

Release: JavaFX 2.2

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 2/50

javafx.scene.layout
AnchorPane
BorderPane
FlowPane
GridPane
HBox
Pane
Region
StackPane
TilePane
VBox

javafx.scene.shape
Shape
Arc
Circle
CubicCurve
Ellipse
Line
Path
Polygon
QuadCurve
Rectangle
SVGPath

javafx.scene.text
Text

javafx.scene.web
WebView

Controls
javafx.scene.control

Accordion
Button
ButtonBase
Cell
CheckBox
CheckMenuItem
ChoiceBox
ColorPicker
ComboBox
Control
Hyperlink
IndexedCell
Label

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 3/50

Labeled
ListCell
ListView
Menu
MenuBar
MenuButton
MenuItem
MenuItemBase
Pagination
PasswordField
ProgressBar
ProgressIndicator
RadioButton
RadioMenuItem
ScrollBar
ScrollPane
Separator
Slider
SplitMenuButton
SplitPane
TabPane
TableView
TextArea
TextInputControl
TextField
TitledPane
ToggleButton
ToolBar
Tooltip
TreeCell
TreeView

Charts
javafx.scene.chart

AreaChart
BarChart
BubbleChart
Chart
LineChart
ScatterChart
PieChart
XYChart
Axis

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 4/50

ValueAxis
NumberAxis
CategoryAxis
Legend

References

Introduction
JavaFX Cascading Style Sheets (CSS) is based on the W3C CSS version 2.1 [1] with some additions from current work on version 3 [2]. JavaFX CSS also has some
extensions to CSS in support of specific JavaFX features. The goal for JavaFX CSS is to allow web developers already familiar with CSS for HTML to use CSS to
customize and develop themes for JavaFX controls and scene graph objects in a natural way. The JavaFX CSS support and extensions have been designed to allow
JavaFX CSS style sheets to be parsed cleanly by any compliant CSS parser, even though it might not support JavaFX extensions. This enables the mixing of CSS
styles for JavaFX and for other purposes (such as for HTML pages) into a single style sheet. To this end, all JavaFX property names have been prefixed with a vendor
extension of "-fx-". Even properties that might seem to be compatible with standard HTML CSS have been prefixed, because JavaFX has somewhat different
semantics for their values.

JavaFX CSS does not support CSS layout properties such as float, position, overflow, and width. However, the CSS padding and margins properties are supported on
some JavaFX scene graph objects. All other aspects of layout are handled programmatically in JavaFX code. In addition, CSS support for HTML-specific elements
such as Tables are not supported since there is no equivalent construct in JavaFX.

JavaFX has a rich set of extensions to CSS in support of features such as color derivation, property lookup, and multiple background colors and borders for a single
node. These features add significant new power for developers and designers and are described in detail in this document.

The structure of this document is as follows. First, there is a description of all value types for JavaFX CSS properties.Where appropriate, this includes a grammar for
the syntax of values of that type. Then, for each scene graph node that supports CSS styles, a table is given that lists the properties that are supported, along with
type and semantic information. The pseudo-classes for each class are also given. The description of CSS properties continues for the controls. For each control, the
substructure of that control's skin is given, along with the style class names for the Region objects that implement that substructure.

CSS and the JavaFX Scene Graph

CSS styles are applied to nodes in the JavaFX scene graph in a way similar to the way CSS styles are applied to elements in the HTML DOM. Styles are first applied
to the parent, then to its children. The code is written such that only those branches of the scene graph that might need CSS reapplied are visited. A node is styled
after it is added to the scene graph. Styles are reapplied when there is a change to the node's pseudo-class state, style class, id, inline style, or parent.

CSS styles are applied asynchronously. That is, CSS styles are loaded and values are converted and assigned some time after a scene graph object has been
created and added to the scene graph, but before the scene graph is first laid out and painted. In addition, if the styles that apply to an object have changed (for
example, because its pseudo-class has changed), values from the newly applied styles will not be applied immediately. Instead, they will be applied sometime after
the object's state has changed but before the scene is next painted. It is possible that a style might apply to a variable in a JavaFX object that had been assigned a
value by a JavaFX program. Since CSS styles are applied asynchronously, it's possible that values might be assigned by a program and used for some time before
being overwritten by CSS at an arbitrary time later.

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 5/50

Each node in the scene graph has a styleClass variable, a List<String>. This is analogous to the class="..." attribute that can appear on HTML elements. Supplying a
string for a node's styleClass variable causes style properties for that style class to applied to this node. Styles for style classes can be specified using the ".styleclass"
selector syntax in a style sheet. Note that a node may have more than one style class.

Each node in the scene graph has an id variable, a string. This is analogous to the id="..." attribute that can appear HTML elements. Supplying a string for a node's id
variable causes style properties for this node to be looked up using that id. Styles for specific ids can be specified using the "#nodeid" selector syntax in a style sheet.

Each node honors a set of properties that depends on the node's JavaFX class (as distinct from its styleClass). The properties honored by each node class are shown
in detail in tables later in this document. The property value that is actually applied depends on the precedence of the origin of the rule, as described above, as well as
the specificity of the rule's selector as described in CSS 2 [1] . Ultimately, a property value string is converted into a JavaFX value of the appropriate type and is then
assigned to an instance variable of the JavaFX object.

CSS styles can come from style sheets or inline styles. Style sheets are loaded from the URLs specified in the stylesheets variable of the Scene object. If the scene
graph contains a Control, a default user agent style sheet is loaded. Inline styles are specified via the Node setStyle API. Inline styles are analogous to the style="..."
attribute of an HTML element. Styles loaded from a Scene's style sheets take precedence over rules from the user agent style sheet. Inline styles take precedence
over styles originating elsewhere. The precedence order of style rules can be modified using "!important" in a style declaration.

Beginning with JavaFX 2.1, the Parent class has a stylesheets property, allowing style sheets to be set on a container. This allows for one branch of of the scene
graph to have a distinct set of styles. Any instance of Parent can have a style sheets. A child will take its styles from its own inline styles, the style sheets of all its
ancestors, and any style sheets from the Scene.

A style sheet URL may be an absolute URL or a relative URL. If a relative URL is given, it is resolved against the base URL of the ClassLoader of the concrete
Application class. If, for example, there is a main class com.wicked.cool.ui.Main that extends Application, the relative URL "com/wicked/cool/resources/styles.css"
would resolve correctly. The relative URL "../resources/styles.css" would not since the path ".." relative to the root is not a valid path. It is often easier to use the
ClassLoader of some class to find the resource. For example, if the "styles.css" file resides in the same package as Main, the following code will give the correct URL:
com.wicked.cool.ui.Main.class.getResource("styles.css").toExternalForm()

Note that, beginning with JavaFX 2.1, a URL consisting of only an absolute path (having no scheme or authority) is resolved relative to the base URL of ClassLoader
of the class that extends Application. In other words, "/com/wicked/cool/resources/styles.css" is treated as "com/wicked/cool/resources/styles.css". This is consistent
with FXML.

The implementation allows designers to style an application by using style sheets to override property values set from code. This has implications for the cascade;
particularly, when does a style from a style sheet override a value set from code? The JavaFX CSS implementation applies the following order of precedence; a style
from a user agent style sheet has lower priority than a value set from code, which has lower priority than a Scene or Parent style sheet. Inline styles have highest
precedence. Style sheets from a Parent instance are considered to be more specific than those styles from Scene style sheets.

Naming conventions have been established for deriving CSS style class names from JavaFX class names, and for deriving CSS property names from JavaFX
variable names. Note that this is only a naming convention; there is no automatic name conversion. Most JavaFX names use "camel case," that is, mixed case names
formed from compound words, where the initial letter of each sub-word is capitalized. Most CSS names in the HTML world are all lower case, with compound words
separated by hyphens. The convention is therefore to take JavaFX class names and form their corresponding CSS style class name by separating the compound
words with hyphens and convering the letters to all lower case. For example, the JavaFX ToggleButton class would have a style class of "toggle-button". The
convention for mapping JavaFX variable names to CSS property names is similar, with the addition of the "-fx-" prefix. For example, the blendMode variable would
have a corresponding CSS property name of "-fx-blend-mode".

Limitations

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 6/50

While the JavaFX CSS parser will parse valid CSS syntax, it is not a fully compliant CSS parser. One should not expect the parser to handle syntax not specified in
this document.

@-keyword statements are ignored.

The ":first-child" and ":lang" pseudo-classes are not supported. The ":first-line", ":first-letter", ":after", and ":before" pseudo-elements are not supported.

The ":active" and ":focus" dynamic pseudo-classes are not supported. However, Nodes do support the ":pressed" and ":focused" pseudo-classes, which are similar.

The ":link" and ":visited" pseudo-classes are not supported in general. However, Hyperlink objects can be styled, and they support the ":visited" pseudo-class.

JavaFX CSS does not support comma-separated series of font family names in the -fx-font-family property. The optional line height parameter when specifying fonts is
not supported. There is no equivalent for the font-variant property.

JavaFX CSS uses the HSB color model instead of the HSL color model.

It is possible to use the JavaFX class name as a type selector, however, such use is not recommended. For example, it is possible to specify styles for a ToggleButton
using the syntax "ToggleButton { ... }". Such usage is not recommended because the name used to match the type selector is the actual concrete class name used in
the JavaFX program. This class name can change in the case of subclassing. If the application were to subclass the ToggleButton class, these styles would no longer
apply.

