EJL KB 2018FE10H819H

Fa—rUT7IORED/N— 3 (4 hitps:/ja.javascript.info TY ., .

B EFa—hUT7INERETZEOHICECENLULTVET, BREVWHARDN-EIHFSE. fAT
50 github 2 [CEEAULTLEEY, .

Animation
Bezier curve
CSS-animations
JavaScript animations
Frames and windows
Popups and window methods
Cross-window communication
The clickjacking attack
Regular expressions
Patterns and flags
Methods of RegExp and String
Character classes
Escaping, special characters
Sets and ranges [...]
The unicode flag
Quantifiers +, *, ? and {n}
Greedy and lazy quantifiers
Capturing groups
Backreferences: \n and $n
Alternation (OR) |
String start A and finish $
Multiline mode, flag "m"
Lookahead (in progress)
Infinite backtracking problem
Promises, async/await
B \: callbacks
Promise
Promises 7 —~
Promise API
Async/await
Network requests: AJAX and COMET
XMLHttpRequest and AJAX

https://ja.javascript.info/
https://github.com/KenjiI/javascript-tutorial-ja/issues/new

Animation

CSS and JavaScript animations.

Bezier curve

Bezier curves are used in computer graphics to draw shapes, for CSS animation and in many other
places.

They are actually a very simple thing, worth to study once and then feel comfortable in the world of
vector graphics and advanced animations.

Control points

A bezier curve 2 is defined by control points.
There may be 2, 3, 4 or more.

For instance, two points curve:

Three points curve:

DA

Four points curve:

3 i

If you look closely at these curves, you can immediately notice:

1. Points are not always on curve. That’s perfectly normal, later we’ll see how the curve is built.

https://en.wikipedia.org/wiki/B%C3%A9zier_curve

2. The curve order equals the number of points minus one. For two points we have a linear
curve (that’s a straight line), for three points — quadratic curve (parabolic), for three points — cubic
curve.

3. A curve is always inside the convex hull = of control points:

3 4 3

/" N\

1 2 1 3

Because of that last property, in computer graphics it’s possible to optimize intersection tests. If
convex hulls do not intersect, then curves do not either. So checking for the convex hulls intersection
first can give a very fast “no intersection” result. Checking the intersection or convex hulls is much
easier, because they are rectangles, triangles and so on (see the picture above), much simpler
figures than the curve.

The main value of Bezier curves for drawing — by moving the points the curve is changing in
intuitively obvious way.

Try to move control points using a mouse in the example below:

As you can notice, the curve stretches along the tangential lines 1 — 2 and 3 — 4.

After some practice it becomes obvious how to place points to get the needed curve. And by
connecting several curves we can get practically anything.

Here are some examples:

https://en.wikipedia.org/wiki/Convex_hull

O

Maths

A Bezier curve can be described using a mathematical formula.
As we’ll see soon — there’s no need to know it. But for completeness — here it is.

Given the coordinates of control points P; : the first control point has coordinates Py = (x1, y1),
the second: P, = (x;, y,),and so on, the curve coordinates are described by the equation that

depends on the parameter t from the segment [0,1] .

« The formula for a 2-points curve:

P = (1-t)P; + tP,
« For three points:

P = (1-t)%P; + 2(1-t)tP, + t2P;
« For four points:

P = (1-t)3P; + 3(1-t)%tP, +3(1-t)t%P; + t3P,

These are vector equations.

We can rewrite them coordinate-by-coordinate, for instance the 3-point curve:

. = (1-t)%xq + 2(1-t)tx, + t2x3

X
|

* oy = (1-t)%yq + 2(1-t)ty, + tiy
1 2 3

Instead of x4, Y1, X2, Y2, X3, Y3 We should put coordinates of 3 control points.

For instance, if control points are (0,0), (0.5, 1) and (1, ©), the equations are:

*ox = (1-1)% * @ + 2(1-t)t * 8.5 + t2 * 1 = (1-t)t + t2 = t

oy = (1-1)% * @ + 2(1-t)t * 1 + t% * @ = 2(1-t)t = -t? + 2t

Now as t runs from @ to 1, the set of values (x,y) for each t forms the curve.

That’s probably too scientific, not very obvious why curves look like that, and how they depend on
control points.

So here’s the drawing algorithm that may be easier to understand.

De Casteljau’s algorithm

De Casteljau’s algorithm = is identical to the mathematical definition of the curve, but visually shows
how it is built.

Let’s see it on the 3-points example.
Here’s the demo, and the explanation follow.

Points can be moved by the mouse. Press the “play” button to run it.

3t:1

De Casteljau’s algorithm of building the 3-point bezier curve:

1. Draw control points. In the demo above they are labeled: 1, 2, 3.
2. Build segments between control points 1 — 2 — 3. In the demo above they are brown.

3. The parameter t moves from @ to 1. Inthe example above the step 0.05 is used: the loop
goes over 9, 0.05, 0.1, 0.15, ... 0.95, 1.

For each of these values of t:

« On each brown segment we take a point located on the distance proportional to t from its
beginning. As there are two segments, we have two points.

For instance, for t=0 — both points will be at the beginning of segments, and for t=0.25 —on
the 25% of segment length from the beginning, for t=0.5 — 50%(the middle), for t=1 —in the
end of segments.

« Connect the points. On the picture below the connecting segment is painted blue.

For t=0.25 For t=0.5

https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm

For t=0.25 For t=0.5

0.25

t=0.5 = 0.5
0.5
L]
0.25
t=0.25
1
3

1

3

4. Now the blue segment take a point on the distance proportional to the same value of t . That is,
for t=0.25 (the left picture) we have a point at the end of the left quarter of the segment, and for
t=0.5 (the right picture) — in the middle of the segment. On pictures above that point is red.

5. As t runsfrom @ to 1, every value of t adds a point to the curve. The set of such points forms
the Bezier curve. It’s red and parabolic on the pictures above.

That was a process for 3 points. But the same is for 4 points.

The demo for 4 points (points can be moved by mouse):

3t .)

The algorithm:

- Control points are connected by segments: 1 — 2, 2 — 3, 3 — 4. We have 3 brown segments.

« Foreach t intheinterval from 0 to 1:

+ We take points on these segments on the distance proportional to t from the beginning.
These points are connected, so that we have two green segments.

« On these segments we take points proportional to t . We get one blue segment.
« On the blue segment we take a point proportional to t . On the example above it’s red.
« These points together form the curve.

The algorithm is recursive and can be generalized for any number of control points.
Given N of control points, we connect them to get initially N-1 segments.
Then foreach t from 0 to 1:

- Take a point on each of segment on the distance proportional to t and connect them — there will
be N-2 segments.

« Take a point on each of these segments on the distance proportional to t and connect — there
will be N-3 segments, and so on...

« Till we have one point. These points make the curve.

Move examples of curves:

ljt:l

3 4

With other points:

Loop form:

.jt:l

Not smooth Bezier curve:

gtzl
2

As the algorithm is recursive, we can build Bezier curves of any order: using 5, 6 or more control
points. But in practice they are less useful. Usually we take 2-3 points, and for complex lines glue
several curves together. That’s simpler to develop and calculate.

© How to draw a curve through given points?

We use control points for a Bezier curve. As we can see, they are not on the curve. Or, to be
precise, the first and the last ones do belong to curve, but others don'’t.

Sometimes we have another task: to draw a curve through several points, so that all of them are
on a single smooth curve. That task is called interpolation =2, and here we don’t cover it.

There are mathematical formulas for such curves, for instance Lagrange polynomial 2 .

In computer graphics spline interpolation 2 is often used to build smooth curves that connect
many points.

Summary

Bezier curves are defined by their control points.

We saw two definitions of Bezier curves:

1. Using a mathematical formulas.

2. Using a drawing process: De Casteljau’s algorithm
Good properties of Bezier curves:

+ We can draw smooth lines with a mouse by moving around control points.

« Complex shapes can be made of several Bezier curves.

Usage:

https://en.wikipedia.org/wiki/Interpolation
https://en.wikipedia.org/wiki/Lagrange_polynomial
https://en.wikipedia.org/wiki/Spline_interpolation

« In computer graphics, modeling, vector graphic editors. Fonts are described by Bezier curves.

« In web development — for graphics on Canvas and in the SVG format. By the way, “live” examples
above are written in SVG. They are actually a single SVG document that is given different points
as parameters. You can open it in a separate window and see the source: demo.svg.

« In CSS animation to describe the path and speed of animation.

CSS-animations

CSS animations allow to do simple animations without JavaScript at all.

JavaScript can be used to control CSS animation and make them even better with a little of code.

CSS transitions

The idea of CSS transitions is simple. We describe a property and how its changes should be
animated. When the property changes, the browser paints the animation.

That is: all we need is to change the property. And the fluent transition is made by the browser.

For instance, the CSS below animates changes of background-color for 3 seconds:

.animated {
transition-property: background-color;
transition-duration: 3s;

}

Now if an element has .animated class, any change of background-color is animated during 3
seconds.

Click the button below to animate the background:

<button id="color">Click me</button>

<style>
#tcolor {
transition-property: background-color;
transition-duration: 3s;

}
</style>
<script>

color.onclick = function() {
this.style.backgroundColor = 'red’;

s

</script>

Click me

There are 5 properties to describe CSS transitions:

+ transition-property
+ transition-duration

+ transition-timing-function

http://localhost:1339/article/bezier-curve/demo.svg?p=0,0,1,0.5,0,0.5,1,1&animate=1

+ transition-delay

We’ll cover them in a moment, for now let’s note that the common transition property allows to
declare them together in the order: property duration timing-function delay, and also
animate multiple properties at once.

For instance, this button animates both color and font-size:

<button id="growing">Click me</button>

<style>
#tgrowing {
transition: font-size 3s, color 2s;

}
</style>

<script>

growing.onclick = function() {
this.style.fontSize = "36px’;
this.style.color = 'red’;

}s

</script>

Click me

Now let’s cover animation properties one by one.

transition-property

In transition-property we write a list of property to animate, for instance: left, margin-
left, height, color.

Not all properties can be animated, but many of them = . The value all means “animate all
properties”.

transition-duration

In transition-duration we can specify how long the animation should take. The time should be
in CSS time format = : in seconds s or milliseconds ms .

transition-delay

In transition-delay we can specify the delay before the animation. For instance, if
transition-delay: 1s,then animation starts after 1 second after the change.

Negative values are also possible. Then the animation starts from the middle. For instance, if
transition-duration is 2s, and the delay is -1s, then the animation takes 1 second and starts
from the half.

Here’s the animation shifts numbers from @ to 9 using CSS translate property:

http://plnkr.co/edit/4PVdgLYkCCeURrluZWijc?p=preview =

http://www.w3.org/TR/css3-transitions/#animatable-properties-
http://www.w3.org/TR/css3-values/#time
http://plnkr.co/edit/4PVdqLYkCCeURrluZWjc?p=preview

The transform property is animated like this:

#stripe.animate {
transform: translate(-90%);
transition-property: transform;
transition-duration: 9s;

}

In the example above JavaScript adds the class .animate to the element — and the animation
starts:

stripe.classList.add('animate");

We can also start it “from the middle”, from the exact number, e.g. corresponding to the current
second, using the negative transition-delay.

