
2019/8/2 Apache PDFBox | PDFBox 2.0.0 Migration Guide

https://pdfbox.apache.org/2.0/migration.html#pdf-printing 1/5

 (/) BLOG
(/BLOG)

DOCUMENTATION Migration to PDFBox 2.0.0
Environment
PDFBox 2.0.0 requires at least Java 6

Packages
There are some signi�cant changes to the package structure of
PDFBox:

Jempbox is no longer supported and was removed in favour
of Xmpbox
the package org.apache.pdfbox.pdmodel.edit was removed.
The only class contained PDPageContentStream was moved to
the parent package.
all examples were moved to the new package “pdfbox-
examples”
all commandline tools were moved to the new package
“pdfbox-tools”
all debugger related stu� was moved to the new package
“pdfbox-debugger”
the new package “debugger-app” provides a standalone pre
built binary for the debugger

Dependency Updates
All libraries on which PDFBox depends are updated to their
latest stable versions:

Bouncy Castle 1.53
Apache Commons Logging 1.2

For test support the libraries are updated to

JUnit 4.12
JAI Image Core 1.3.1
JAI JPEG2000 1.3.0
Levigo JBIG ImageIO Plugin 1.6.3

For PDFBox Pre�ight

Apache Commons IO 2.4

Breaking Changes to the Library
Deprecated API calls
Most deprecated API calls in PDFBox 1.8.x have been removed
for PDFBox 2.0.0

API Changes
The API changes are re�ected in the Javadoc for PDFBox 2.0.0.
The most notable changes are:

getCOSDictionary() is no longer used. Instead getCOSObject
now returns the matching COSBase subtype.
PDXObjectForm was renamed to PDFormXObject to be more in
line with the PDF speci�cation.
PDXObjectImage was renamed to PDImageXObject to be more
in line with the PDF speci�cation.
PDPage.getContents().createInputStream()was simpli�ed to
PDPage.getContents().

TABLE OF CONTENTS

Environment

Packages

Dependency Updates

Breaking Changes to the Librar

Deprecated API calls

API Changes

General Behaviour

Font Handling

PDF Resources Handling

Working with Images

Parsing the Page Content

Iterating Pages

PDF Rendering

PDF Printing

Text Extraction

Interactive Forms

Document Outline

Why was the ReplaceText
example removed?

Migration Guide (/2.0/migration.html)

Getting Started (/2.0/getting-
started.html)

Examples (/2.0/examples.html)

Dependencies
(/2.0/dependencies.html)

COOKBOOK

Command-Line Tools
(/2.0/commandline.html)

FAQ (/2.0/faq.html)

API Docs (/docs/2.0.13/javadocs/)

https://pdfbox.apache.org/
https://pdfbox.apache.org/blog
https://pdfbox.apache.org/2.0/migration.html
https://pdfbox.apache.org/2.0/getting-started.html
https://pdfbox.apache.org/2.0/examples.html
https://pdfbox.apache.org/2.0/dependencies.html
https://pdfbox.apache.org/2.0/commandline.html
https://pdfbox.apache.org/2.0/faq.html
https://pdfbox.apache.org/docs/2.0.13/javadocs/

2019/8/2 Apache PDFBox | PDFBox 2.0.0 Migration Guide

https://pdfbox.apache.org/2.0/migration.html#pdf-printing 2/5

PDPageContentStream was moved to
org.apache.pdfbox.pdmodel.

General Behaviour
PDFBox 2.0.0 is now parsing PDF �les following the Xref
information in the PDF. This is similar to the functionality using
PDDocument.loadNonSeq with PDFBox 1.8.x. Users still using
PDDocument.load with PDFBox 1.8.x might experience di�erent
results when switching to PDFBox 2.0.0.

Font Handling
Font handling now has full Unicode support and supports font
subsetting.

TrueType fonts shall now be loaded using

PDType0Font.load

to leverage that.

PDAfmPfbFont has been removed. To load such a font pass the
pfb �le to PDType1Font. Loading the afm �le is no longer
required.