At this time, the programming interfaces necessary for a class to declare support for CSS properties, to convert and load these values from CSS style sheets into
object variables, and to declare and notify changes to an object's pseudo-classes, are considered internal interfaces and are not accessible directly to applications.

If a property of a node is initialized by calling the set method of the property, the CSS implementation will see this as a user set value and the value will not be
overwritten by a style from a user agent style sheet.

Inheritance

CSS also provides for certain properties to be inherited by default, or to be inherited if the property value is 'inherit'. If a value is inherited, it is inherited from the
computed value of the element's parent in the document tree. In JavaFX, inheritance is similar, except that instead of elements in the document tree, inheritance
occurs from parent nodes in the scene graph.

The following properties inherit by default. Any property can be made to inherit by giving it the value "inherit".

Class Property CSS Property Initial Value

javafx.scene.Node cursor -fx-cursor javafx.scene.Cursor.DEFAULT
javafx.scene.text.Text textAlignment -fx-text-alignment javafx.scene.text.TextAlignment.LEFT
javafx.scene.text.Font font -fx-font Font.DEFAULT (12px system)

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 7/50

Within the hierarchy of JavaFX classes (for example, Rectangle is a subclass of Shape, which in turn is a subclass of Node), the CSS properties of an ancestor are
also CSS properties of the descendant. This means that a subclass will respond to the same set of properties as its ancestor classes, and to additional properties it
defines itself. So, a Shape supports all the properties of Node plus several more, and Rectangle supports all the properties of Shape plus a couple more. However,
because using a JavaFX class name as a type selector is an exact match, providing style declarations for a Shape will not cause a Rectangle to use those values
(unless the .css value for the Rectangle's property is "inherit").

Examples

Consider the following simple JavaFX application:

Scene scene = new Scene(new Group());
 scene.getStylesheets().add(“test.css”);

 Rectangle rect = new Rectangle(100,100);
 rect.setLayoutX(50);

 rect.setLayoutY(50);
 rect.getStyleClass().add("my-rect");

 ((Group)scene.getRoot()).getChildren().add(rect);

Without any styles, this will display a plain black rectangle. If test.css contains the following:

.my-rect { -fx-fill: red; }

the rectangle will be red instead of black:

If test.css contains the following:

.my-rect {
 -fx-fill: yellow;

 -fx-stroke: green;
 -fx-stroke-width: 5;

 -fx-stroke-dash-array: 12 2 4 2;
 -fx-stroke-dash-offset: 6;

 -fx-stroke-line-cap: butt;
 }

the result will be a yellow rectangle with a nicely dashed green border:

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 8/50

Understanding Parser Warnings

When the JavaFX CSS parser encounters a syntax error, a warning message is emitted which conveys as much information as is available to help resolve the error.
For example

WARNING: com.sun.javafx.css.parser.CSSParser declaration Expected '<percent>' while parsing '-fx-background-color' at
?[1,49]

The cryptic '?[1,49]' pertains to the location of the error. The format of the location string is

<url>[line, position]

If the error is found while parsing a file, the file URL will be given. If the error is from an inline style (as in the example above), the URL is given as a question mark.
The line and position give an offset into the file or string where the token begins. Please note that the line and position may not be accurate in releases prior to JavaFX
2.2.

Applications needing to detect errors from the parser can add a listener to the errors property of com.sun.javafx.css.StyleManager. This is not public API and is
subject to change.

Types

inherit

Each property has a type, which determines what kind of value and the syntax for specifying those values. In addition, each property may have a specified value of
'inherit', which means that, for a given node, the property takes the same computed value as the property for the node's parent. The 'inherit' value can be used on
properties that are not normally inherited.

If the 'inherit' value is set on the root element, the property is assigned its initial value.

<boolean>

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 9/50

Boolean values can either have the string value of "true" or "false", the values are case insensitive as all CSS is case insensitive.

<string>

Strings can either be written with double quotes or with single quotes. Double quotes cannot occur inside double quotes, unless escaped (e.g., as '\"' or as '\22').
Analogously for single quotes (e.g., "\'" or "\27").

"this is a 'string'"
 "this is a \"string\""

 'this is a "string"'
 'this is a \'string\''

A string cannot directly contain a newline. To include a newline in a string, use an escape representing the line feed character in ISO-10646 (U+000A), such as "\A" or
"\00000a". This character represents the generic notion of "newline" in CSS. See the 'content' property for an example.

<number> & <integer>

Some value types may have integer values (denoted by <integer>) or real number values (denoted by <number>). Real numbers and integers are specified in decimal
notation only. An <integer> consists of one or more digits "0" to "9". A <number> can either be an <integer>, or it can be zero or more digits followed by a dot (.)
followed by one or more digits. Both integers and real numbers may be preceded by a "-" or "+" to indicate the sign. -0 is equivalent to 0 and is not a negative number.

[+|-]? [[0-9]+|[0-9]*"."[0-9]+]

Note that many properties that allow an integer or real number as a value actually restrict the value to some range, often to a non-negative value.

<size>

A size is a <number> with units of <length> or <percentage>If units are not specified then specified the 'px' is assumed.

<length>

<number>[px | mm | cm | in | pt | pc | em | ex]?

No whitespace is allowed between the number and units if provided. Some units are relative and others absolute.

Relative

px: pixels, relative to the viewing device
em: the 'font-size' of the relevant font
ex: the 'x-height' of the relevant font

Absolute

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 10/50

in: inches — 1 inch is equal to 2.54 centimeters.
cm: centimeters
mm: millimeters
pt: points — the points used by CSS 2.1 are equal to 1/72nd of an inch.
pc: picas — 1 pica is equal to 12 points.

<percentage>

These are a percentage of some length, typically to the width or height of a node.

<number>[%]

<angle>

An angle is a <number> with one of the following units.

<number>[deg | rad | grad | turn]

deg: angle in degrees - all other angle units are converted to degrees.
rad: angle in radians
grad: angle in gradians
turn: angle in turns

<point>

A point is an {x,y} coordinate.

[[<length> <length>] | [<percentage> | <percentage>]]

<color-stop>

Stops are per W3C color-stop syntax.

[<color> [<percentage> | <length>]?]

In a series of <color-stop>, stop distance values must all be <percentage> or <length>. Furthermore, if <length> values are used, then the distance value for first and
last stop in the series must be specified. This restriction may be removed in a future release.

"red, white 70%, blue" is valid since the distance for red and blue is assumed to be 0% and 100%, respectively.

"red 10, white, blue 90" is valid. Because distance for red and blue is 10 and 90, respectively, the distance for white can be calculated.

"red, white 70, blue" is not valid since distance units do not agree.

http://dev.w3.org/csswg/css3-images/#color-stop-syntax.

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 11/50

"red, white, blue" is valid. The stops are distributed evenly between 0% and 100%.

<uri>

url ([\"\']? <address> [\"\']?)

<address> can be an absolute URI, for example:

url(http://example.com)
 url('http://example.com')
 url("http://example.com")

or it can be relative to the location of the CSS file.

<effect>

JavaFX CSS currently supports the DropShadow and InnerShadow effects from the JavaFX platform. See the class documentation in javafx.scene.effect for further
details about the semantics of the various effect parameters.

Drop Shadow

A high-level effect that renders a shadow of the given content behind the content.

dropshadow(<blur-type> , <color> , <number> , <number> , <number> , <number>)

<blur-type> = [gaussian | one-pass-box | three-pass-box | two-pass-box]
 <color> The shadow Color.

 <number> The radius of the shadow blur kernel. In the range [0.0 ... 127.0], typical value 10.
 <number> The spread of the shadow. The spread is the portion of the radius where the contribution of the source material will be 100%. The remaining portion

of the radius will have a contribution controlled by the blur kernel. A spread of 0.0 will result in a distribution of the shadow determined entirely by the blur
algorithm. A spread of 1.0 will result in a solid growth outward of the source material opacity to the limit of the radius with a very sharp cutoff to transparency at
the radius. Values should be in the range [0.0 ... 1.0].

 <number> The shadow offset in the x direction, in pixels.
 <number> The shadow offset in the y direction, in pixels.

Inner Shadow

A high-level effect that renders a shadow inside the edges of the given content.

innershadow(<blur-type> , <color> , <number> , <number> , <number> , <number>)

<blur-type> = [gaussian | one-pass-box | three-pass-box | two-pass-box]
 <color> The shadow Color.

 <number> The radius of the shadow blur kernel. In the range [0.0 ... 127.0], typical value 10.

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 12/50

<number> The choke of the shadow. The choke is the portion of the radius where the contribution of the source material will be 100%. The remaining portion of
the radius will have a contribution controlled by the blur kernel. A choke of 0.0 will result in a distribution of the shadow determined entirely by the blur algorithm.
A choke of 1.0 will result in a solid growth inward of the shadow from the edges to the limit of the radius with a very sharp cutoff to transparency inside the
radius. Values should be in the range [0.0 ... 1.0].

 <number> The shadow offset in the x direction, in pixels.
 <number> The shadow offset in the y direction, in pixels.

JavaFX CSS supports the ability to specify fonts using separate family, size, style, and weight properties, as well as the ability to specify a font using a single
shorthand property. There are four value types related to fonts plus a shorthand property that encompasses all four properties. The font-related types are as follows.