Here if you click the digit — it starts the animation from the current second:
http://plnkr.co/edit/qv1beDJng7cDKucOmsok?p=preview 2
JavaScript does it by an extra line:
stripe.onclick = function() {
let sec = new Date().getSeconds() % 10;
// for instance, -3s here starts the animation from the 3rd second
stripe.style.transitionDelay = '-' + sec + 's';

stripe.classList.add('animate");

s

transition-timing-function
Timing function describes how the animation process is distributed along the time. Will it start slowly

and then go fast or vise versa.

That’s the most complicated property from the first sight. But it becomes very simple if we devote a
bit time to it.

That property accepts two kinds of values: a Bezier curve or steps. Let’s start from the curve, as it’s
used more often.

Bezier curve
The timing function can be set as a Bezier curve with 4 control points that satisfies the conditions:

1. First control point: (0,0) .
2. Last control point: (1,1) .

3. For intermediate points values of x must be in the interval @..1, y can be anything.

The syntax for a Bezier curve in CSS: cubic-bezier(x2, y2, x3, y3).Here we need to specify
only 2nd and 3rd control points, because the 1st one is fixed to (0,0) and the 4thoneis (1,1).

The timing function describes how fast the animation process goes in time.

http://plnkr.co/edit/qv1beDJng7cDKucOmsok?p=preview
http://localhost:1339/bezier-curve

« The x axis is the time: @ — the starting moment, 1 — the last moment of transition-
duration.

« The y axis specifies the completion of the process: @ — the starting value of the property, 1 —
the final value.

The simplest variant is when the animation goes uniformly, with the same linear speed. That can be
specified by the curve cubic-bezier(e, 0, 1, 1).

Here’s how that curve looks:

...As we can see, it’s just a straight line. As the time (x) passes, the completion (y) of the
animation steadily goes from @ to 1.

The train in the example below goes from left to right with the permanent speed (click it):
http://plnkr.co/edit/cu3ITdFp3HdI3vGNWaVq?p=preview =2

The CSS transition is based on that curve:

.train {
left: 0;
transition: left 5s cubic-bezier(o, 0, 1, 1);
/* JavaScript sets left to 450px */

}
...And how can we show a train slowing down?
We can use another Bezier curve: cubic-bezier(9.0, 0.5, 0.5 ,1.0).
The graph:

3 i

As we can see, the process starts fast: the curve soars up high, and then slower and slower.
Here’s the timing function in action (click the train):
http://pinkr.co/edit/ZQuQGTrlfPQV1t6IPzUq4 ?p=preview =

CSS:

.train {
left: 0;

http://plnkr.co/edit/cu3lTdFp3HdI3vGNWaVq?p=preview
http://plnkr.co/edit/ZQuQGTrIfPQVt6lPzUq4?p=preview

transition: left 5s cubic-bezier(@, .5, .5, 1);
/* JavaScript sets left to 450px */
}
There are several built-in curves: linear, ease, ease-in, ease-out and ease-in-out.

The linear is a shorthand for cubic-bezier(@, 0, 1, 1) — a straight line, we saw it already.

Other names are shorthands for the following cubic-bezier:

* 0 3
ease ease-in ease-out ease-in-out

(0.25, 0.1, 0.25, 1.0) (0.42, 0, 1.0, 1.0) (0, @, 0.58, 1.0) (0.42, 0, 0.58, 1.0)

3 4 3 4 3 i 3 4
1 : 1 2 12 1 2

* — by default, if there’s no timing function, ease is used.
So we could use ease-out for our slowing down train:
.train {
left: 9;
transition: left 5s ease-out;
/* transition: left 5s cubic-bezier(@, .5, .5, 1); */
}
But it looks a bit differently.

A Bezier curve can make the animation “jump out” of its range.

The control points on the curve can have any y coordinates: even negative or huge. Then the
Bezier curve would also jump very low or high, making the animation go beyond its normal range.

In the example below the animation code is:
.train {
left: 100px;
transition: left 5s cubic-bezier(.5, -1, .5, 2);

/* JavaScript sets left to 400px */
}

The property left should animate from 100px to 400px .
But if you click the train, you’ll see that:

« First, the train goes back: left becomes less than 100px .

« Then it goes forward, a little bit farther than 400px .

« And then back again —to 400px .

http://plnkr.co/edit/KLDZzQwNpGFxRXMySrRQ?p=preview 2
Why it happens — pretty obvious if we look at the graph of the given Bezier curve:

3

We moved the y coordinate of the 2nd point below zero, and for the 3rd point we made put it over
1, so the curve goes out of the “regular” quadrant. The y is out of the “standard” range 0. .1.

As we know, y measures “the completion of the animation process”. The value y = @ corresponds
to the starting property value and y = 1 —the ending value. So values y<@ move the property
lower than the starting left and y>1 —over the final left.

That’s a “soft” variant for sure. If we put y values like -99 and 99 then the train would jump out of
the range much more.

But how to make the Bezier curve for a specific task? There are many tools. For instance, we can do
it on the site http://cubic-bezier.com/ = .

Steps
Timing function steps(number of steps[, start/end]) allows to split animation into steps.

Let’s see that in an example with digits. We’ll make the digits change not in a smooth, but in a
discrete way.

For that we split the animation into 9 steps:

#stripe.animate {
transform: translate(-90%);
transition: transform 9s steps(9, start);

}
In action step(9, start):
http://plnkr.co/edit/KsVIL9STp56LRxf4WCdI?p=preview 2

The first argument of steps is the number of steps. The transform will be split into 9 parts (10%
each). The time interval is divided as well: 9 seconds split into 1 second intervals.

The second argument is one of two words: start or end.

http://plnkr.co/edit/KLDZzQwNpGFxRXMySrRQ?p=preview
http://cubic-bezier.com/
http://plnkr.co/edit/KsVIL9STp56LRxf4WCdI?p=preview

The start means that in the beginning of animation we need to do make the first step immediately.

We can observe that during the animation: when we click on the digit it changes to 1 (the first step)
immediately, and then changes in the beginning of the next second.

The process is progressing like this:

« @s — -10% (first change in the beginning of the 1st second, immediately)
1s — -20%

8s — -80%

(the last second shows the final value).

The alternative value end would mean that the change should be applied not in the beginning, but
at the end of each second.

So the process would go like this:
* Os —0

«+ 1s — -10% (first change at the end of the 1st second)
+ 2s — -20%

e 95 — -90%

In action step(9, end):
http://plnkr.co/edit/bbAFR6r5nFnzVkm2wNQC ?p=preview =

There are also shorthand values:

+ step-start —isthe same as steps(1, start) . Thatis, the animation starts immediately and
takes 1 step. So it starts and finishes immediately, as if there were no animation.

+ step-end —the same as steps(1, end) : make the animation in a single step at the end of
transition-duration.

These values are rarely used, because that’s not really animation, but rather a single-step change.

Event transitionend

When the CSS animation finishes the transitionend event triggers.
It is widely used to do an action after the animation is done. Also we can join animations.

For instance, the ship in the example below starts to swim there and back on click, each time farther
and farther to the right:

http://plnkr.co/edit/bbAFR6r5nFnzVkm2wNQC?p=preview

U —

The animation is initiated by the function go that re-runs each time when the transition finishes and
flips the direction:

boat.onclick = function() {
//...
let times = 1;

function go() {

if (times % 2) {
// swim to the right
boat.classList.remove('back");
boat.style.marginLeft = 100 * times + 200 + 'px';

} else {
// swim to the left
boat.classList.add('back");
boat.style.marginLeft = 100 * times - 200 + 'px';

}
go();

boat.addEventListener('transitionend', function() {
times++;
go();
3
¥

The event object for transitionend has few specific properties:

event.propertyName

The property that has finished animating. Can be good if we animate multiple properties
simultaneously.

event.elapsedTime

The time (in seconds) that the animation took, without transition-delay .

Keyframes

We can join multiple simple animations together using the @keyframes CSS rule.

It specifies the “name” of the animation and rules: what, when and where to animate. Then using the
animation property we attach the animation to the element and specify additional parameters for

it.

Here’s an example with explanations:

<div class="progress"></div>

<style>
@keyframes go-left-right { /* give it a name: "go-left-right" */
from { left: opx; } /* animate from left: Opx */
to { left: calc(1e0% - 50px); } /* animate to left: 100%-50px */
}

.progress {

animation: go-left-right 3s infinite alternate;

/* apply the animation "go-left-right" to the element
duration 3 seconds
number of times: infinite
alternate direction every time

*/

position: relative;

border: 2px solid green;

width: 50px;

height: 20px;

background: lime;

}
</style>

[]

There are many articles about @keyframes and a detailed specification = .

Probably you won’t need @keyframes often, unless everything is in the constant move on your
sites.

Summary

CSS animations allow to smoothly (or not) animate changes of one or multiple CSS properties.

They are good for most animation tasks. We’re also able to use JavaScript for animations, the next
chapter is devoted to that.

Limitations of CSS animations compared to JavaScript animations:

Ay TAUy

-« Simple things done simply. - JavaScript animations are flexible.

- Fast and lightweight for CPU. They can implement any animation
logic, like an “explosion” of an
element.

+ Not just property changes. We can
create new elements in JavaScript for
purposes of animation.

https://drafts.csswg.org/css-animations/

The majority of animations can be implemented using CSS as described in this chapter. And
transitionend event allows to run JavaScript after the animation, so it integrates fine with the
code.

But in the next chapter we’ll do some JavaScript animations to cover more complex cases.

© YRV

Animate a plane (CSS)
BEM:5

Show the animation like on the picture below (click the plane):

« The picture grows on click from 40x24px to 400x240px (10 times larger).
« The animation takes 3 seconds.
« At the end output: “Done!”.

« During the animation process, there may be more clicks on the plane. They shouldn’t “break”
anything.

BRI DIHDY Y PRy 7 XAZ[A< =

I

BREAN

Animate the flying plane (CSS)
EEM4:5

Modify the solution of the previous task Animate a plane (CSS) to make the plane grow more than
it’s original size 400x240px (jump out), and then return to that size.

Here’s how it should look (click on the plane):

http://plnkr.co/edit/xaO9eHqkLOy0REzqP5Ga?p=preview
http://localhost:1339/task/animate-logo-css

Take the solution of the previous task as the source.

‘3

FREN

Animated circle
BEM:5

Create a function showCircle(cx, cy, radius) that shows an animated growing circle.

+ cXx,cy are window-relative coordinates of the center of the circle,

« radius is the radius of the circle.

Click the button below to see how it should look like:

showCircle(150, 150, 100)

The source document has an example of a circle with right styles, so the task is precisely to do the
animation right.

FRAIDEHDT YRRy I A EHL =

‘3

EEENAN

http://plnkr.co/edit/3ihuJTnRbMcx6jBKgYJE?p=preview

JavaScript animations

JavaScript animations can handle things that CSS can't.

For instance, moving along a complex path, with a timing function different from Bezier curves, or an
animation on a canvas.

setinterval

From the HTML/CSS point of view, an animation is a gradual change of the style property. For
instance, changing style.left from @px to 100px moves the element.