PDF Resources Handling
The individual calls to add resources such as
PDResources.addFont(PDFont font) and
PDResources.addXObject(PDXObject xobject, String prefix)
have been replaced with PDResources.add(resource type) where
resource type represents the di�erent resource classes such as
PDFont, PDAbstractPattern and so on. The add method now
supports all the di�erent type of resources available.

Instead of returning a Map like with PDResources.getFonts() or
PDResources.getXObjects() in 2.0 an Iterable<COSName> of
references shall be retrieved with PDResources.getFontNames()
or PDResources.getXObjectNames(). The individual item can be
retrieved with PDResources.getFont(COSName fontName) or
PDResources.getXObject(COSName xObjectName).

Working with Images
The individual classes PDJpeg(), PDPixelMap() and PDCCitt() to
import images have been replaced with
PDImageXObject.createFromFile which works for JPG, TIFF (only
G4 compression), PNG, BMP and GIF.

In addition there are some specialized classes:

JPEGFactory.createFromStream which preserve the JPEG data
and embed it in the PDF �le without modi�cation. (This is
best if you have a JPEG �le).
CCITTFactory.createFromFile (for bitonal TIFF images with G4
compression).
LosslessFactory.createFromImage (this is best if you start with
a Bu�eredImage).

Parsing the Page Content
Getting the content for a page has been simpli�ed.

Prior to PDFBox 2.0 parsing the page content was done using

2019/8/2 Apache PDFBox | PDFBox 2.0.0 Migration Guide

https://pdfbox.apache.org/2.0/migration.html#pdf-printing 3/5

PDStream contents = page.getContents();
PDFStreamParser parser = new PDFStreamParser(contents.getStr
eam());
parser.parse();
List<Object> tokens = parser.getTokens();

With PDFBox 2.0 the code is reduced to

PDFStreamParser parser = new PDFStreamParser(page);
parser.parse();
List<Object> tokens = parser.getTokens();

In addition this also works if the page content is de�ned as an
array of content streams.

Iterating Pages
With PDFBox 2.0.0 the prefered way to iterate through the
pages of a document is

for(PDPage page : document.getPages())
{
 ... (do something)
}

PDF Rendering
With PDFBox 2.0.0 PDPage.convertToImage and PDFImageWriter
have been removed. Instead the new PDFRenderer class shall be
used.

PDDocument document = PDDocument.load(new File(pdfFilename
));
PDFRenderer pdfRenderer = new PDFRenderer(document);
int pageCounter = 0;
for (PDPage page : document.getPages())
{
 // note that the page number parameter is zero based
 BufferedImage bim = pdfRenderer.renderImageWithDPI(pageC
ounter, 300, ImageType.RGB);

 // suffix in filename will be used as the file format
 ImageIOUtil.writeImage(bim, pdfFilename + "-" + (pageCou
nter++) + ".png", 300);
}
document.close();

ImageIOUtil has been moved into the
org.apache.pdfbox.tools.imageio package. This is in the pdfbox-
tools download. If you are using maven, the artifactId has the
same name.

Important notice when using PDFBox with Java 8

Due to the change of the java color management module
towards “LittleCMS”, users can experience slow performance in
color operations. Solution: disable LittleCMS in favour of the old
KCMS (Kodak Color Management System):

start with -
Dsun.java2d.cmm=sun.java2d.cmm.kcms.KcmsServiceProvideror
call
System.setProperty("sun.java2d.cmm",
"sun.java2d.cmm.kcms.KcmsServiceProvider");

2019/8/2 Apache PDFBox | PDFBox 2.0.0 Migration Guide

https://pdfbox.apache.org/2.0/migration.html#pdf-printing 4/5

Sources:
http://www.subshell.com/en/subshell/blog/Wrong-Colors-in-
Images-with-Java8-100.html
https://bugs.openjdk.java.net/browse/JDK-8041125

Since PDFBox 2.0.4

PDFBox 2.0.4 introduced a new command line setting

-Dorg.apache.pdfbox.rendering.UsePureJavaCMYKConversion=true

which may improve the performance of rendering PDFs on
some systems especially if there are a lot of images on a page.