<font-family>The string name of the font family. An actual font family name available on the system can be used, or one of the following generic family names can
be used:

'serif' (e.g., Times)
'sans-serif' (e.g., Helvetica)
'cursive' (e.g., Zapf-Chancery)
'fantasy' (e.g., Western)
'monospace' (e.g., Courier)

<font-size> The size of the font, using the <size> syntax.

<font-style> The font's style, using the following syntax:
 [normal | italic | oblique]

<font-weight> The font's weight, using the following syntax:
 [normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900]

 This font shorthand property can be used in place of the above properties. It uses the following syntax:
 [[<font-style> || <font-weight>]? <font-size> <font-family>]

Font Properties

Most classes that use text will support the following font properties. In some cases a similar set of properties will be supported but with a different prefix instead of "-fx-
font".

CSS Property Values Default Comments

-fx-font inherit shorthand property for font-size, font-family, font-weight and font-style
-fx-font-family <font-family> inherit
-fx-font-size <font-size> inherit
-fx-font-style <font-style> inherit
-fx-font-weight <font-weight> inherit

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 13/50

<paint>

Paint values can either be a solid color specified in one of the color syntaxes or they can be a linear or radial gradient.

<color> | <linear-gradient> | <radial-gradient>

Linear Gradients <linear-gradient>

linear-gradient([[from <point> to <point>] | [to <side-or-corner>],]? [[repeat | reflect],]? <color-stop>[,
<color-stop>]+)

where <side-or-corner> = [left | right] || [top | bottom]

Linear gradient creates a gradient going though all the stop colors along the line between the "from" <point> and the "to" <point>. If the points are percentages,
then they are relative to the size of the area being filled. Percentage and length sizes can not be mixed in a single gradient function.

If neither repeat nor reflect are given, then the CycleMethod defaults "NO_CYCLE".
 If neither [from <point> to <point>] nor [to <side-or-corner>] are given, then the gradient direction defaults to 'to bottom'.

 Stops are per W3C color-stop syntax and are normalized accordingly.

This example will create a gradient from top left to bottom right of the filled area with red at the top left corner and black at the bottom right.

linear-gradient(to bottom right, red, black)

This is equivalent to:

linear-gradient(from 0% 0% to 100% 100%, red 0%, black 100%)

This more complex example will create a 50px high bar at the top with a 3 color gradient with white underneath for the rest of the filled area.

linear-gradient(from 0px 0px to 0px 50px, gray, darkgray 50%, dimgray 99%, white)

The following syntax for linear gradient does not conform to the CSS grammar and is deprecated in JavaFX 2.0. The JavaFX 2.0 CSS parser supports the syntax but
this support may be removed in later releases.

linear (<size>, <size>) to (<size>, <size>) stops [(<number>,<color>)]+ [repeat | reflect]?

Radial Gradients <radial-gradient>

radial-gradient([focus-angle <angle>,]? [focus-distance <percentage>,]? [center <point>,]? radius [<length> |
<percentage>] [[repeat | reflect],]? <color-stop>[, <color-stop>]+)

If neither repeat nor reflect are given, then the CycleMethod defaults "NO_CYCLE".
 Stops are per W3C color-stop syntax and are normalized accordingly.

Following are examples of the use of radial-gradient:

http://dev.w3.org/csswg/css3-images/#color-stop-syntax.
http://dev.w3.org/csswg/css3-images/#color-stop-syntax.

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 14/50

radial-gradient(radius 100%, red, darkgray, black)
radial-gradient(focus-angle 45deg, focus-distance 20%, center 25% 25%, radius 50%, reflect, gray, darkgray 75%,
dimgray)

The following syntax for radial gradient does not conform to the CSS grammar and is deprecated in JavaFX 2.0. The JavaFX 2.0 CSS parser supports the syntax but
this support may be removed in later releases.

radial [focus-angle <number> | <number>]]? [focus-distance <size>]? [center <size,size>]? <size> stops [(<number>,
<color>)]+ [repeat | reflect]?

<color>

<named-color> | <looked-up-color> | <rgb-color> | <hsb-color> | <color-function>

Named Colors <named-color>

CSS supports a bunch of named constant colors. Named colors can be specified with just their unquoted name for example:

.button {
 -fx-background-color: red;

 }

The named colors that are available in CSS are:

 aliceblue = #f0f8ff antiquewhite = #faebd7 aqua = #00ffff aquamarine = #7fffd4

 azure = #f0ffff beige = #f5f5dc bisque = #ffe4c4 black = #000000

blanchedalmond =
#ffebcd blue = #0000ff blueviolet = #8a2be2 brown = #a52a2a

 burlywood = #deb887 cadetblue = #5f9ea0 chartreuse = #7fff00 chocolate = #d2691e

 coral = #ff7f50 cornflowerblue = #6495ed cornsilk = #fff8dc crimson = #dc143c

 cyan = #00ffff darkblue = #00008b darkcyan = #008b8b darkgoldenrod = #b8860b

 darkgray = #a9a9a9 darkgreen = #006400 darkgrey = #a9a9a9 darkkhaki = #bdb76b

darkmagenta =
#8b008b darkolivegreen = #556b2f darkorange = #ff8c00 darkorchid = #9932cc

darkred = #8b0000 darksalmon = #e9967a darkseagreen = #8fbc8f darkslateblue = #483d8b

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 15/50

 darkslategray = #2f4f4f darkslategrey = #2f4f4f darkturquoise = #00ced1 darkviolet = #9400d3

 deeppink = #ff1493 deepskyblue = #00bfff dimgray = #696969 dimgrey = #696969

 dodgerblue = #1e90ff firebrick = #b22222 floralwhite = #fffaf0 forestgreen = #228b22

 fuchsia = #ff00ff gainsboro = #dcdcdc ghostwhite = #f8f8ff gold = #ffd700

 goldenrod = #daa520 gray = #808080 green = #008000 greenyellow = #adff2f

 grey = #808080 honeydew = #f0fff0 hotpink = #ff69b4 indianred = #cd5c5c

 indigo = #4b0082 ivory = #fffff0 khaki = #f0e68c lavender = #e6e6fa

 lavenderblush = #fff0f5 lawngreen = #7cfc00 lemonchiffon = #fffacd lightblue = #add8e6

 lightcoral = #f08080 lightcyan = #e0ffff
lightgoldenrodyellow =
#fafad2 lightgray = #d3d3d3

 lightgreen = #90ee90 lightgrey = #d3d3d3 lightpink = #ffb6c1 lightsalmon = #ffa07a

lightseagreen =
#20b2aa lightskyblue = #87cefa lightslategray = #778899 lightslategrey = #778899

lightsteelblue =
#b0c4de lightyellow = #ffffe0 lime = #00ff00 limegreen = #32cd32

 linen = #faf0e6 magenta = #ff00ff maroon = #800000
mediumaquamarine =
#66cdaa

 mediumblue = #0000cd mediumorchid = #ba55d3 mediumpurple = #9370db
mediumseagreen =
#3cb371

mediumslateblue =
#7b68ee

mediumspringgreen =
#00fa9a

mediumturquoise =
#48d1cc

mediumvioletred =
#c71585

 midnightblue = #191970 mintcream = #f5fffa mistyrose = #ffe4e1 moccasin = #ffe4b5

 navajowhite = #ffdead navy = #000080 oldlace = #fdf5e6 olive = #808000

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 16/50

 olivedrab = #6b8e23 orange = #ffa500 orangered = #ff4500 orchid = #da70d6

palegoldenrod =
#eee8aa palegreen = #98fb98 paleturquoise = #afeeee palevioletred = #db7093

 papayawhip = #ffefd5 peachpuff = #ffdab9 peru = #cd853f pink = #ffc0cb

 plum = #dda0dd powderblue = #b0e0e6 purple = #800080 red = #ff0000

 rosybrown = #bc8f8f royalblue = #4169e1 saddlebrown = #8b4513 salmon = #fa8072

 sandybrown = #f4a460 seagreen = #2e8b57 seashell = #fff5ee sienna = #a0522d

 silver = #c0c0c0 skyblue = #87ceeb slateblue = #6a5acd slategray = #708090

 slategrey = #708090 snow = #fffafa springgreen = #00ff7f steelblue = #4682b4

 tan = #d2b48c teal = #008080 thistle = #d8bfd8 tomato = #ff6347

 turquoise = #40e0d0 violet = #ee82ee wheat = #f5deb3 white = #ffffff

 whitesmoke = #f5f5f5 yellow = #ffff00 yellowgreen = #9acd32
transparent =
rgba(0,0,0,0)

Looked-up Colors <looked-up-color>

With looked-up colors you can refer to any other color property that is set on the current node or any of its parents. This is a very powerful feature, as it allows a
generic palette of colors to be specified on the scene then used thoughout the application. If you want to change one of those palette colors you can do so at any level
in the scene tree and it will affect that node and all its decendents. Looked-up colors are not looked up until they are applied, so they are live and react to any style
changes that might occur, such as replacing a palette color at runtime with the "style" property on a node.

In the following example, all background color of all buttons uses the looked up color "abc".

.root { abc: #f00 }
 .button { -fx-background-color: abc }

RGB Colors <rgb-color>

The RGB color model is used in numerical color specifications. It has a number of different supported forms.