And if we increase itin setInterval, by making 50 small changes per second, then it looks
smooth. That’s the same principle as in the cinema: 24 or more frames per second is enough to
make it look smooth.

The pseudo-code can look like this:

let delay = 1000 / 50; // in 1 second 50 frames
let timer = setInterval(function() {
if (animation complete) clearInterval(timer);
else increase style.left
}, delay)

More complete example of the animation:

let start = Date.now(); // remember start time

let timer = setInterval(function() {
// how much time passed from the start?
let timePassed = Date.now() - start;

if (timePassed >= 2000) {

clearInterval(timer); // finish the animation after 2 seconds
return;

}

// draw the animation at the moment timePassed
draw(timePassed);

}, 20);

// as timePassed goes from @ to 2000

// left gets values from @px to 400px

function draw(timePassed) {
train.style.left = timePassed / 5 + 'px';

}

Click for the demo:

http://plnkr.co/edit/HhZDdX42U5JuDBHaY 1Zi?p=preview

requestAnimationFrame

Let’s imagine we have several animations running simultaneously.

If we run them separately, each one with its own setInterval(..., 20),then the browser would
have to repaint much more often than every 20ms .

http://plnkr.co/edit/HhZDdX42U5JuDBHaY1Zi?p=preview

Each setInterval triggers once per 20ms , but they are independent, so we have several
independent runs within 20ms .

These several independent redraws should be grouped together, to make it easier for the browser.

In other words, this:

setInterval(function() {
animatel();
animate2();
animate3();

}, 20)

...Is lighter than this:

setInterval(animatel, 20);
setInterval(animate2, 20);
setInterval(animate3, 20);

There’s one more thing to keep in mind. Sometimes when CPU is overloaded, or there are other
reasons to redraw less often. For instance, if the browser tab is hidden, then there’s totally no point
in drawing.

There’s a standard Animation timing = that provides the function requestAnimationFrame .
It addresses all these issues and even more.

The syntax:

let requestId = requestAnimationFrame(callback)

That schedules the callback function to run in the closest time when the browser wants to do
animation.

If we do changes in elements in callback then they will be grouped together with other
requestAnimationFrame callbacks and with CSS animations. So there will be one geometry
recalculation and repaint instead of many.

The returned value requestId can be used to cancel the call:

// cancel the scheduled execution of callback
cancelAnimationFrame(requestId);

The callback gets one argument — the time passed from the beginning of the page load in
microseconds. This time can also be obtained by calling performance.now() = .

Usually callback runs very soon, unless the CPU is overloaded or the laptop battery is almost
discharged, or there’s another reason.

The code below shows the time between first 20 runs for requestAnimationFrame . Usually it’s 10-
20ms:

http://www.w3.org/TR/animation-timing/
https://developer.mozilla.org/ja/docs/Web/API/Performance/now

<script>
let prev = performance.now();
let times = 0;
requestAnimationFrame(function measure(time) {
document.body.insertAdjacentHTML("beforeEnd", Math.floor(time - prev) + " ");
prev = time;
if (times++ < 10) requestAnimationFrame(measure);

1)

</script>

Structured animation

Now we can make a more universal animation function based on requestAnimationFrame :

function animate({timing, draw, duration}) {
let start = performance.now();
requestAnimationFrame(function animate(time) {
// timeFraction goes from @ to 1
let timeFraction = (time - start) / duration;

if (timeFraction > 1) timeFraction = 1;

// calculate the current animation state
let progress = timing(timeFraction)

draw(progress); // draw it
if (timeFraction < 1) {
requestAnimationFrame(animate);

}

1)
}

Function animate accepts 3 parameters that essentially describes the animation:

duration

Total time of animation. Like, 1000 .

timing(timeFraction)

Timing function, like CSS-property transition-timing-function that gets the fraction of time
that passed (@ at start, 1 at the end) and returns the animation completion (like y on the Bezier
curve).

For instance, a linear function means that the animation goes on uniformly with the same speed:

function linear(timeFraction) {
return timeFraction;

}

It’s graph: @ 1

That’s just like transition-timing-function: linear . There are more interesting variants
shown below.

draw(progress)
The function that takes the animation completion state and draws it. The value progress=0
denotes the beginning animation state, and progress=1 —the end state.

This is that function that actually draws out the animation.

It can move the element:

function draw(progress) {
train.style.left = progress + 'px';

}

...Or do anything else, we can animate anything, in any way.

Let’s animate the element width from @ to 100% using our function.

Click on the element for the demo:

http://plnkr.co/edit/PBZAxhsKrhOWmFITPQgW?p=preview =

The code for it:

animate({
duration: 1000,
timing(timeFraction) {
return timeFraction;

¥
draw(progress) {
elem.style.width = progress * 100 + '%';

}
1)

Unlike CSS animation, we can make any timing function and any drawing function here. The timing
function is not limited by Bezier curves. And draw can go beyond properties, create new elements

for like fireworks animation or something.

Timing functions

We saw the simplest, linear timing function above.

http://plnkr.co/edit/PBZAxhsKrhOWmF9TPQgW?p=preview

Let’s see more of them. We’'ll try movement animations with different timing functions to see how
they work.

Power of n
If we want to speed up the animation, we can use progress in the power n.

For instance, a parabolic curve:

function quad(timeFraction) {
return Math.pow(timeFraction, 2)

}

The graph:

See in action (click to activate):

...Or the cubic curve or event greater n . Increasing the power makes it speed up faster.

Here’s the graph for progress in the power 5:

In action:

The arc
Function:

function circ(timeFraction) {
return 1 - Math.sin(Math.acos(timeFraction));

}

The graph:

Back: bow shooting
This function does the “bow shooting”. First we “pull the bowstring”, and then “shoot”.

Unlike previous functions, it depends on an additional parameter x , the “elasticity coefficient”. The
distance of “bowstring pulling” is defined by it.

The code:

function back(x, timeFraction) {
return Math.pow(timeFraction, 2) * ((x + 1) * timeFraction - x)

}

The graph for x = 1.5:

For animation we use it with a specific value of x . Example for x = 1.5:

Bounce
Imagine we are dropping a ball. It falls down, then bounces back a few times and stops.

The bounce function does the same, but in the reverse order: “bouncing” starts immediately. It uses
few special coefficients for that:

function bounce(timeFraction) {
for (let a =9, b =1, result; 1; a += b, b /= 2) {
if (timeFraction >= (7 - 4 * a) / 11) {
return -Math.pow((11 - 6 * a - 11 * timeFraction) / 4, 2) + Math.pow(b, 2)
}
}
}

In action:

Elastic animation
One more “elastic” function that accepts an additional parameter x for the “initial range”.

function elastic(x, timeFraction) {
return Math.pow(2, 10 * (timeFraction - 1)) * Math.cos(20 * Math.PI * x / 3 * timeFraction)

}

The graph for x=1.5:

In action for x=1.5:

Reversal: ease*

So we have a collection of timing functions. Their direct application is called “easeln”.

Sometimes we need to show the animation in the reverse order. That’s done with the “easeQOut”
transform.

easeOut

In the “easeOut” mode the timing function is put into a wrapper timingEaseOut :

timingEaseOut(timeFraction) = 1 - timing(1 - timeFraction)

In other words, we have a “transform” function makeEaseOut that takes a “regular” timing function
and returns the wrapper around it:

// accepts a timing function, returns the transformed variant
function makeEaseOut(timing) {
return function(timeFraction) {
return 1 - timing(1 - timeFraction);
}
}

For instance, we can take the bounce function described above and apply it:

let bounceEaseOut = makeEaseOut(bounce);

Then the bounce will be not in the beginning, but at the end of the animation. Looks even better:
http://plnkr.co/edit/VGRIN7faGLRTGKfad8|Z?p=preview 2

Here we can see how the transform changes the behavior of the function:

If there’s an animation effect in the beginning, like bouncing — it will be shown at the end.

In the graph above the regular bounce has the red color, and the easeOut bounce is blue.

« Regular bounce — the object bounces at the bottom, then at the end sharply jumps to the top.
« After easeOut —it first jumps to the top, then bounces there.

easelnOut
We also can show the effect both in the beginning and the end of the animation. The transform is
called “easelnOut”.

Given the timing function, we calculate the animation state like this:

if (timeFraction <= 0.5) { // first half of the animation
return timing(2 * timeFraction) / 2;

} else { // second half of the animation
return (2 - timing(2 * (1 - timeFraction))) / 2;

}

http://plnkr.co/edit/VGRIn7faGLRTGKfad8lZ?p=preview

The wrapper code:

function makeEaseInOut(timing) {
return function(timeFraction) {
if (timeFraction < .5)
return timing(2 * timeFraction) / 2;
else
return (2 - timing(2 * (1 - timeFraction))) / 2;
}
}

bounceEaseInOut = makeEaseInOut(bounce);

In action, bounceEaseInOut :
http://plnkr.co/edit/'SMvKjWXXlelb6 ThS6ayA?p=preview 2

The “easelnOut” transform joins two graphs into one: easelIn (regular) for the first half of the
animation and easeOut (reversed) — for the second part.

The effect is clearly seen if we compare the graphs of easeIn, easeOut and easeInOut of the
circ timing function:

Red is the regular variantof circ (easeln).

Green — easeOut .

Blue — easeInOut.

As we can see, the graph of the first half of the animation is the scaled down easelIn, and the
second half is the scaled down easeOut . As a result, the animation starts and finishes with the
same effect.

More interesting “draw”

Instead of moving the element we can do something else. All we need is to write the write the proper
draw .

Here’s the animated “bouncing” text typing:

http://pInkr.co/edit/Lkqth3Z3A27cpolbYnGi?p=preview =

Summary

http://plnkr.co/edit/SMvKjWXXIelb6ThS6ayA?p=preview
http://plnkr.co/edit/Lkqth3Z3A27cpoIbYnGi?p=preview

JavaScript animation should be implemented via requestAnimationFrame . That built-in method
allows to setup a callback function to run when the browser will be preparing a repaint. Usually that’s
very soon, but the exact time depends on the browser.

When a page is in the background, there are no repaints at all, so the callback won’t run: the
animation will be suspended and won’t consume resources. That’s great.

Here’s the helper animate function to setup most animations:

function animate({timing, draw, duration}) {
let start = performance.now();
requestAnimationFrame(function animate(time) {
// timeFraction goes from @ to 1
let timeFraction = (time - start) / duration;

if (timeFraction > 1) timeFraction = 1;

// calculate the current animation state
let progress = timing(timeFraction);

draw(progress); // draw it
if (timeFraction < 1) {
requestAnimationFrame(animate);

}

1)
}

Options:

« duration —the total animation time in ms.

« timing - the function to calculate animation progress. Gets a time fraction from 0 to 1, returns
the animation progress, usually from 0 to 1.

« draw - the function to draw the animation.

Surely we could improve it, add more bells and whistles, but JavaScript animations are not applied
on a daily basis. They are used to do something interesting and non-standard. So you’d want to add
the features that you need when you need them.