PDF Printing
With PDFBox 2.0.0 PDFPrinter has been removed.

Users of PDFPrinter.silentPrint() should now use this code:

PrinterJob job = PrinterJob.getPrinterJob();
job.setPageable(new PDFPageable(document));
job.print();

While users of PDFPrinter.print() should now use this code:

PrinterJob job = PrinterJob.getPrinterJob();
job.setPageable(new PDFPageable(document));
if (job.printDialog()) {
 job.print();
}

Advanced use case examples can be found in th examples
package under
org/apache/pdfbox/examples/printing/Printing.java

Text Extraction
In 1.8, to get the text colors, one method was to pass an
expanded .properties �le to the PDFStripper constructor. To
achieve the same in PDFBox 2.0 you can extend
PDFTextStripperand add the following Operators to the
constructor:

addOperator(new SetStrokingColorSpace());
addOperator(new SetNonStrokingColorSpace());
addOperator(new SetStrokingDeviceCMYKColor());
addOperator(new SetNonStrokingDeviceCMYKColor());
addOperator(new SetNonStrokingDeviceRGBColor());
addOperator(new SetStrokingDeviceRGBColor());
addOperator(new SetNonStrokingDeviceGrayColor());
addOperator(new SetStrokingDeviceGrayColor());
addOperator(new SetStrokingColor());
addOperator(new SetStrokingColorN());
addOperator(new SetNonStrokingColor());
addOperator(new SetNonStrokingColorN());

Interactive Forms
Large parts of the support for interactive forms (AcroForms)
have been rewritten. The most notable change from 1.8.x is that
there is a clear distinction between �elds and the annotations
representing them visually. Intermediate nodes in a �eld tree
are now represented by the PDNonTerminalField class.

With PDFBox 2.0.0 the prefered way to iterate through the �elds
is now

2019/8/2 Apache PDFBox | PDFBox 2.0.0 Migration Guide

https://pdfbox.apache.org/2.0/migration.html#pdf-printing 5/5

PDAcroForm form;
...
for (PDField field : form.getFieldTree())
{
 ... (do something)
}

Most PDField subclasses now accept Java generic types such as
String as parameters instead of the former COSBase subclasses.

PDField.getWidget() removed

As form �elds do support multiple annotations
PDField.getWidget() has been removed in favour of
PDField.getWidgets()which returns all annotations associated
with a �eld.

PDUnknownField removed

The PDUnknownField class has been removed, such �elds are
treated as null see PDFBOX-2885
(https://issues.apache.org/jira/browse/PDFBOX-2885).

Document Outline
The method PDOutlineNode.appendChild() has been renamed to
PDOutlineNode.addLast(). There is now also a complementary
method PDOutlineNode.addFirst().

Why was the ReplaceText example
removed?
The ReplaceText example has been removed as it gave the
incorrect illusion that text can be replaced easily. Words are
often split, as seen by this excerpt of a content stream:

[(Do) -29 (c) -1 (umen) 30 (tation)] TJ

Other problems will appear with font subsets: for example, if
only the glyphs for a, b and c are used, these would be encoded
as hex 0, 1 and 2, so you won’t �nd “abc”. Additionally, you can’t
replace “c” with “d” because it isn’t part of the subset.

You could also have problems with ligatures, e.g. “�”, “�”, “�”,
“�”, “�”, which can be represented by a single code in many
fonts. To understand this yourself, view any �le with
PDFDebugger and have a look at the “Contents” entry of a page.

See also
https://stackover�ow.com/questions/35420609/pdfbox-2-0-rc3-
�nd-and-replace-text

Copyright © 2009–2019 The Apache Software Foundation (https://www.apache.org/). Licensed under the Apache License, Version 2.0
(https://www.apache.org/licenses/LICENSE-2.0).
Apache PDFBox, PDFBox, Apache, the Apache feather logo and the Apache PDFBox project logos are trademarks of The Apache Software
Foundation.

https://issues.apache.org/jira/browse/PDFBOX-2885
https://www.apache.org/
https://www.apache.org/licenses/LICENSE-2.0