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 17/50

#<digit><digit><digit>
 | #<digit><digit><digit><digit><digit><digit>

 | rgb(<integer> , <integer> , <integer>)
 | rgb(<integer> %, <integer>% , <integer>%)

 | rgba(<integer> , <integer> , <integer> , <number>)
 | rgba(<integer>% , <integer>% , <integer> %, <number>)

These examples all specify the same color for the text fill of a Label:

.label { -fx-text-fill: #f00 } /* #rgb */

.label { -fx-text-fill: #ff0000 } /* #rrggbb */

.label { -fx-text-fill: rgb(255,0,0) }

.label { -fx-text-fill: rgb(100%, 0%, 0%) }

.label { -fx-text-fill: rgba(255,0,0,1) }

RGB Hex: The format of an RGB value in hexadecimal notation is a ‘#’ immediately followed by either three or six hexadecimal characters. The three-digit RGB
notation (#rgb) is converted into six-digit form (#rrggbb) by replicating digits, not by adding zeros. For example, #fb0 expands to #ffbb00. This ensures that white
(#ffffff) can be specified with the short notation (#fff) and removes any dependencies on the color depth of the display.

RGB Decimal or Percent: The format of an RGB value in the functional notation is ‘rgb(’ followed by a comma-separated list of three numerical values (either three
decimal integer values or three percentage values) followed by ‘)’. The integer value 255 corresponds to 100%, and to F or FF in the hexadecimal notation:
rgb(255,255,255) = rgb(100%,100%,100%) = #FFF. White space characters are allowed around the numerical values.

RGB + Alpha: This is an extension of the RGB color model to include an ‘alpha’ value that specifies the opacity of a color. This is accomplished via a functional syntax
of the form rgba(...) form that takes a fourth parameter which is the alpha value. The alpha value must be a number in the range 0.0 (representing completely
transparent) and 1.0 (completely opaque). As with the rgb() function, the red, green, and blue values may be decimal integers or percentages. The following examples
all specify the same color:

.label { -fx-text-fill: rgb(255,0,0) } /* integer range 0 - 255*/

.label { -fx-text-fill: rgba(255,0,0,1) /* the same, with explicit opacity of 1 */

.label { -fx-text-fill: rgb(100%,0%,0%) } /* float range 0.0% - 100.0% */

.label { -fx-text-fill: rgba(100%,0%,0%,1) } /* the same, with explicit opacity of 1 */

HSB Colors <hsb-color>

Colors can be specified using the HSB (sometimes called HSV) color model, as follows:

hsb(<number> , <number>% , <number>%) | hsba(<number> , <number>% , <number>% , <number>)

The first number is hue, a number in the range 0 to 360 degrees. The second number is saturation, a percentage in the range 0% to 100%. The third number is
brightness, also a percentage in the range 0% to 100%. The hsba(...) form takes a fourth parameter at the end which is a alpha value in the range 0.0 to 1.0,
specifying completely transparent and completely opaque, respectively.

Color Functions <color-function>

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 18/50

JavaFX supports some color computation functions. These compute new colors from input colors at the time the color style is applied. This enables a color theme to
be specified using a single base color and to have variant colors computed from that base color. There are two color functions: derive() and ladder().

<derive> | <ladder>

Derive <derive>

derive(<color> , <number>%)

The derive function takes a color and computes a brighter or darker version of that color. The second parameter is the brightness offset, ranging from -100% to 100%.
Positive percentages indicate brighter colors and negative percentages indicate darker colors. A value of -100% means completely black, 0% means no change in
brightness, and 100% means completely white.

Ladder<ladder>

ladder(<color> , <color-stop> [, <color-stop>]+)

The ladder function interpolates between colors. The effect is as if a gradient is created using the stops provided, and then the brightness of the provided <color> is
used to index a color value within that gradient. At 0% brightness, the color at the 0.0 end of the gradient is used; at 100% brightness, the color at the 1.0 end of the
gradient is used; and at 50% brightness, the color at 0.5, the midway point of the gradient, is used. Note that no gradient is actually rendered. This is merely an
interpolation function that results in a single color.

Stops are per W3C color-stop syntax and are normalized accordingly.

For example, you could use the following if you want the text color to be black or white depending upon the brightness of the background.

background: white;
 -fx-text-fill: ladder(background, white 49%, black 50%);

The resulting -fx-text-fill value will be black, because the background (white) has a brightness of 100%, and the color at 1.0 on the gradient is black. If we were to
change the background color to black or dark grey, the brightness would be less than 50%, giving an -fx-text-fill value of white.

The following syntax for radial gradient does not conform to the CSS grammar and is deprecated in JavaFX 2.0. The JavaFX 2.0 CSS parser supports the syntax but
this support may be removed in later releases.

ladder(<color>) stops [(<number> , <color>)]+

Nodes

javafx.scene

Group

http://dev.w3.org/csswg/css3-images/#color-stop-syntax.

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 19/50

Style class: empty by default

CSS Property Values Default Comments

Group extends Parent. Group does not add any addtional CSS properties.
Also has all properties of Parent

Node

Style class: empty by default

CSS Property Values Default Range Comments

-fx-blend-mode
[add | blue | color-burn | color-dodge | darken | difference |
exclusion | green | hard-light | lighten | multiply | overlay |
red | screen | soft-light | src-atop | src-in | src-out | src-
over]

null

-fx-cursor
[null | crosshair | default | hand | move | e-resize | h-
resize | ne-resize | nw-resize | n-resize | se-resize | sw-
resize | s-resize | w-resize | v-resize | text | wait] | <url>

null inherits

-fx-effect <effect> null
-fx-focus-traversable <boolean> false

-fx-opacity <number> 1 [0.0 ... 1.0]

Opacity can be thought of conceptually as a postprocessing operation.
Conceptually, after the node (including its descendants) is rendered into
an RGBA offscreen image, the opacity setting specifies how to blend
the offscreen rendering into the current composite rendering.

-fx-rotate <number> 0

This is the angle of the rotation in degrees. Zero degrees is at 3 o'clock
(directly to the right). Angle values are positive clockwise. Rotation is
about the center.

-fx-scale-x <number> 1 scale about the center
-fx-scale-y <number> 1 scale about the center
-fx-scale-z <number> 1 scale about the center
-fx-translate-x <number> 0
-fx-translate-y <number> 0
-fx-translate-z <number> 0
visibility [visible | hidden | collapse | inherit] visible See W3C visibility property

Pseudo-classes
CSS Pseudo-class Comments

disabled applies when the disabled variable is true
focused applies when the focused variable is true
hover applies when the hover variable is true
pressed applies when the pressed variable is true
show-mnemonic apples when the mnemonic affordance (typically an underscore) should be shown.

http://www.w3.org/TR/CSS2/visufx.html#visibility

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 20/50

Parent

Style class: empty by default

CSS Property Values Default Comments

Parent extends Node. Parent does not add any addtional CSS properties.
Also has all properties of Node

Scene

Style class: not applicable

The Scene object has no settable CSS properties, nor does it have any pseudo-classes. However, the root node of the scene is assigned the style class "root" (in
addition to style classes already assigned to the node). This is useful because the root node of Scene is the root container for all active scene graph nodes. Thus, it
can serve as a container for properties that are inherited or looked up.

javafx.scene.image

ImageView

Style class: empty by default

CSS Property Values Default Comments

-fx-image <uri> null Relative URLs are resolved against the URL of the stylesheet.
Also has all properties of Node

javafx.scene.layout

AnchorPane

Style class: empty by default

CSS Property Values Default Comments

AnchorPane extends Pane and does not add any additional CSS properties.
Also has all properties of Pane

BorderPane

Style class: empty by default

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 21/50

CSS Property Values Default CommentsCSS Property Values Default Comments

BorderPane extends Pane and does not add any additional CSS properties.
Also has all properties of Pane

FlowPane

Style class: empty by default

CSS Property Values Default Comments

-fx-hgap <size> 0
-fx-vgap <size> 0

-fx-alignment [top-left | top-center | top-right | center-left | center | center-right bottom-left | bottom-center | bottom-right |
baseline-left | baseline-center | baseline-right]

top-left

-fx-column-halignment [left | center | right] center
-fx-row-valignment [top | center | baseline | bottom] center
-fx-orientation [horizontal | vertical] horizontal

Also has all properties of Pane

GridPane

Style class: empty by default

CSS Property Values Default Comments
-fx-hgap <size> 0
-fx-vgap <size> 0

-fx-alignment [top-left | top-center | top-right | center-left | center | center-right bottom-left | bottom-center | bottom-right | baseline-
left | baseline-center | baseline-right] top-left

-fx-grid-lines-visible <boolean> false
Also has all properties of Pane

HBox

Style class: empty by default

CSS Property Values Default Comments

-fx-spacing <size> 0

-fx-alignment [top-left | top-center | top-right | center-left | center | center-right bottom-left | bottom-center | bottom-right | baseline-left |
baseline-center | baseline-right] top-left

-fx-fill-height <boolean> false
Also has all properties of Pane

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 22/50

Pane

Style class: empty by default

CSS Property Values Default Comments

Pane extends Region to expose Region's children. Pane does not add any addtional CSS properties.
Also has all properties of Region

Region

Style class: empty by default

A Region is a Node (extending from Parent) with backgrounds and borders that are styleable via CSS. A Region is typically a rounded rectangle, though this can be
modified through CSS to be an arbitrary shape. Regions can contain other Region objects (sub-regions) or they can contain sub-controls. All Regions have the same
set of CSS properties as described below.

Each Region consists of several layers, painted from bottom to top, in this order:

1. background fills
2. background images
3. contents
4. border strokes
5. border images

The background and border mechanisms are patterned after the CSS 3 draft backgrounds and borders module. See [4] for a detailed description.