JavaScript animations can use any timing function. We covered a lot of examples and
transformations to make them even more versatile. Unlike CSS, we are not limited to Bezier curves
here.

The same is about draw : we can animate anything, not just CSS properties.

© YRV

Animate the bouncing ball
EEM:5

Make a bouncing ball. Click to see how it should look:

BRAIDIEHDY Y FRy VAZ[A< »

i

I

AN

Animate the ball bouncing to the left
BEEM:5

Make the ball bounce to the left. Like this:

ot

Write the animation code. The distance to the right is 100px .
Take the solution of the previous task Animate the bouncing ball as the source.

i~

BREA

Frames and windows
Popups and window methods

A popup window is one of the oldest methods to show additional document to user.

Basically, you just run:

window.open('http://javascript.info/")

http://plnkr.co/edit/63WZeBev5hP4Cmf788e0?p=preview
http://localhost:1339/task/animate-ball

... And it will open a new window with given URL. Most modern browsers are configured to open
new tabs instead of separate windows.

Popup blocking

Popups exist from really ancient times. The initial idea was to show another content without closing
the main window. As of now, there are other ways to do that: JavaScript is able to send requests for
server, so popups are rarely used. But sometimes they are still handy.

In the past evil sites abused popups a lot. A bad page could open tons of popup windows with ads.
So now most browsers try to block popups and protect the user.

Most browsers block popups if they are called outside of user-triggered event handlers like
onclick.

If you think about it, that’s a bit tricky. If the code is directly in an onclick handler, then that’s easy.
But what is the popup opens in setTimeout ?

Try this code:

// open after 3 seconds
setTimeout(() => window.open('http://google.com"), 3000);

The popup opens in Chrome, but gets blocked in Firefox.

...And this works in Firefox too:

// open after 1 seconds
setTimeout(() => window.open(' http://google.com'), 1000);

The difference is that Firefox treats a timeout of 2000ms or less are acceptable, but after it —
removes the “trust”, assuming that now it’s “outside of the user action”. So the first one is blocked,
and the second one is not.

Modern usage

As of now, we have many methods to load and show data on-page with JavaScript. But there are still
situations when a popup works best.

For instance, many shops use online chats for consulting people. A visitor clicks on the button, it
runs window.open and opens the popup with the chat.

Why a popup is good here, why not in-page?

1. A popup is a separate window with its own independent JavaScript environment. So a chat
service doesn’t need to integrate with scripts of the main shop site.

2. A popup is very simple to attach to a site, little to no overhead. It’s only a small button, without
additional scripts.

3. A popup may persist even if the user left the page. For example, a consult advices the user to
visit the page of a new “Super-Cooler” goodie. The user goes there in the main window without

leaving the chat.

window.open

The syntax to open a popup is: window.open(url, name, params):

url

An URL to load into the new window.

name

A name of the new window. Each window has a window.name , and here we can specify which
window to use for the popup. If there’s already a window with such name — the given URL opens in
it, otherwise a new window is opened.

params

The configuration string for the new window. It contains settings, delimited by a comma. There must
be no spaces in params, for instance: width:200,height=100.

Settings for params :

« Position:

« left/top (numeric) — coordinates of the window top-left corner on the screen. There is a
limitation: a new window cannot be positioned offscreen.

« width/height (numeric) — width and height of a new window. There is a limit on minimal
width/height, so it’s impossible to create an invisible window.

« Window features:
« menubar (yes/no) — shows or hides the browser menu on the new window.

« toolbar (yes/no) —shows or hides the browser navigation bar (back, forward, reload etc) on
the new window.

« location (yes/no) —shows or hides the URL field in the new window. FF and IE don’t allow
to hide it by default.

status (yes/no) — shows or hides the status bar. Again, most browsers force it to show.

+ resizable (yes/no)— allows to disable the resize for the new window. Not recommended.

scrollbars (yes/no) — allows to disable the scrollbars for the new window. Not
recommended.

There is also a number of less supported browser-specific features, which are usually not used.
Check window.open in MDN = for examples.

Example: a minimalistic window

Let’s open a window with minimal set of features just to see which of them browser allows to disable:

let params = “scrollbars=no,resizable=no,status=no,location=no,toolbar=no,menubar=no,
width=0,height=0,left=-1000,top=-1000";

open('/', 'test', params);

https://developer.mozilla.org/en/DOM/window.open

Here most “window features” are disabled and window is positioned offscreen. Run it and see what
really happens. Most browsers “fix” odd things like zero width/height and offscreen left/top.
For instance, Chrome open such a window with full width/height, so that it occupies the full screen.

Let’s add normal positioning options and reasonable width, height, left, top coordinates:

let params = “scrollbars=no,resizable=no,status=no,location=no,toolbar=no,menubar=no,
width=600,height=300,left=100,top=100";

open('/', 'test', params);

Most browsers show the example above as required.

Rules for omitted settings:

+ If there is no 3rd argument in the open call, or it is empty, then the default window parameters
are used.

« If there is a string of params, but some yes/no features are omitted, then the omitted features are
disabled, if the browser allows that. So if you specify params, make sure you explicitly set all
required features to yes.

- Ifthereis no left/top in params, then the browser tries to open a new window near the last
opened window.

« Ifthere is no width/height, then the new window will be the same size as the last opened.

Accessing a popup

The open call returns a reference to the new window. It can be used to manipulate it’s properties,
change location and even more.

In the example below, the contents of the new window is modified after loading.

let newWindow = open('/"', ‘'example', 'width=300,height=300")
newlWindow. focus();

newWindow.onload = function() {
let html = "<div style="font-size:30px">Welcome!</div>";
newWindow.document.body.insertAdjacentHTML('afterbegin’, html);
¥

Please note that external document content is only accessible for windows from the same origin
(the same protocol://domain:port).

For windows with URLs from another sites, we are able to change the location by assigning
newWindow.location=... , but we can’t read the location or access the content. That’s for user
safety, so that an evil page can’t open a popup with http://gmail.com and read the data. We'll
talk more about it later.

Accessing the opener window

A popup may access the “opener” window as well. A JavaScript in it may use window.opener to
access the window that opened it. It is null for all windows except popups.

So both the main window and the popup have a reference to each other. They may modify each
other freely assuming that they come from the same origin. If that’s not so, then there are still means
to communicate, to be covered in the next chapter Cross-window communication.

Closing a popup

If we don’t need a popup any more, we can call newWindow.close() on it.

Technically, the close() method is available for any window , but window.close() isignored by
most browsers if window is not created with window.open() .

The newWindow.closed is true if the window is closed. That’s useful to check if the popup (or the
main window) is still open or not. A user could close it, and our code should take that possibility into
account.

This code loads and then closes the window:

let newWindow = open('/', 'example', 'width=300,height=300")
newWindow.onload = function() {

newWindow.close();

alert(newWindow.closed); // true

s

Focus/blur on a popup

Theoretically, there are window.focus() and window.blur() methods to focus/unfocus on a
window. Also there are focus/blur events that allow to focus a window and catch the moment
when the visitor switches elsewhere.

In the past evil pages abused those. For instance, look at this code:

window.onblur = () => window.focus();

When a user attempts to switch out of the window (blur), it brings it back to focus. The intention is
to “lock” the user within the window .

So, there are limitations that forbid the code like that. There are many limitations to protect the user
from ads and evils pages. They depend on the browser.

For instance, a mobile browser usually ignores that call completely. Also focusing doesn’t work when
a popup opens in a separate tab rather than a new window.

Still, there are some things that can be done.

For instance:

+ When we open a popup, it’s might be a good idea to run a newWindow.focus() onit. Justin
case, for some OS/browser combinations it ensures that the user is in the new window now.

+ If we want to track when a visitor actually uses our web-app, we can track
window.onfocus/onblur . That allows us to suspend/resume in-page activities, animations etc.
But please note that the blur event means that the visitor switched out from the window, but he
still may observe it. The window is in the background, but still may be visible.

http://localhost:1339/cross-window-communication

Summary

« A popup can be opened by the open(url, name, params) call. It returns the reference to the
newly opened window.

« By default, browsers block open calls from the code outside of user actions. Usually a
notification appears, so that a user may allow them.

« The popup may access the opener window using the window.opener property, so the two are
connected.

« If the main window and the popup come from the same origin, they can freely read and modify
each other. Otherwise, they can change location of each other and communicate using messages
(to be covered).

« To close the popup: use close() call. Also the user may close them (just like any other
windows). The window.closed is true after that.

« Methods focus() and blur() allow to focus/unfocus a window. Sometimes.

« Events focus and blur allow to track switching in and out of the window. But please note that
a window may still be visible even in the background state, after blur .

Also if we open a popup, a good practice is to notify the user about it. An icon with the opening
window can help the visitor to survive the focus shift and keep both windows in mind.

Cross-window communication

The “Same Origin” (same site) policy limits access of windows and frame to each other.

The idea is that if we have two windows open: one from john-smith.com, and another one is
gmail.com, then we wouldn’t want a script from john-smith.com to read our mail.

Same Origin

Two URLs are said to have the “same origin” if they have the same protocol, domain and port.

These URLs all share the same origin:

* http://site.com
« http://site.com/
+ http://site.com/my/page.html

These ones do not:

* http://www.site.com (another domain: www. matters)
* http://site.org (another domain: .org matters)

« https://site.com (another protocol: https)

« http://site.com:8080 (another port: 8080)

If we have a reference to another window (a popup or iframe), and that window comes from the
same origin, then we can do everything with it.

If it comes from another origin, then we can only change its location. Please note: not read the
location, but modify it, redirect it to another place. That’s safe, because the URL may contain
sensitive parameters, so reading it from another origin is prohibited, but changing is not.

Also such windows may exchange messages. Soon about that later.

Exclusion: subdomains may be same-origin
There’s an important exclusion in the same-origin policy.
If windows share the same second-level domain, for instance john.site.com,
peter.site.com and site.com, we can use JavaScript to assign to document.domain their

common second-level domain site.com. Then these windows are treated as having the same
origin.

In other words, all such documents (including the one from site.com) should have the code:

document.domain = ‘'site.com’;

Then they can interact without limitations.

That’s only possible for pages with the same second-level domain.

Accessing an iframe contents

An <iframe> is a two-faced beast. From one side it’s a tag, just like <script> or . From
the other side it’s a window-in-window.

The embedded window has a separate document and window objects.

We can access them like using the properties:

« iframe.contentWindow is a reference to the window inside the <iframe> .

« iframe.contentDocument is a reference to the document inside the <iframe> .

When we access an embedded window, the browser checks if the iframe has the same origin. If
that’s not so then the access is denied (with exclusions noted above).

For instance, here’s an <iframe> from another origin:

<iframe src="https://example.com" id="iframe"></iframe>

<script>
iframe.onload = function() {
// we can get the reference to the inner window
let iframeWindow = iframe.contentWindow;

try {
// ...but not to the document inside it
let doc = iframe.contentDocument;
} catch(e) {
alert(e); // Security Error (another origin)

}

// also we can't read the URL of the page in it

try {
alert(iframe.contentWindow.location);

} catch(e) {
alert(e); // Security Error

}
// ...but we can change it (and thus load something else into the iframe)!
iframe.contentWindow.location = '/'; // works

iframe.onload = null; // clear the handler, to run this code only once

3

</script>

The code above shows errors for any operations except:

« Getting the reference to the inner window iframe.contentWindow

« Changing its location.

o iframe.onload vs iframe.contentWindow.onload

The iframe.onload event is actually the same as iframe.contentWindow.onload. It
triggers when the embedded window fully loads with all resources.

...But iframe.onload is always available, while iframe.contentWindow.onload needs the
same origin.

And now an example with the same origin. We can do anything with the embedded window:

<iframe src="/" id="iframe"></iframe>

<script>
iframe.onload = function() {
// just do anything
iframe.contentDocument.body.prepend("Hello, world!");

s

</script>

Please wait until the iframe loads
When an iframe is created, it immediately has a document. But that document is different from the

one that finally loads into it!

Here, look:

<iframe src="/" id="iframe"></iframe>

<script>
let oldDoc = iframe.contentDocument;
iframe.onload = function() {
let newDoc = iframe.contentDocument;
// the loaded document is not the same as initiall!
alert(oldDoc == newDoc); // false

s

</script>

That’s actually a well-known pitfall for novice developers. We shouldn’t work with the document
immediately, because that’s the wrong document. If we set any event handlers on it, they will be
ignored.

...But the onload event triggers when the whole iframe with all resources is loaded. What if we
want to act sooner, on DOMContentLoaded of the embedded document?

That’s not possible if the iframe comes from another origin. But for the same origin we can try to
catch the moment when a new document appears, and then setup necessary handlers, like this:

<iframe src="/" id="iframe"></iframe>

<script>
let oldDoc = iframe.contentDocument;

// every 100 ms check if the document is the new one
let timer = setInterval(() => {
if (iframe.contentDocument == oldDoc) return;
// new document, let's set handlers
iframe.contentDocument.addEventListener('DOMContentLoaded’, () => {
iframe.contentDocument.body.prepend('Hello, world!");
3
clearInterval(timer); // cancel setInterval, don't need it any more

}, 100);
</script>

Let me know in comments if you know a better solution here.

window.frames

An alternative way to get a window object for <iframe> —is to get it from the named collection
window.frames :

« By number: window.frames[@] —the window object for the first frame in the document.

+ By name: window.frames.iframeName —the window object for the frame with
name="iframeName" .

For instance:

<iframe src="/" style="height:80px" name="win" id="iframe"></iframe>

<script>
alert(iframe.contentWindow == frames[@]); // true
alert(iframe.contentWindow == frames.win); // true
</script>

An iframe may have other iframes inside. The corresponding window objects form a hierarchy.

Navigation links are:

« window.frames — the collection of “children” windows (for nested frames).
« window.parent — the reference to the “parent” (outer) window.

+ window.top —the reference to the topmost parent window.

For instance:

window.frames[@].parent === window; // true

We can use the top property to check if the current document is open inside a frame or not:

if (window == top) { // current window == window.top?
alert('The script is in the topmost window, not in a frame');
} else {
alert('The script runs in a frame!');

}

The sandbox attribute

The sandbox attribute allows to forbid certain actions inside an <iframe> , to run an untrusted
code. It “sandboxes” the iframe by treating it as coming from another origin and/or applying other
limitations.

By default, for <iframe sandbox src="..."> the “default set” of restrictions is applied to the
iframe. But we can provide a space-separated list of “excluded” limitations as a value of the attribute,
like this: <iframe sandbox="allow-forms allow-popups">. The listed limitations are not
applied.

In other words, an empty "sandbox" attribute puts the strictest limitations possible, but we can put
a space-delimited list of those that we want to lift.

Here’s a list of limitations:

allow-same-origin

By default "sandbox" forces the “different origin” policy for the iframe. In other words, it makes the
browser to treat the iframe as coming from another origin, even if its src points to the same site.
With all implied restrictions for scripts. This option removes that feature.

allow-top-navigation

Allows the iframe to change parent.location.

allow-forms

Allows to submit forms from iframe .

allow-scripts

Allows to run scripts from the iframe.

allow-popups

Allows to window.open popups from the iframe

See the manual =z for more.

The example below demonstrates a sandboxed iframe with the default set of restrictions: <iframe
sandbox src="...">.It has some JavaScript and a form.

Please note that nothing works. So the default set is really harsh:

http://plnkr.co/edit/7MGcya2rToCTpCvh1pRh?p=preview 2

https://developer.mozilla.org/ja/docs/Web/HTML/Element/iframe
http://plnkr.co/edit/7MGcya2rToCTpCvh1pRh?p=preview

0 =
The purpose of the "sandbox" attribute is only to add more restrictions. It cannot remove them.
In particular, it can’t relax same-origin restrictions if the iframe comes from another origin.

Cross-window messaging

The postMessage interface allows windows to talk to each other no matter which origin they are
from.

It has two parts.

postMessage
The window that wants to send a message calls postMessage =@ method of the receiving window. In

other words, if we want to send the message to win, we should call win.postMessage(data,
targetOrigin) .

Arguments:

data

The data to send. Can be any object, the data is cloned using the “structured cloning algorithm”. |IE
supports only strings, so we should JSON.stringify complex objects to support that browser.

targetOrigin

Specifies the origin for the target window, so that only a window from the given origin will get the
message.

The targetOrigin is a safety measure. Remember, if the target window comes from another
origin, we can’'t read it's location. So we can’t be sure which site is open in the intended window
right now: the user could navigate away.

Specifying targetOrigin ensures that the window only receives the data if it’s still at that site.
Good when the data is sensitive.

For instance, here win will only receive the message if it has a document from the origin
http://example.com:

<iframe src="http://example.com" name="example">

<script>
let win = window.frames.example;

win.postMessage("message", "http://example.com");
</script>

If we don’t want that check, we can set targetOrigin to *.

<iframe src="http://example.com” name="example">

<script>
let win = window.frames.example;

win.postMessage("message", "*");
</script>

https://developer.mozilla.org/ja/docs/Web/API/Window.postMessage

onmessage
To receive a message, the target window should have a handler on the message event. It triggers

when postMessage is called (and targetOrigin check is successful).

The event object has special properties:

data

The data from postMessage .

origin

The origin of the sender, for instance http://javascript.info.

source

The reference to the sender window. We can immediately postMessage back if we want.

To assign that handler, we should use addEventListener, a short syntax window.onmessage
does not work.

Here’s an example:

window.addEventListener("message"”, function(event) {

if (event.origin != 'http://javascript.info') {
// something from an unknown domain, let's ignore it
return;

}

alert("received: " + event.data);

1)

The full example:

http://plnkr.co/edit/zZ8WuUO9XBPX3L02w2aecY ?p=preview

© There’s no delay

There’s totally no delay between postMessage and the message event. That happens
synchronously, even faster than setTimeout(...,9) .

Summary

To call methods and access the content of another window, we should first have a reference to it.

For popups we have two properties:

« window.open —opens a new window and returns a reference to it,

+ window.opener — a reference to the opener window from a popup
For iframes, we can access parent/children windows using:

+ window.frames — a collection of nested window obijects,

http://plnkr.co/edit/z8WuO9XBPX3L02w2aecY?p=preview

« window.parent, window.top are the references to parent and top windows,

« iframe.contentWindow is the window inside an <iframe> tag.

If windows share the same origin (host, port, protocol), then windows can do whatever they want
with each other.

Otherwise, only possible actions are:

« Change the location of another window (write-only access).
« Post a message to it.

Exclusions are:

+ Windows that share the same second-level domain: a.site.com and b.site.com. Then
setting document.domain="site.com' in both of them puts them into the “same origin” state.

- If aniframe has a sandbox attribute, it is forcefully put into the “different origin” state, unless the
allow-same-origin is specified in the attribute value. That can be used to run untrusted code
in iframes from the same site.

The postMessage interface allows two windows to talk with security checks:

1. The sender calls targetWin.postMessage(data, targetOrigin).

2. If targetOrigin isnot '*' , then the browser checks if window targetWin has the URL from
targetWin site.

3. Ifitis so, then targetWin triggers the message event with special properties:

« origin —the origin of the sender window (like http://my.site.com)
« source —the reference to the sender window.
+ data —the data, any object in everywhere except |IE that supports only strings.

We should use addEventListener to set the handler for this event inside the target window.

The clickjacking attack

The “clickjacking” attack allows an evil page to click on a “victim site” on behalf of the visitor.

Many sites were hacked this way, including Twitter, Facebook, Paypal and other sites. They are all
fixed, of course.

The idea

The idea is very simple.
Here’s how clickjacking was done with Facebook:

1. A visitor is lured to the evil page. No matter how.

2. The page has a harmlessly-looking link on it (like “get rich now” or “click here, very funny” and so
on).

3. Over that link the evil page positions a transparent <iframe> with src from facebook.com, in
such a way that the “Like” button is right above that link. Usually that’s done with z-index .

4. Clicking on that link, the visitor in fact presses that button.

The demo

Here’s how the evil page looks like. To make things clear, the <iframe> is half-transparent (in real
evil pages it’s fully transparent):

<style>

iframe { /* iframe from the victim site */
width: 400px;
height: 100px;
position: absolute;
top:0; left:-20px;
opacity: ©.5; /* in real opacity:0 */
z-index: 1;

}

</style>

<div>Click to get rich now:</div>

<!-- The url from the victim site -->
<iframe src="/clickjacking/facebook.html"></iframe>

<button>Click here!</button>

<div>...And you're cool (I'm a cool hacker actually)!</div>

The full demo of the attack:
http://plnkr.co/edit/HVNjvIYyyoldI3JeJwWMK?p=preview =

Here we have a half-transparent <iframe src="facebook.html">, and in the example we can
see it hovering over the button. A click on the button actually clicks on the iframe, but that’s not
visible to the user, because the iframe is transparent.

As a result if the visitor is authorized on facebook (“remember me” is usually turned on), then it adds
a “Like”. On Twitter that would be a “Follow” button.

Here’s the same example, but closer to reality, with opacity:0 for <iframe> :
http://plnkr.co/edit/4JtndCLSEZObkLeZw07w?p=preview =

All we need to attack — is to position the <iframe> on the evil page in such a way that the button is
right over the link. That’s usually possible with CSS.

© Clickjacking is for clicks, not for keyboard

The attack only affects mouse actions.

Technically, if we have a text field to hack, then we can position an iframe in such a way that text
fields overlap each other. So when a visitor tries to focus on the input he sees on the page, he
actually focuses on the input inside the iframe.

But then there’s a problem. Everything that the visitor types will be hidden, because the iframe is
not visible.

So that would look really odd to the user, and he will stop.

http://plnkr.co/edit/HVNjvlYyyoldI3JeJwMK?p=preview
http://plnkr.co/edit/4JtndCLSEZObkLeZw07w?p=preview

Old-school defences (weak)

The oldest defence method is the piece of JavaScript that forbids to open the page in a frame (so-
called “framebusting”).

Like this:
if (top != window) {
top.location = window.location;
}
That is: if the window finds out that it’s not on the top, then it automatically makes itself the top.
As of now, that’s not reliable, because there are many ways to hack around it. Let’s cover a few.