Background fills are specified with the properties -fx-background-color, -fx-background-radius and -fx-background-insets. The -fx-background-color property is a
series of one or more comma-separated <paint> values. The number of values in the series determines the number of background rectangles that are painted.
Background rectangles are painted in the order specified using the given <paint> value. Each background rectangle can have different radii and insets. The -fx-
background-radius and -fx-background-insets properties are series of comma-separated values (or sets of values). The radius and insets values used for a particular
background are the found in the corresponding position in the -fx-background-radius and -fx-background-insets series. For example, suppose a series of three values
is given for the -fx-background-color property. A series of three values should also be specified for the -fx-background-radius and -fx-background-insets properties.
The first background will be painted using the first radius value and first insets value, the second background will be painted with the second radius value and second
insets value, and so forth.

Note also that properties such as -fx-background-radius and -fx-background-insets can contain a series of values or sets of four values. A set of values is separated
by whitespace, whereas the values or sets-of-values in a series are separated by commas. For -fx-background-radius, a single value indicates that the value should
be used for the radius of all four corners of the background rectangle. A set of four values indicates that different radius values are to be used for the top-left, top-right,
bottom-right, and bottom-left corners, in that order. Similarly, the -fx-background-insets property can also contain a series of values or sets of values. A set of four
values for -fx-background-insets indicates that different insets are to be used for the top, right, bottom, and left edges of the rectangle, in that order.

Background images are specified with the properties -fx-background-image, -fx-background-repeat, -fx-background-position and -fx-background-size. The
number of images in the series of -fx-background-image values determines the number of background images that are painted. The -fx-background-repeat, -fx-

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 23/50

background-position, and -fx-background-size properties each can contain a series of values. For each item in the -fx-background-image series, the corresponding
items in the -fx-background-repeat, -fx-background-position, and -fx-background-size properties are applied to that background image.

Stroked borders are specified with the properties -fx-border-color, -fx-border-style, -fx-border-width, -fx-border-radius and -fx-border-insets. Each property
contains a series of items. The number of items in the-fx- border-color property determines the number of borders that are painted. Each border in the series is
painted using information from the corresponding series item of the -fx-border-style, -fx-border-width, -fx-border-radius, and -fx-border-insets properties.

Image borders are specified with the properties -fx-border-image-source, -fx-border-image-repeat, -fx-border-image-slice, -fx-border-image-width and
-fx-border-image-insets. Each property contains a series of items. The number of items in the -fx-border-image-source property determines the number of images
that are painted. Each image in the series is painted using information from the corresponding series items of the -fx-border-image-repeat, -fx-border-image-slice, -fx-
border-image-width, and -fx-border-image-insets properties.

The region's contents are a sequence of nodes, like any other container. The contents are set programmatically and cannot be set via CSS.

CSS Property Values Default Comments

BACKGROUND FILLS (see CSS Backgrounds and Borders Module Level 3: Backgrounds)
-fx-background-color <paint> [, <paint>]* null A series of paint values separated by commas.

-fx-background-insets
<size> | <size> <size>
<size> <size> [, [<size> |
<size> <size> <size> <size>]
]*

null

A series of size values or sets of four size values, separated by commas. A single size value means all insets are the same.
Otherwise, the four values for each inset are given in the order top, right, bottom, left. Each comma-separated value or set of
values in the series applies to the corresponding background color.

-fx-background-radius
<size> | <size> <size>
<size> <size> [, [<size> |
<size> <size> <size> <size>]
]*

null

A series of radius values or sets of four radius values, separated by commas. A single radius value means the radius of all
four corners is the same. Otherwise, the four values in the set determine the radii of the top-left, top-right, bottom-right, and
bottom-left corners, in that order. Each comma-separated value or set of values in the series applies to the corresponding
background color.

BACKGROUND IMAGES (see CSS Backgrounds and Borders Module Level 3: Background Image)
-fx-background-image <uri> [, <uri>]* null A series of image URIs separated by commas.

-fx-background-position

<bg-position> [, <bg-
position>]*

 where <bg-position> = [
 [[<size> | left |

center | right] [<size> |
top | center | bottom]?]

 | [[center | [left |
right] <size>?] || [
center | [top | bottom]
<size>?]

]

null
A series of <bg-position> values separated by commas. Each bg-position item in the series applies to the corresponding
image in the background-image series.

-fx-background-repeat

<repeat-style> [, <repeat-
style>]*

 where <repeat-style> =
repeat-x | repeat-y |
[repeat | space | round |
stretch | no-repeat]{1,2}

null
A series of <repeat-style> values separated by commas. Each repeat-style item in the series applies to the corresponding
image in the background-image series.

-fx-background-size
<bg-size> [, <bg-size>]*

 <bg-size> = [<size> | auto
]{1,2} | cover | contain |
stretch

null
A series of <bg-size> values separated by commas. Each bg-size item in the series applies to the corresponding image in
the background-image series.

STROKED BORDERS (see CSS Backgrounds and Borders Module Level 3: Borders)

http://www.w3.org/TR/css3-background/#backgrounds
http://www.w3.org/TR/css3-background/#the-background-image
http://www.w3.org/TR/css3-background/#borders

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 24/50

CSS Property Values Default Comments

-fx-border-color
<paint> | <paint> <paint>
<paint> <paint> [, [<paint>
| <paint> <paint> <paint>
<paint>]]*

null

A series of paint values or sets of four paint values, separated by commas. For each item in the series, if a single paint value
is specified, then that paint is used as the border for all sides of the region; and if a set of four paints is specified, they are
used for the top, right, bottom, and left borders of the region, in that order. If the border is not rectangular, only the first paint
value in the set is used.

-fx-border-insets
<size> | <size> <size>
<size> <size> [, [<size> |
<size> <size> <size> <size>]
]*

null

A series of inset or sets of four inset values, separated by commas. For each item in the series, a single inset value means
that all insets are the same; and if a set of four inset values is specified, they are used for the top, right, bottom, and left
edges of the region, in that order. Each item in the series of insets applies to the corresponding item in the series of border
colors.

-fx-border-radius
<size> | <size> <size>
<size> <size> [, [<size> |
<size> <size> <size> <size>]
]*

null

A series of radius or sets of four radius values, separated by commas. For each item in the series, a single radius value
means that all corner radii are the same; and if a set of four radius values is specified, they are used as the radii of the top-
left, top-right, bottom-right, and bottom-left corners, in that order. Each item in the series of radii applies to the corresponding
item in the series of border colors.

-fx-border-style

<border-style> [, <border-
style>]*

 where <border-style> =
<dash-style> [phase
<number>]? [centered |
inside | outside]? [line-
join [miter <number> | bevel
| round]]? [line-cap [square
| butt | round]]?

 where <dash-style> = [none
| solid | dotted | dashed |
segments(<number>, <number>
[, <number>]*)]

null

A series of border style values, separated by commas. Each item in the series applies to the corresponding item in the series
of border colors.

The segments dash-style defines a sequence representing the lengths of the dash segments. Alternate entries in the
sequence represent the lengths of the opaque and transparent segments of the dashes. This corresponds to the
strokeDashArray variable of Shape.

The optional phase parameter defines the point in the dashing pattern that will correspond to the beginning of the stroke.
This corresponds to the strokeDashOffset variable of Shape.

-fx-border-width
<size> | <size> <size>
<size> <size> [, [<size> |
<size> <size> <size> <size>]
]*

null

A series of width or sets of four width values, separated by commas. For each item in the series, a single width value means
that all border widths are the same; and if a set of four width values is specified, they are used for the top, right, bottom, and
left border widths, in that order. If the border is not rectangular, only the first width value is used. Each item in the series of
widths applies to the corresponding item in the series of border colors.

BORDER IMAGES (see CSS Backgrounds and Borders Module Level 3: Border Images)
-fx-border-image-source <uri> [, <uri>]* null A series of image URIs, separated by commas.

-fx-border-image-insets
<size> | <size> <size>
<size> <size> [, [<size> |
<size> <size> <size> <size>]
]*

null

A series of inset or sets of four inset values, separated by commas. For each item in the series, a single inset value means
that all insets are the same; and if a set of four inset values is specified, they are used for the top, right, bottom, and left
edges of the region, in that order. Each item in the series of insets applies to the corresponding image in the series of border
images.

-fx-border-image-repeat

<repeat-style> [, <repeat-
style>]*

 where <repeat-style> =
repeat-x | repeat-y |
[repeat | space | round |
no-repeat]{1,2}

null
A series of repeat-style values, separated by commas. Each item in the series applies to the corresponding image in the
series of border images.

-fx-border-image-slice
[<size> | <size> <size>
<size> <size>] fill? [, [
<size> | <size><size> <size>
<size> <size>] fill?]*

null

A series of image slice values or sets of four values, separated by commas. Each item in the series applies to the
corresponding image in the series of border images. For each item in the series, if four values are given, they specify the
size of the top, right, bottom, and left slices. This effectively divides the image into nine regions: an upper left corner, a top
edge, an upper right corner, a right edge, a lower right corner, a bottom edge, a lower left corner, a left edge and a middle. If
one value is specified, this value is used for the slice values for all four edges. If 'fill' is present, the middle slice is preserved,
otherwise it is discarded. Percentage values may be used here, in which case the values are considered proportional to the
source image.

http://www.w3.org/TR/css3-background/#border-images

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 25/50

CSS Property Values Default Comments

-fx-border-image-width
<size> | <size> <size>
<size> <size> [, [<size> |
<size> <size> <size> <size>]
]*

null

A series of width or sets of four width values, separated by commas. For each item in the series, a single width value means
that all border widths are the same; and if a set of four width values is specified, they are used for the top, right, bottom, and
left border widths, in that order. If the border is not rectangular, only the first width value is used. Each item in the series of
widths applies to the corresponding item in the series of border images. Percentage values may be used here, in which case
the values are considered proportional to the border image area.