Blocking top-navigation
We can block the transition caused by changing top.location in the beforeunload event.

The top page (that belongs to the hacker) sets a handler to it, and when the iframe tries to change
top.location the visitor gets a message asking him whether he wants to leave.

Like this:

window.onbeforeunload = function() {
window.onbeforeunload = null;
return "Want to leave without learning all the secrets (he-he)?";

s

In most cases the visitor would answer negatively, because he doesn’t know about the iframe, all he
can see is the top page, there’s no reason to leave. And so the top.location won’t change!

In action:
http://plnkr.co/edit/D9anCdm80gPCvDkw8tv9?p=preview =

Sandbox attribute
One of the things restricted by the sandbox attribute is navigation. A sandboxed iframe may not

change top.location.

So we can add the iframe with sandbox="allow-scripts allow-forms" . That would relax the
restrictions allowing scripts and forms. But we don’t put allow-top-navigation in the value so
that the navigation is still forbidden. And the change of top.location won’t work.

Here’s the code:

<iframe sandbox="allow-scripts allow-forms" src="facebook.html"></iframe>

There are other ways to work around that simple protection too.

X-Frame-Options

Server-side header X-Frame-Options can allow or forbid showing the page inside a frame.

http://localhost:1339/onload-ondomcontentloaded#window.onbeforeunload
http://plnkr.co/edit/D9anCdm80gPCvDkw8tv9?p=preview

It must be sent by the server: browser ignore it if found in <meta> tags. So <meta http-
equiv="X-Frame-Options"...> won’t do anything.

The header may have 3 values:

DENY

Never ever show the page inside an iframe.

SAMEORIGIN

Allow to show inside an iframe if the parent document comes from the same origin.

ALLOW-FROM domain

Allows to show inside an iframe if the parent document is from the given domain.

For instance, Twitter uses X-Frame-Options: SAMEORIGIN .

Showing with disabled functionality

The protecting X-Frame-Options header has a side-effect. Other sites can’t show our page in an
iframe, even if they have “legal”’ reasons to do so.

So there are other solutions. For instance, we can “cover” the page with a <div> with
height:100%;width:100% , so that it handles all clicks. That <div> should disappear if window
== top or we figure out that we don’t need protection.

Like this:

<style>
#protector {

height: 100%;
width: 100%;
position: absolute;
left: 9;

top: 0O;

z-index: 99999999;

}
</style>

<div id="protector">
Go to the site
</div>

<script>
// there will be an error if top window is from the different origin
// but that's ok here
if (top.document.domain == document.domain) {
protector.remove();

}

</script>

The demo:

http://plnkr.co/edit/AnTs9aR8sCy5iWmgUve4 ?p=preview =

Summary

http://plnkr.co/edit/AnTs9aR8sCy5iWmgUve4?p=preview

Clickjacking is a way to “trick” users into a clicking on a victim site without even knowing what
happens. That’s dangerous if there are important click-activated actions.

A hacker can post a link to his evil page in a message or lure visitors to his page by other means.
There are many variants.

From one side — the attack is “not deep”: all a hacker can do is one click. But from another side, if
the hacker knows that after the click another control appears, then it may use cunning messages to
make the user to click on it as well.

The attack is quite dangerous, because when we engineer the Ul we usually don’t think that a
hacker can click on behalf of the visitor. So vulnerabilities can be found in totally unexpected places.

« It's recommended to use X-Frame-Options: SAMEORIGIN on pages that are totally not meant
to be shown inside iframes (or just for the whole site).

« Use a covering <div> if we want to allow our pages to be shown in iframes, and still stay safe.

Regular expressions

Regular expressions is a powerful way of doing search and replace in strings.

Patterns and flags

Regular expressions is a powerful way of searching and replacing inside a string.

In JavaScript regular expressions are implemented using objects of a built-in RegExp class and
integrated with strings.

Please note that regular expressions vary between programming languages. In this tutorial we
concentrate on JavaScript. Of course there’s a lot in common, but they are a somewhat different in
Perl, Ruby, PHP etc.

Regular expressions

A regular expression (also “regexp”, or just “reg”) consists of a pattern and optional flags.
There are two syntaxes to create a regular expression object.

The long syntax:
regexp = new RegExp(“"pattern", "flags");
...And the short one, using slashes "/" :

regexp
regexp

; // no flags
;5 // with flags g,m and i (to be covered soon)

Slashes "/" tell JavaScript that we are creating a regular expression. They play the same role as
quotes for strings.

Usage

To search inside a string, we can use method search 2.

Here’s an example:

let str = "I love JavaScript!"; // will search here

let regexp = 5
alert(str.search(regexp)); // 2

The str.search method looks for the pattern /love/ and returns the position inside the string. As
we might guess, /love/ is the simplest possible pattern. What it does is a simple substring search.

The code above is the same as:

let str = "I love JavaScript!"; // will search here

let substr = 'love';
alert(str.search(substr)); // 2
So searching for /love/ is the same as searching for "love" .

But that’s only for now. Soon we’ll create more complex regular expressions with much searching
more power.

0 Colors
From here on the color scheme is:

* regexp — red

« string (where we search) — blue

« result— green

© Whento use new RegExp ?

Normally we use the short syntax /.../ . But it does not allow any variables insertions, so we
must know the exact regexp at the time of writing the code.

From the other hand, new RegExp allows to construct a pattern dynamically from a string.

So we can figure out what we need to search and create new RegExp from it:

let search
let regexp

prompt("What you want to search?", "love");
new RegExp(search);

// find whatever the user wants
alert("I love JavaScript".search(regexp));

Flags

Regular expressions may have flags that affect the search.

https://developer.mozilla.org/ja/docs/Web/JavaScript/Reference/Global_Objects/String/search

There are only 5 of them in JavaScript:
i
With this flag the search is case-insensitive: no difference between A and a (see the example

below).

g

With this flag the search looks for all matches, without it — only the first one (we’ll see uses in the
next chapter).

m

Multiline mode (covered in the chapter i85 "regexp-multiline" DR DML EH).

u

Enables full unicode support. The flag enables correct processing of surrogate pairs. More about
that in the chapter The unicode flag.

y

Sticky mode (covered in the next chapter)

The “i” flag

The simplest flag is 1i.

An example with it:

let str = "I love JavaScript!";
alert(str.search())5 // -1 (not found)
alert(str.search()) /] 2

1. The first search returns -1 (not found), because the search is case-sensitive by default.

2. With the flag /LOVE/i the search found love at position 2.

So the i flag already makes regular expressions more powerful than a simple substring search. But
there’s so much more. We’ll cover other flags and features in the next chapters.

Summary

« A regular expression consists of a pattern and optional flags: g, i, m, u, y.

« Without flags and special symbols that we’ll study later, the search by a regexp is the same as a
substring search.

« The method str.search(regexp) returns the index where the match is found or -1 if there’s
no match.

Methods of RegExp and String

http://localhost:1339/regexp-unicode
http://localhost:1339/regexp-methods#y-flag

There are two sets of methods to deal with regular expressions.

1. First, regular expressions are objects of the built-in RegExp 2 class, it provides many methods.

2. Besides that, there are methods in regular strings can work with regexps.

The structure is a bit messed up, so we'll first consider methods separately, and then — practical
recipes for common tasks.

str.search(reg)

We’ve seen this method already. It returns the position of the first match or -1 if none found:

let str = "A drop of ink may make a million think";

alert(str.search())s; // © (the first position)

The important limitation: search always looks for the first match.

We can’t find next positions using search, there’s just no syntax for that. But there are other
methods that can.

str.match(reg), no “g” flag

The method str.match behavior varies depending on the g flag. First let’s see the case without it.
Then str.match(reg) looks for the first match only.

The result is an array with that match and additional properties:

« index —the position of the match inside the string,

« input —the subject string.

For instance:

let str = "Fame is the thirst of youth";
let result = str.match();
alert(result[o]); // Fame (the match)

alert(result.index); // © (at the zero position)
alert(result.input); // "Fame is the thirst of youth" (the string)

The array may have more than one element.

If a part of the pattern is delimited by parentheses (...), then it becomes a separate
element of the array.

For instance:

let str = "JavaScript is a programming language";

let result = str.match()

https://developer.mozilla.org/ja/docs/Web/JavaScript/Reference/Global_Objects/RegExp

alert(result[@]); // JavaScript (the whole match)

alert(result[1]); // script (the part of the match that corresponds to the parentheses)
alert(result.index); // ©

alert(result.input); // JavaScript is a programming language

Due to the i flag the search is case-insensitive, so it finds JavaScript . The part of the match that
corresponds to SCRIPT becomes a separate array item.

We'll be back to parentheses later in the chapter Capturing groups. They are great for search-and-
replace.

str.match(reg) with “g” flag

When there’s a "g" flag, then str.match returns an array of all matches. There are no additional
properties in that array, and parentheses do not create any elements.

For instance:

let str = "HO-Ho-ho!";
let result = str.match()

alert(result); // HO, Ho, ho (all matches, case-insensitive)

With parentheses nothing changes, here we go:

let str = "HO-Ho-ho!";
let result = str.match()

alert(result); // HO, Ho, ho

So, with g flag the result is a simple array of matches. No additional properties.

If we want to get information about match positions and use parentheses then we should use
RegExp#exec » method that we’ll cover below.

If there are no matches, the call to match returns null

Please note, that’s important. If there were no matches, the result is not an empty array, but
null.

Keep that in mind to evade pitfalls like this:

let str = "Hey-hey-hey!";

alert(str.match().length); // error! there's no length of null

str.split(regexplsubstr, limit)

Splits the string using the regexp (or a substring) as a delimiter.

We already used split with strings, like this:

http://localhost:1339/regexp-groups
https://developer.mozilla.org/ja/docs/Web/JavaScript/Reference/Global_Objects/RegExp/exec

alert('12-34-56".split('-")) // [12, 34, 56]
But we can also pass a regular expression:

alert('12-34-56".split()) // [12, 34, 56]

str.replace(strireg, strifunc)

The swiss army knife for search and replace in strings.

The simplest use — search and replace a substring, like this:

// replace a dash by a colon
alert('12-34-56".replace("-", ":")) // 12:34-56

When the first argument of replace is a string, it only looks for the first match.

To find all dashes, we need to use not the string "-" , but a regexp /-/g, with an obligatory g flag:

// replace all dashes by a colon
alert('12-34-56".replace(, ")) // 12:34:56

The second argument is a replacement string.

We can use special characters in it:

Symbol Inserts

$3 "$"

$& the whole match

$° a part of the string before the match

$' a part of the string after the match

$n if n is a 1-2 digit number, then it means the contents of n-th parentheses counting from left to right

For instance let’s use $& to replace all entries of "John™ by "Mr.John":

let str = "John Doe, John Smith and John Bull.";
// for each John - replace it with Mr. and then John

alert(str.replace(, 'Mr.$&'));
// "Mr.John Doe, Mr.John Smith and Mr.John Bull.";

Parentheses are very often used together with $1, $2, like this:

let str = "John Smith";

alert(str.replace(, "$2, $1')) // Smith, John

For situations that require “smart” replacements, the second argument can be a function.
It will be called for each match, and its result will be inserted as a replacement.