OTHER

-fx-padding <size> | <size> <size>
<size> <size> null

A sets of four padding values, separated by commas. For each item in the series, a single padding value means that all
padding are the same; and if a set of four padding values is specified, they are used for the top, right, bottom, and left edges
of the region, in that order.

-fx-position-shape <boolean> true
If true means the shape centered within the region's width and height, otherwise the shape is positioned at its source
position. Has no effect if a shape string is not specified.

-fx-scale-shape <boolean> true
If true means the shape is scaled to fit the size of the region, otherwise the shape is at its source size, and its position
depends on the value of the position-shape property. Has no effect if a shape string is not specified.

-fx-shape "<string>" null
An SVG path string. By specifying a shape here the region takes on that shape instead of a rectangle or rounded rectangle.
The syntax of this path string is specified in [3].

-fx-snap-to-pixel <boolean> true Defines whether this region rounds position/spacing and ceils size values to pixel boundaries when laying out its children.

-fx-background-fills null

This property is set by specifying -fx-background-color, optionally -fx-background-insets, and optionally -fx-background-
radius. In order to set the background fill to null, specify the style "-fx-background-color: null;". There is no shorthand notation
for -fx-background-fills at this time.

-fx-background-images null
This property is set by specifying -fx-background-image, optionally -fx-background-position, optionally -fx-background-repeat,
and optionally -fx-background-size. There is no shorthand notation for -fx-background-images at this time.

-fx-stroke-borders null
This property is set by specifying -fx-border-color with the optional -fx-border-insets, -fx-border-radius, -fx-border-style and -
fx-border-width. There is no shorthand notation for -fx-stroke-borders at this time.

-fx-image-borders null
This property set by specifying -fx-border-image-source with the optional -fx-border-image-insets, -fx-border-image-repeat, -
fx-border-image-slice and -fx-border-image-width. There is no shorthand notation for -fx-image-borders at this time.

Also has all properties of Parent

StackPane

Style class: empty by default

CSS Property Values Default Comments

-fx-alignment [top-left | top-center | top-right | center-left | center | center-right bottom-left | bottom-center | bottom-right | baseline-left |
baseline-center | baseline-right] top-left

Also has all properties of Pane

TilePane

Style class: empty by default

CSS Property Values Default Comments

-fx-orientation [horizontal | vertical] horizontal

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 26/50

CSS Property Values Default Comments

-fx-pref-rows <integer> 5
-fx-pref-columns <integer> 5
-fx-pref-tile-width <size> -1
-fx-pref-tile-height <size> -1
-fx-hgap <size> 0
-fx-vgap <size> 0

-fx-alignment [top-left | top-center | top-right | center-left | center | center-right bottom-left | bottom-center | bottom-right | baseline-
left | baseline-center | baseline-right] top-left

-fx-tile-alignment [top-left | top-center | top-right | center-left | center | center-right bottom-left | bottom-center | bottom-right | baseline-
left | baseline-center | baseline-right] center

Also has all properties of Pane

VBox

Style class: empty by default

CSS Property Values Default Comments

-fx-spacing <size> 0

-fx-alignment [top-left | top-center | top-right | center-left | center | center-right bottom-left | bottom-center | bottom-right | baseline-left |
baseline-center | baseline-right] top-left

-fx-fill-width <boolean> true
Also has all properties of Pane

javafx.scene.shape

Shape

Style class: empty by default

CSS Property Values Default Comments

-fx-fill <paint> BLACK
-fx-smooth <boolean> true
-fx-stroke <paint> null
-fx-stroke-type [inside | outside | centered] centered
-fx-stroke-dash-array <size>[<size>]+ null
-fx-stroke-dash-offset <number> 0
-fx-stroke-line-cap [square | butt | round] square
-fx-stroke-line-join [miter | bevel | round] miter
-fx-stroke-miter-limit <number> 10
-fx-stroke-width <size> 1

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 27/50

CSS Property Values Default Comments

Also has all properties of Node

Arc

Style class: empty by default

The Arc node has all the properties of Shape and Node.

Circle

Style class: empty by default

The Circle node has all the properties of Shape and Node.

CubicCurve

Style class: empty by default

The CubicCurve node has all the properties of Shape and Node.

Ellipse

Style class: empty by default

The Ellipse node has all the properties of Shape and Node.

Line

Style class: empty by default

The Line node has all the properties of Shape and Node.

Path

Style class: empty by default

The Path node has all the properties of Shape and Node.

Polygon

Style class: empty by default

The Polygon node has all the properties of Shape and Node.

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 28/50

QuadCurve

Style class: empty by default

The QuadCurve node has all the properties of Shape and Node.

Rectangle

Style class: empty by default

CSS Property Values Default Comments

-fx-arc-height <size> 0
-fx-arc-width <size> 0

Also has all properties of Shape

SVGPath

Style class: empty by default

The SVGPath node has all the properties of Shape and Node.

javafx.scene.text

Text

Style class: empty by default

CSS Property Values Default Comments

-fx-font Font.DEFAULT inherits
-fx-font-smoothing-type [gray | lcd] gray
-fx-strikethrough <boolean> false
-fx-text-alignment [left | center | right | justify] left inherits
-fx-text-origin [baseline | top | bottom] baseline
-fx-underline <boolean> false

Also has font properties and all properties of Shape

javafx.scene.web

WebView

Style class: web-view

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 29/50

CSS Property Values Default Comments

-fx-context-menu-enabled <boolean> true
-fx-font-smoothing-type [gray | lcd] lcd
-fx-font-scale <number> 1
-fx-min-width <size> 0
-fx-min-height <size> 0
-fx-pref-width <size> 800
-fx-pref-height <size> 600
-fx-max-width <size> Double.MAX_VALUE
-fx-max-height <size> Double.MAX_VALUE

Also has all properties of Parent

javafx.scene.control

In JavaFX 2.0 the default skins for all controls support styling from CSS. This is accomplished by building the skins from layout objects called Regions. Most of the
style properties for a control are provided by the Region objects that comprise the control's skin. Each Region object of the skin's substructure has its own style class
so that it can be styled specifically. The control itself will sometimes provide CSS properties in addition to those provided by its Regions. Finally, controls may also
define pseudo-classes such as "vertical" and "horizontal" in addition to those defined by Node.

Accordion

Style class: accordion

The Accordion control has all the properties and pseudo-classes of Control

Substructure

first-titled-pane - the first TitledPane

Button

Style class: button

The Button control has all the properties of ButtonBase

Pseudo-classes
CSS Pseudo-class Comments

cancel applies if this Button receives VK_ESC if the event is not otherwise consumed
default applies if this Button receives VK_ENTER if the event is not otherwise consumed

Also has all pseudo-classes of ButtonBase

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 30/50

ButtonBase

The ButtonBase control has all the properties of Labeled

Pseudo-classes
CSS Pseudo-class Comments

armed applies when the armed variable is true
Also has all pseudo-classes of Labeled

Cell

Style class: cell

CSS Property Values Default Comments

-fx-cell-size <size> 15 The cell size. For vertical ListView or a TreeView or TableView this is the height, for a horizontal ListView this is the width.
The Cell control has all the properties of Labeled

Pseudo-classes
CSS Pseudo-class Comments

empty applies when the empty variable is true
filled applies when the empty variable is false
selected applies when the selected variable is true

Also has all pseudo-classes of Labeled

Substructure

text - a Labeled

CheckBox

Style class: check-box

The CheckBox control has all the properties of ButtonBase

Pseudo-classes
CSS Pseudo-class Comments

selected applies when the selected variable is true
determinate applies when the indeterminate variable is false
indeterminate applies when the indeterminate variable is true

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 31/50

CSS Pseudo-class Comments

Also has all pseudo-classes of ButtonBase

Substructure

box — a StackPane
mark — a StackPane

CheckMenuItem

Pseudo-classes
CSS Pseudo-class Comments

selected applies if this item is selected

ChoiceBox

Style class: choice-box

The ChoiceBox control has all the properties and pseudo-classes of Control

Substructure

open-button — Region
arrow — Region

ColorPicker

Style class: color-picker

The ColorPicker control has all the properties and pseudo-classes of ComboBoxBase

CSS Property Values Default Comments

-fx-color-label-visible <boolean> true
Also has all properties of Control

Substructure

color display node — Label
arrow-button - StackPane

arrow — StackPane

ComboBox

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 32/50

Style class: combo-box

The ComboBox control has all the properties and pseudo-classes of ComboBoxBase

Substructure

list-cell - a ListCell instance used to show the selection in the button area of a non-editable ComboBox
text-input — a TextField instance used to show the selection and allow input in the button area of an editable ComboBox
combo-box-popup - a PopupControl that is displayed when the button is pressed

list-view - a ListView
list-cell - a ListCell

ComboBoxBase

Style class: combo-box-base

The ComboBoxBase control has all the properties of Control

Substructure

arrow-button — a StackPane
arrow — a StackPane

CSS Pseudo-class Comments

editable applies when the editable variable is true
showing applies when the showing variable is true
armed applies when the armed variable is true

Control

The Control class has all the properties of Parent

CSS Property Values Default Comments

-fx-skin <string> null The class name of the Control's Skin.

Hyperlink

Style class: hyperlink

The Hyperlink control has all the properties of ButtonBase.

Pseudo-classes
CSS Pseudo-class Comments

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 33/50

CSS Pseudo-class Comments

visited applies when the visited variable is true
Also has all pseudo-classes of ButtonBase

Substructure

label — Label

IndexedCell

Style class: indexed-cell

The IndexedCell control has all the properties of Cell.

Pseudo-classes
CSS Pseudo-class Comments

even applies if this cell's index is even
odd applies if this cell's index is odd

Also has all pseudo-classes of Cell

Label

Style class: label

Label has all the properties and pseudo-class state of Labeled

Labeled
CSS Property Values Default Comments

-fx-alignment [top-left | top-center | top-right | center-left | center | center-right bottom-left | bottom-center |
bottom-right | baseline-left | baseline-center | baseline-right]

top-left

-fx-text-alignment [left | center | right | justify] left text-align from CSS spec maps to
textAlignment in JavaFX

-fx-text-overrun [center-ellipsis | center-word-ellipsis | clip | ellipsis | leading-ellipsis | leading-word-ellipsis | word-
ellipsis] ellipsis

-fx-wrap-text <boolean> false
-fx-font inherits
-fx-underline <boolean> false
-fx-graphic <uri> null
-fx-content-display [top | right | bottom | left | center | right | graphic-only | text-only] left
-fx-graphic-text-gap <size> 4
-fx-label-padding <size> | <size> <size> <size> <size> [0,0,0,0]

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 34/50

CSS Property Values Default Comments

-fx-text-fill <paint> black
-fx-ellipsis-string <string> ...

Also has properties of Control

ListCell

Style class: list-cell

The ListCell control has all the settable properties and pseudo-classes of IndexedCell.

ListView

Style class: list-view

CSS Property Values Default Comments

-fx-orientation [horizontal | vertical] horizontal

Pseudo-classes
CSS Pseudo-class Comments

horizontal applies if this ListView is horizontal
vertical applies if this ListView is vertical

Menu

Style class: menu

Pseudo-classes
CSS Pseudo-class Comments

showing applies if this Menu is showing
Also has all pseudo-classes of Control

MenuBar

Style class: menu-bar

CSS Property Values Default Comments

-fx-use-system-menu-bar <boolean> false
Also has all properties of Control

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 35/50

MenuBar has all the pseudo-class states of Control

Substructure

menu

MenuButton

Style class: menu-button

The MenuButton control has all the properties of ButtonBase

Pseudo-classes
CSS Pseudo-class Comments

openvertically applies if the openVertically variable is true
showing applies if the showing variable is true

Also has all pseudo-classes of Node

MenuItem

Style class: menu-item

Pagination

Style class: pagination

Pagination has all the pseudo-class states of Control

CSS Property Values Default Comments

-fx-max-page-indicator-count <number> 10
-fx-arrows-visible <boolean> true
-fx-tooltip-visible <boolean> true
-fx-page-information-visible: <boolean> true
-fx-page-information-alignment [top | bottom | left | right] bottom

Also has all properties of Control

Substructure

page — StackPane
pagination-control — StackPane

leftArrowButton - Button

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 36/50

leftArrow — StackPane
rightArrowButton - Button

rightArrow — StackPane
bullet-button - ToggleButton
number-button - ToogleButton
page-information - Label

PasswordField

Style class: password-field

The PasswordField control has all the properties of TextField

PopupControl

ProgressBar

Style class: progress-bar

CSS Property Values Default Comments

-fx-indeterminate-bar-length <number> 60
-fx-indeterminate-bar-escape <boolean> true
-fx-indeterminate-bar-flip <boolean> true
-fx-indeterminate-bar-animation-time <number> 2.0

The ProgressBar control has all the properties of and pseudo-class state of ProgressIndicator

Substructure

track - StackPane
bar — Region

ProgressIndicator

Style class: progress-indicator

CSS Property Values Default Comments

-fx-skin <the fully qualified class name of the Skin> null
The PopupControl is a PopupWindow and does not have any other CSS properties

CSS Property Values Default Comments

-fx-progress-color <paint> dodgerblue
The ProgressIndicator control has all the properties of Control

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 37/50

Pseudo-classes
CSS Pseudo-class Comments

determinate applies if the indeterminate variable is false
indetermindate applies if the indeterminate variable is true

Also has all pseudo-classes of Control

Substructure

indicator — StackPane
progress - StackPane
percentage - Text
tick - StackPane

RadioButton

Style class: radio-button

The RadioButton control has all the properties of ToggleButton

Substructure

radio — Region
dot — Region

label — Label

RadioMenuItem

Pseudo-classes
CSS Pseudo-class Comments

selected applies if this item is selected

ScrollBar

Style class: scroll-bar

CSS Property Values Default Comments

-fx-orientation [horizontal | vertical] horizontal
-fx-block-increment <number> 10
-fx-unit-increment <number> 1

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 38/50

Pseudo-classes
CSS Pseudo-class Comments

vertical applies if this ScrollBar is vertical
horizontal applies if this ScrollBar is horizontal

Also has all pseudo-classes of Control

Substructure

decrement-button — StackPane
decrement-arrow — StackPane

track — StackPane
thumb — StackPane
increment-button — StackPane

increment-arrow — StackPane

ScrollPane

Style class: scroll-pane

CSS Property Values Default Comments

-fx-fit-to-width <boolean> false
-fx-fit-to-height <boolean> false
-fx-pannable <boolean> false
-fx-hbar-policy [never | always | as-needed] 1
-fx-vbar-policy [never | always | as-needed] 1

Also has all properties of Control

Pseudo-classes
CSS Pseudo-class Comments

pannable applies if this ScrollPane is pannable
fitToWidth applies if this ScrollPane is fitToWidth
fitToHeight applies if this ScrollPane is fitToHeight

Also has all pseudo-classes of Control

Substructure

scroll-bar:vertical — ScrollBar
scroll-bar:horizontall — ScrollBar
corner - StackPane

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 39/50

Separator

Style class: separator

CSS Property Values Default Comments

-fx-orientation [horizontal | vertical] horizontal
-fx-halignment [left | center | right] center
-fx-valignment [top | center | baseline | bottom] center

Also has all properties of Control

Pseudo-classes
CSS Pseudo-class Comments

horizontal applies if this Separator is horizontal
vertical applies if this Separator is vertical

Also has all pseudo-classes of Control

Substructure

line — Region

Slider

Style class: slider

CSS Property Values Default Comments

-fx-orientation [horizontal | vertical] horizontal
-fx-show-tick-labels <boolean> false
-fx-show-tick-marks <boolean> false
-fx-major-tick-unit <number> 25
-fx-minor-tick-count <integer> 3
-fx-show-tick-labels <boolean> false
-fx-snap-to-ticks <boolean> false
-fx-block-increment <integer> 10

Also has all properties of Control

Pseudo-classes
CSS Pseudo-class Comments

horizontal applies if this Slider is horizontal
vertical applies if this Slider is vertical

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 40/50

CSS Pseudo-class Comments

Also has all pseudo-classes of Control

Substructure

axis — NumberAxis
track — Region
thumb — Region

SplitMenuButton

Style class: split-menu-button

SplitPane

Style class: split-pane

CSS Property Values Default Comments

-fx-orientation [horizontal | vertical] horizontal
Also has all properties of Control

Pseudo-classes
CSS Pseudo-class Comments

horizontal applies if this Slider is horizontal
vertical applies if this Slider is vertical

Also has all pseudo-classes of Control

Substructure

split-pane-divider — StackPane
vertical-grabber — StackPane
horizontal-grabber — StackPane

TabPane

Style class: tab-pane

Note: The styleclass is "tab-pane floating" if the TabPane is floating.

CSS Property Values Default Comments

-fx-tab-min-width <integer> 0

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 41/50

CSS Property Values Default Comments

-fx-tab-max-width <integer> Double.MAX_VALUE
-fx-tab-min-height <integer> 0
-fx-tab-max-height <integer> Double.MAX_VALUE

Also has all properties of Control

Pseudo-classes
CSS Pseudo-class Comments

top applies if the side is top
right applies if the side is rght
bottom applies if the side is bottom
left applies if the side is left

Also has all pseudo-classes of Control

Substructure

tab-header-area — StackPane
headers-region - StackPane
tab-header-background - StackPane
control-buttons-tab - StackPane

tab-down-button - Pane
arrow - StackPane

tab - Tab
tab-label - Label
tab-close-button - StackPane

tab-content-area — StackPane

TableView

Style class: table-view

CSS Property Values Default Comments

-fx-size <size> 20 The table column header size.
Also has all properties of Control

Pseudo-classes
CSS Pseudo-class Comments

cell-selection applies if this TableView's selection model is cell selection
row-selection applies if this TableView's selection model is row selection

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 42/50

CSS Pseudo-class Comments

Also has all pseudo-classes of Node

Substructure

column-resize-line - Region
column-overlay - Region
placeholder - StackPane
column-header-background - StackPane

nested-column-header
column-header

filler - Region
show-hide-columns-button - StackPane

show-hide-column-image - StackPane
column-drag-header - StackPane

label - Label

TextArea

Style class: text-area

TextArea has all the properties and pseudo-class state of TextInputControl

Substructure

scroll-pane - ScrollPane
content - Region

TextInputControl
CSS Property Values Default Comments

-fx-font null inherits
-fx-text-fill <paint> black
-fx-prompt-text-fill <paint> gray
-fx-highlight-fill <paint> dodgerblue
-fx-highlight-text-fill <paint> white
-fx-display-caret <boolean> true