For instance:

let i = 0;

// replace each "ho" by the result of the function

alert("HO-Ho-ho".replace(, function() {
return ++i;

) /7 1-2-3

In the example above the function just returns the next number every time, but usually the result is
based on the match.

The function is called with arguments func(str, pl, p2, ..., pn, offset, s):

1. str —the match,

2. p1, p2, ..., pn —contents of parentheses (if there are any),
3. offset — position of the match,
4

s —the source string.

If there are no parentheses in the regexp, then the function always has 3 arguments: func(str,
offset, s).

Let’s use it to show full information about matches:

// show and replace all matches

function replacer(str, offset, s) {
alert(Found ${str} at position ${offset} in string ${s});
return str.toLowerCase();

}

let result = "HO-Ho-ho".replace(, replacer);
alert('Result: " + result); // Result: ho-ho-ho

// shows each match:

// Found HO at position © in string HO-Ho-ho
// Found Ho at position 3 in string HO-Ho-ho
// Found ho at position 6 in string HO-Ho-ho

In the example below there are two parentheses, so replacer is called with 5 arguments: str is
the full match, then parentheses, and then offset and s:

function replacer(str, name, surname, offset, s) {
// name is the first parentheses, surname is the second one
return surname + ", " + name;

}

let str = "John Smith";

alert(str.replace(, replacer)) // Smith, John

Using a function gives us the ultimate replacement power, because it gets all the information about
the match, has access to outer variables and can do everything.

regexp.test(str)

Let’s move on to the methods of RegExp class, that are callable on regexps themselves.
The test method looks for any match and returns true/false whether he found it.

So it’s basically the same as str.search(reg) != -1, forinstance:

let str = "I love JavaScript";
// these two tests do the same

alert(.test(str)); // true
alert(str.search() '=-1); // true

An example with the negative answer:

let str = "Bla-bla-bla";

alert(.test(str)); // false
alert(str.search() !=-1); // false

regexp.exec(str)
We've already seen these searching methods:

« search —looks for the position of the match,
« match —ifthere’s no g flag, returns the first match with parentheses,

-« match —ifthere’s a g flag — returns all matches, without separating parentheses.

The regexp.exec method is a bit harder to use, but it allows to search all matches with
parentheses and positions.

It behaves differently depending on whether the regexp has the g flag.

- Ifthere’sno g, then regexp.exec(str) returns the first match, exactly as str.match(reg) .

- Ifthere’s g, then regexp.exec(str) returns the first match and remembers the position after it
in regexp.lastIndex property. The next call starts to search from regexp.lastIndex and
returns the next match. If there are no more matches then regexp.exec returns null and
regexp.lastIndex issetto 0.

As we can see, the method gives us nothing new if we use it without the g flag, because
str.match does exactly the same.

But the g flag allows to get all matches with their positions and parentheses groups.

Here’s the example how subsequent regexp.exec calls return matches one by one:

let str = "A lot about JavaScript at https://javascript.info";
let regexp = H
// Look for the first match

let matchOne = regexp.exec(str);
alert(matchOne[@]); // JavaScript

alert(matchOne[1]); // script

alert(matchOne.index); // 12 (the position of the match)

alert(matchOne.input); // the same as str

alert(regexp.lastIndex); // 22 (the position after the match)

// Look for the second match

let matchTwo = regexp.exec(str); // continue searching from regexp.lastIndex
alert(matchTwo[@]); // javascript

alert(matchTwo[1]); // script

alert(matchTwo.index); // 34 (the position of the match)

alert(matchTwo.input); // the same as str

alert(regexp.lastIndex); // 44 (the position after the match)

// Look for the third match

let matchThree = regexp.exec(str); // continue searching from regexp.lastIndex
alert(matchThree); // null (no match)

alert(regexp.lastIndex); // @ (reset)

As we can see, each regexp.exec call returns the match in a “full format”: as an array with
parentheses, index and input properties.

The main use case for regexp.exec is to find all matches in a loop:

let str = 'A lot about JavaScript at https://javascript.info';
let regexp = 5

let result;

while (result = regexp.exec(str)) {

alert("Found ${result[@]} at ${result.index});
}

The loop continues until regexp.exec returns null that means “no more matches”.

© search from the given position

We can force regexp.exec to start searching from the given position by setting lastIndex
manually:

let str = 'A lot about JavaScript at https://javascript.info';

let regexp = 5
regexp.lastIndex = 30;

alert(regexp.exec(str).index); // 34, the search starts from the 30th position

The "y" flag

The y flag means that the search should find a match exactly at the position specified by the
property regexp.lastIndex and only there.

In other words, normally the search is made in the whole string: /javascript/ looks for
“javascript” everywhere in the string.

But when a regexp has the y flag, then it only looks for the match at the position specified in
regexp.lastIndex (@ by default).

For instance:

let str = "I love JavaScript!";
let reg = H

alert(reg.lastIndex); // © (default)
alert(str.match(reg)); // null, not found at position @

reg.lastIndex = 7;
alert(str.match(reg)); // JavaScript (right, that word starts at position 7)

// for any other reg.lastIndex the result is null

The regexp /javascript/iy can only be found if we set reg.lastIndex=7 , because due to y
flag the engine only tries to find it in the single place within a string — from the reg.lastIndex
position.

So, what’s the point? Where do we apply that?
The reason is performance.

The y flag works great for parsers — programs that need to “read” the text and build in-memory
syntax structure or perform actions from it. For that we move along the text and apply regular
expressions to see what we have next: a string? A number? Something else?

The y flag allows to apply a regular expression (or many of them one-by-one) exactly at the given
position and when we understand what'’s there, we can move on — step by step examining the text.

Without the flag the regexp engine always searches till the end of the text, that takes time, especially
if the text is large. So our parser would be very slow. The y flag is exactly the right thing here.

Summary, recipes

Methods become much easier to understand if we separate them by their use in real-life tasks.

To search for the first match only:
+ Find the position of the first match — str.search(reg) .

« Find the full match — str.match(reg) .
« Check if there’s a match — regexp.test(str) .

« Find the match from the given position — regexp.exec(str) , set regexp.lastIndex to
position.

To search for all matches:
« An array of matches — str.match(reg) , the regexp with g flag.

+ Get all matches with full information about each one — regexp.exec(str) with g flagin the
loop.

To search and replace:

+ Replace with another string or a function result — str.replace(reg, str|func)
To split the string:

+ str.split(str|reg)

We also covered two flags:

« The g flag to find all matches (global search),

« The y flag to search at exactly the given position inside the text.

Now we know the methods and can use regular expressions. But we need to learn their syntax, so
let’s move on.

Character classes

Consider a practical task — we have a phone number "+7(903)-123-45-67" , and we need to find
all digits in that string. Other characters do not interest us.

A character class is a special notation that matches any symbol from the set.

For instance, there’s a “digit” class. It’s written as \d . We put it in the pattern, and during the search
any digit matches it.

For instance, the regexp /\d/ looks for a single digit:

let str = "+7(903)-123-45-67";

let reg 5

alert(str.match(reg)); // 7

The regexp is not global in the example above, so it only looks for the first match.

Let’s add the g flag to look for all digits:

let str "+7(903)-123-45-67";

let reg = H

alert(str.match(reg)); // array of matches: 7,9,0,3,1,2,3,4,5,6,7

Most used classes: \d \s \w

That was a character class for digits. There are other character classes as well.
Most used are:
\d (“d” is from “digit”)

A digit: a character from © to 9.

\s (“s” is from “space”)

A space symbol: that includes spaces, tabs, newlines.

\w (“w” is from “word”)

A “wordly” character: either a letter of English alphabet or a digit or an underscore. Non-english
letters (like cyrillic or hindi) do not belong to \w .

For instance, \d\s\w means a digit followed by a space character followed by a wordly character,
like "1 z".

A regexp may contain both regular symbols and character classes.

For instance, CSS\d matches a string CSS with a digit after it:

let str
let reg

"CSS4 is cool”;

alert(str.match(reg)); // CSS4

Also we can use many character classes:

alert("I love HTML5!".match()); // 'HTMLS'

The match (each character class corresponds to one result character):

I love HTMLS

Word boundary: \b

The word boundary \b —is a special character class.
It does not denote a character, but rather a boundary between characters.

For instance, \bJava\b matches Java in the string Hello, Java! , but notin the script Hello,
JavaScript!.

alert("Hello, Java!".match()); // Java
alert("Hello, JavaScript!".match()); // null

The boundary has “zero width” in a sense that usually a character class means a character in the
result (like a wordly or a digit), but not in this case.

The boundary is a test.

When regular expression engine is doing the search, it’s moving along the string in an attempt to find
the match. At each string position it tries to find the pattern.

When the pattern contains \b, it tests that the position in string fits one of the conditions:

« String start, and the first string character is \w.

« String end, and the last string character is \w .

« Inside the string: from one side is \w, from the other side — not \w.

For instance, in the string Hello, Java! the following positions match \b :

Hello, Java'

So it matches \bHello\b and \bJava\b, but not \bHell\b (because there’s no word boundary
after 1) and not Java!\b (because the exclamation sign is not a wordly character, so there’s no
word boundary after it).

alert("Hello, Java!".match()); // Hello
alert("Hello, Java!".match()); // Java
alert("Hello, Java!".match())s; // null
alert("Hello, Java!".match()); // null

Once again let’s note that \b makes the searching engine to test for the boundary, so that Java\b
finds Java only when followed by a word boundary, but it does not add a letter to the result.

Usually we use \b to find standalone English words. So that if we want "Java" language then
\bJava\b finds exactly a standalone word and ignores it when it’s a part of "JavaScript" .

Another example: a regexp \b\d\d\b looks for standalone two-digit numbers. In other words, it
requires that before and after \d\d must be a symbol different from \w (or beginning/end of the
string).

alert("1 23 456 78".match())s // 23,78

Word boundary doesn’t work for non-English alphabets

The word boundary check \b tests for a boundary between \w and something else. But \w
means an English letter (or a digit or an underscore), so the test won’t work for other characters
(like cyrillic or hieroglyphs).

Reverse classes

For every character class there exists a “reverse class”, denoted with the same letter, but
uppercased.

The “reverse” means that it matches all other characters, for instance:

\D

Non-digit: any character except \d, for instance a letter.

\S

Non-space: any character except \s, for instance a letter.

\W

Non-wordly character: anything but \w .

\B

Non-boundary: a test reverse to \b.

In the beginning of the chapter we saw how to get all digits from the phone +7(903)-123-45-67 .
Let’s get a “pure” phone number from the string:

let str = "+7(903)-123-45-67";

alert(str.match().join("")); // 79031234567

An alternative way would be to find non-digits and remove them from the string:

let str = "+7(903)-123-45-67";

alert(str.replace(> "")) // 79031234567

Spaces are regular characters

Please note that regular expressions may include spaces. They are treated like regular characters.

Usually we pay little attention to spaces. For us strings 1-5 and 1 - 5 are nearly identical.

But if a regexp does not take spaces into account, it won’ work.