Also has Font Properties and all properties of Control

Pseudo-classes
CSS Pseudo-class Comments

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 43/50

CSS Pseudo-class Comments

readonly applies if this TextInputControl is not editable
Also has all pseudo-classes of Control

TextField

Style class: text-field

CSS Property Values Default Comments

-fx-alignment [top-left | top-center | top-right | center-left | center | center-right bottom-left | bottom-center | bottom-right | baseline-left |
baseline-center | baseline-right] center-left

Also has all properties of TextInputControl

TextField has all the pseudo-class states of TextInputControl

TitledPane
CSS Property Values Default Comments

-fx-animated <boolean> true
-fx-collapsible <boolean> true
Also has Font Properties and all properties of Labeled

Pseudo-classes
CSS Pseudo-class Comments

expanded applies if this TitledPane is expanded
collapsed applies if this TitledPane is collapsed

Also has all pseudo-classes of Labeled

Substructure

title — HBox
text — Label/li>
arrow-button — StackPane/li>

arrow — StackPane
content — StackPane/li>

ToggleButton

Style class: toggle-button

The ToggleButton control has all the properties of ButtonBase.

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 44/50

Pseudo-classes
CSS Pseudo-class Comments

selected applies if this ToggleButton is selected
Also has all pseudo-classes of ButtonBase

ToolBar

Style class: tool-bar

CSS Property Values Default Comments

-fx-orientation [horizontal | vertical] horizontal
Also has all properties of Control

Pseudo-classes
CSS Pseudo-class Comments

horizontal applies if this ToolBar is horizontal
vertical applies if this ToolBar is vertical

Also has all pseudo-classes of Control

Substructure

tool-bar-overflow-button - StackPane
arrow - StackPane

Tooltip

Style class: tooltip

CSS Property Values Default Comments

-fx-text-alignment [left | center | right | justify] left
-fx-text-overrun [center-ellipsis | center-word-ellipsis | clip | ellipsis | leading-ellipsis | leading-word-ellipsis | word-ellipsis] ellipsis
-fx-wrap-text <boolean> false
-fx-graphic <uri> null
-fx-content-display [top | right | bottom | left | center | right | graphic-only | text-only] left
-fx-graphic-text-gap <size> 4
-fx-font Font.DEFAULT inherits

Substructure

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 45/50

label — Label
page-corner — StackPane

TreeCell

Style class: tree-cell

CSS Property Values Default Comments

-fx-indent <size> 10 The amout of space to multiply by the treeItem.level to get the left margin
Also has all properties of IndexedCell

Pseudo-classes
CSS Pseudo-class Comments

expanded applies if this cell is expanded
collapsed applies if this cell is not expanded

Also has all pseudo-classes of IndexedCell

TreeView

Style class: tree-view

TreeView has all the properites and pseudo-class state of Control

Charts

javafx.scene.chart

AreaChart
Style class Comments Properties

"chart-series-area-line series<i> default-color<j>" Where <i> is the index of the series and <j> is the series’ color index Node

"chart-series-area-fill series<i> default-color<j>" Where <i> is the index of the series and <j> is the series’ color index Path

"chart-area-symbol series<i> data<j> default-color<k>" Where <i> is the index of the series, <j> is the index of the data within the series, and <k> is the series’
color index Path

"chart-area-symbol series<i> area-legend-symbol default-color<j>" Where <i> is the index of the series and <j> is the series’ color index LegendItem

CSS Property Values Default Comments

Has all properties of XYChart

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 46/50

BarChart
Style class Comments Properties

"bar-chart"

"chart-bar series<i> data<j> default-color<k>" Where <i> is the index of the series, <j> is the index of the data within the series, and <k> is the series’ color
index. If the data value is negative, the "negative" style class is added. Node

"chart-bar series<i> bar-legend-symbol default-color<j>" Where <i> is the index of the series and <j> is the series’ color index LegendItem

CSS Property Values Default Comments

-fx-bar-gap <number> 4
-fx-category-gap <number> 10

Has all properties of XYChart

BubbleChart
Style class Comments Properties

"chart-bubble series<i> data<j> default-color<k>" Where <i> is the index of the series, <j> is the index of the data within the series, and <k> is the series’
color index Node

"chart-bubble series<i> bubble-legend-symbol default-color<j>" Where <i> is the index of the series and <j> is the series’ color index LegendItem

CSS Property Values Default Comments

Has all properties of XYChart

Chart

Style class: chart

CSS Property Values Default Comments

-fx-legend-side Side bottom
-fx-legend-visible <boolean> true
-fx-title-side Side top

Has all properties of Region

Substructure

chart-title — Label
chart-content — Pane

LineChart
Style class Comments Properties

"chart-series-line series<i> default-color<j>" Where <i> is the index of the series and <j> is the series’ color index Node

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 47/50

Style class Comments Properties

"chart-line-symbol series<i> data<j> default-color<k>" Where <i> is the index of the series, <j> is the index of the data within the series, and <k> is the series’ color index Node

"chart-line-symblol series<i> default-color<j>" Where <i> is the index of the series and <j> is the series’ color index LegendItem

CSS Property Values Default Comments

-fx-create-symbols <boolean> true
Has all properties of XYChart

ScatterChart
Style class Comments Properties

"chart-symbol series<i> data<j> default-color<k>" Where <i> is the index of the series, <j> is the index of the data within the series, and <k> is the series’ color index Node

 The LegendItem symbols are assigned the style class of the first symbol of the series. LegendItem

CSS Property Values Default Comments

Has all properties of XYChart

PieChart
Style class Comments Properties

"chart-pie data<i> default-color<j>" Where <i> is the index of the data and <j> is the series’ color index. If the data value is negative, the "negative" style class
is added. Node

"chart-pie-label-line;" Path

"chart-pie-label;" Text

"pie-legend-symbol <ith data item’s style class>" Each item in the legend has the style class "pie-legend-symbol" plus the style class of the corresponding data item LegendItem

CSS Property Values Default Comments

-fx-clockwise <boolean> true
-fx-pie-label-visible <boolean> true
-fx-label-line-length <size> 20
-fx-start-angle <number> 0

Has all properties of Chart

XYChart

Style class: set by sub-type

CSS Property Values Default Comments

-fx-alternative-column-fill-visible <boolean> true
-fx-alternative-row-fill-visible <boolean> true
-fx-horizontal-grid-lines-visible <boolean> true

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 48/50

CSS Property Values Default Comments

-fx-horizontal-zero-line-visible <boolean> true
-fx-vertical-grid-lines-visible <boolean> true
-fx-vertical-zero-line-visible <boolean> true

Has all properties of chart

Substructure

plot-content — Group
chart-plot-background — Region
chart-alternative-column-fill — Path
chart-alternative-row-fill — Path
chart-vertical-grid-lines — Path
chart-horizontal-grid-lines — Path
chart-vertical-zero-line — Line
chart-horizontal-zero-line — Line

Axis

Style class: axis

CSS Property Values Default Comments

-fx-side Side null
-fx-tick-length <size> 8
-fx-tick-label-font 8 system
-fx-tick-label-fill <paint> 8 system
-fx-tick-label-gap <size> 8 system
-fx-tick-mark-visible <boolean> true
-fx-tick-labels-visible <boolean> true

Has all properties of Region

Substructure

axis-label — Text
axis-tick-mark — Path

ValueAxis

Style class: axis

CSS Property Values Default Comments

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 49/50

CSS Property Values Default Comments

-fx-minor-tick-length <size> 5
-fx-minor-tick-count <size> 5
-fx-minor-tick-visible <boolean> true

Has all properties of Axis

Substructure

axis-minor-tick-mark — Path

NumberAxis

Style class: axis

CSS Property Values Default Comments

-fx-tick-unit <number> 5 The value between each major tick mark in data units.
Has all properties of ValueAxis

CategoryAxis

Style class: axis

CSS Property Values Default Comments

-fx-start-margin <number> 5 The margin between the axis start and the first tick-mark
-fx-end-margin <number> 5 The margin between the axis start and the first tick-mark
-fx-gap-start-and-end <boolean> true If this is true then half the space between ticks is left at the start and end

Has all properties of Axis

Legend

Style class: chart-legend

CSS Property Values Default Comments

Has all properties of Region

Substructure

chart-legend-item - Label
chart-legend-item-symbol - Node

1/17/2019 JavaFX CSS Reference Guide

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html#button 50/50

References
[1] CSS 2.1: http://www.w3.org/TR/CSS21/

[2] CSS 3 work in progress http://www.w3.org/Style/CSS/current-work (May 2010).

[3] SVG Paths: http://www.w3.org/TR/SVG/paths.html

[4] CSS Backgrounds and Borders Module Level 3: http://www.w3.org/TR/css3-background/

Copyright (c) 2008, 2014, Oracle and/or its affiliates. All rights reserved.

http://www.w3.org/TR/CSS21/
http://www.w3.org/Style/CSS/current-work
http://www.w3.org/TR/SVG/paths.html
http://www.w3.org/TR/css3-background/
http://docs.oracle.com/javase/7/docs/legal/cpyr.html