Let’s try to find digits separated by a dash:

alert("1 - 5".match()); // null, no match!

Here we fix it by adding spaces into the regexp:

alert("1 - 5".match()); // 1 -5, now it works

Of course, spaces are needed only if we look for them. Extra spaces (just like any other extra
characters) may prevent a match:

alert("1-5".match()); // null, because the string 1-5 has no spaces

In other words, in a regular expression all characters matter. Spaces too.

A dot is any character

The dot "." is a special character class that matches any character except a newline.

For instance:

alert("Z".match()) /] Z

Or in the middle of a regexp:

let reg = H

alert("CSS4".match(reg)); // CSS4
alert("CS-4".match(reg)); // CS-4
alert("CS 4".match(reg)); // CS 4 (space is also a character)

Please note that the dot means “any character”, but not the “absense of a character”. There must be
a character to match it:

alert("CS4".match()); // null, no match because there's no character for the dot

Summary
We covered character classes:

« \d —digits.

+ \D —non-digits.

« \s —space symbols, tabs, newlines.

« \S —allbut \s.

« \w — English letters, digits, underscore *_".
« \W —all but \w.

. .' —any character except a newline.

If we want to search for a character that has a special meaning like a backslash or a dot, then we
should escape it with a backslash: \.

Please note that a regexp may also contain string special characters such as a newline \n. There’s
no conflict with character classes, because other letters are used for them.

© YRV

Find the time

The time has a format: hours:minutes . Both hours and minutes has two digits, like ©9:00 .

Make a regexp to find time in the string: Breakfast at ©9:00 in the room 123:456.

P.S. In this task there’s no need to check time correctness yet, so 25:99 can also be a valid result.
P.P.S. The regexp shouldn’t match 123:456.

‘a3

BEEN

Escaping, special characters

As we’ve seen, a backslash "\" is used to denote character classes. So it’s a special character.

There are other special characters as well, that have special meaning in a regexp. They are used to
do more powerful searches.

Here’s afull listofthem: [\ ~$. | 2 * + ().

Don’t try to remember it — when we deal with each of them separately, you’ll know it by heart
automatically.

Escaping

To use a special character as a regular one, prepend it with a backslash.
That’s also called “escaping a character”.

For instance, we need to find adot '." . In aregular expression a dot means “any character except

a newline”, so if we really mean “a dot”, let’s put a backslash before it: \. .

alert("Chapter 5.1".match()), // 5.1

Parentheses are also special characters, so if we want them, we should use \ (. The example
below looks for a string "g()" :

alert("function g()".match(Y)s /7 "g(O)"

If we’re looking for a backslash \ , then we should double it:

alert("1\\2".match())5 /1N

A slash

The slash symbol '/' is not a special character, but in JavaScript it is used to open and close the
regexp: /...pattern.../, so we should escape it too.

Here’s what a search for a slash '/' looks like:

alert("/".match(Y) /!

From the other hand, the alternative new RegExp syntaxes does not require escaping it:

alert("/".match(new RegExp("/"))); // '/'

new RegExp

If we are creating a regular expression with new RegExp , then we need to do some more escaping.

For instance, consider this:

let reg = new RegExp("\d\.\d");

alert("Chapter 5.1".match(reg)); // null

It doesn’t work, but why?

The reason is string escaping rules. Look here:

alert("\d\.\d"); // d.d

Backslashes are used for escaping inside a string and string-specific special characters like \n .
The quotes “consume” and interpret them, for instance:

« \n —becomes a newline character,
« \ul234 - becomes the Unicode character with such code,

« ...And when there’s no special meaning: like \d or \z, then the backslash is simply removed.

So the call to new RegExp gets a string without backslashes.

To fix it, we need to double backslashes, because quotes turn \\ into \:

let regStr = "\\d\\.\\d";
alert(regStr); // \d\.\d (correct now)

let reg = new RegExp(regStr);

alert("Chapter 5.1".match(reg)); // 5.1

Sets and ranges [...]

Several characters or character classes inside square brackets [..] mean to “search for any
character among given”.

Sets

For instance, [eao] means any of the 3 characters: 'a', 'e',or 'o

That’s called a set. Sets can be used in a regexp along with regular characters:

// find [t or m], and then "op"
alert("Mop top".match()); // "Mop", "top"

Please note that although there are multiple characters in the set, they correspond to exactly one
character in the match.

So the example above gives no matches:

// find "V", then [o or i], then "la"
alert("Voila".match())5 // null, no matches

The pattern assumes:

.V,

« then one of the letters [0i],

« then 1la.

So there would be a match for Vola or Vila.

Ranges

Square brackets may also contain character ranges.
For instance, [a-z] is a character in range from a to z,and [0-5] is a digitfrom @ to 5.

In the example below we’re searching for "x" followed by two digits or letters from A to F:

alert("Exception OxAF".match()) // XAF

Please note that in the word Exception there’s a substring xce . It didn’t match the pattern,
because the letters are lowercase, while in the set [0-9A-F] they are uppercase.

If we want to find it too, then we can add a range a-f: [0-9A-Fa-f].The i flag would allow
lowercase too.

Character classes are shorthands for certain character sets.

For instance:

« \d-isthe same as [0-9],

« \w-—isthe same as [a-zA-70-9_],

+ \s —isthe same as [\t\n\v\f\r] plus few other unicode space characters.

We can use character classes inside [..] as well.

For instance, we want to match all wordly characters or a dash, for words like “twenty-third”. We
cant do it with \w+, because \w class does not include a dash. But we can use [\w-].

We also can use a combination of classes to cover every possible character, like [\s\S] . That
matches spaces or non-spaces — any character. That’s wider than a dot "." , because the dot
matches any character except a newline.

Excluding ranges

Besides normal ranges, there are “excluding” ranges that look like [*...] .

They are denoted by a caret character ~ at the start and match any character except the given
ones.

For instance:

+ [”~aeyo] —any character except 'a', 'e', 'y' or 'o
« [7@-9] — any character except a digit, the same as \D.

« [*\s] —any non-space character, same as \S.

The example below looks for any characters except letters, digits and spaces:

alert("alicel5@gmail.com".match()); // @ and .

No escaping in [...]

Usually when we want to find exactly the dot character, we need to escape it like \. . And if we
need a backslash, then we use \\.

In square brackets the vast majority of special characters can be used without escaping:

« Adot '.".
« Aplus "+".

« Parentheses "()'.

« Dash '-" inthe beginning or the end (where it does not define a range).

« Acaret '*' if notin the beginning (where it means exclusion).

« And the opening square bracket '['

In other words, all special characters are allowed except where they mean something for square
brackets.

Adot "." inside square brackets means just a dot. The pattern [.,] would look for one of
characters: either a dot or a comma.

In the example below the regexp [-().”+] looks for one of the characters -().”+:

// No need to escape
let reg = H

alert("1 + 2 - 3".match(reg)); // Matches +, -

...But if you decide to escape them “just in case”, then there would be no harm:

// Escaped everything
let reg = ;

alert("1 + 2 - 3".match(reg)); // also works: +, -

© 9RY

Java[Ascript]

We have a regexp /Java[~script]/.

Does it match anything in the string Java ? In the string JavaScript ?

‘a3

BRE AN

Find the time as hh:mm or hh-mm

The time can be in the format hours:minutes or hours-minutes . Both hours and minutes have 2
digits: ©9:00 or 21-30.

Write a regexp to find time:

let reg = H
alert("Breakfast at ©9:00. Dinner at 21-30".match(reg)); // ©9:00, 21-30

P.S. In this task we assume that the time is always correct, there’s no need to filter out bad strings
like “45:67”. Later we’ll deal with that too.

‘3

RREN

The unicode flag

The unicode flag /.../u enables the correct support of surrogate pairs.
Surrogate pairs are explained in the chapter X F71).

Let’s briefly remind them here. In short, normally characters are encoded with 2 bytes. That gives us
65536 characters maximum. But there are more characters in the world.

So certain rare characters are encoded with 4 bytes, like 2 (mathematical X) or & (a smile).

Here are the unicode values to compare:

Character Unicode Bytes
a 0x0061 2
= 0x2248 2
VA 0x1d4b3 4
/4 Ox1d4b4 4
= 0x1f604 4

So characters like a and = occupy 2 bytes, and those rare ones take 4.
The unicode is made in such a way that the 4-byte characters only have a meaning as a whole.

In the past JavaScript did not know about that, and many string methods still have problems. For
instance, length thinks that here are two characters:

http://localhost:1339/string

alert('& '.length); // 2
alert('2 " .length); // 2

...But we can see that there’s only one, right? The point is that 1length treats 4 bytes as two 2-byte
characters. That’s incorrect, because they must be considered only together (so-called “surrogate

pair”).
Normally, regular expressions also treat “long characters” as two 2-byte ones.

That leads to odd results, for instance let’s try to find [%] in the string a2

alert("2 .match())5 // odd result

The result would be wrong, because by default the regexp engine does not understand surrogate
pairs. It thinks that [2%] are not two, but four characters: the left half of & (1) , the right half of
Z (2),thelefthalfof % (3),theright halfof % (4).

So it finds the left half of 2 in the string 2, not the whole symbol.
In other words, the search works like '12'.match(/[1234]/) —the 1 is returned (left half of 2).

The /.../u flag fixes that. It enables surrogate pairs in the regexp engine, so the result is correct:

alert("' .match()) /] X

There’s an error that may happen if we forget the flag:

"2 .match()5 // SyntaxError: invalid range in character class

Here the regexp [X'-%] is treated as [12-34] (where 2 is theright part of & and 3 is the left
part of %), and the range between two halves 2 and 3 is unacceptable.

Using the flag would make it work right:
alert("% ' .match(Y) /] Y

To finalize, let’s note that if we do not deal with surrogate pairs, then the flag does nothing for us. But
in the modern world we often meet them.

Quantifiers +, *, ? and {n}

Let’s say we have a string like +7(903)-123-45-67 and want to find all numbers in it. But unlike
before, we are interested in not digits, but full numbers: 7, 903, 123, 45, 67.

A number is a sequence of 1 or more digits \d . The instrument to say how many we need is called
quantifiers.

Quantity {n}

The most obvious quantifier is a number in figure quotes: {n} . A quantifier is put after a character
(or a character class and so on) and specifies exactly how many we need.

It also has advanced forms, here we go with examples:

Exact count: {5}

\d{5} denotes exactly 5 digits, the same as \d\d\d\d\d.

The example below looks for a 5-digit number:

alert("I'm 12345 years old".match()) // "12345"

We can add \b to exclude longer numbers: \b\d{5}\b .

The count from-to: {3,5}

To find numbers from 3 to 5 digits we can put the limits into figure brackets: \d{3,5}

alert("I'm not 12, but 1234 years old".match()) // "1234"

We can omit the upper limit. Then a regexp \d{3,} looks for numbers of 3 and more digits:

alert("I'm not 12, but 345678 years old".match()) // "345678"

In case with the string +7(903)-123-45-67 we need numbers: one or more digits in a row. That is
\d{1,}:

let str = "+7(903)-123-45-67";
let numbers = str.match()

alert(numbers); // 7,903,123,45,67

Shorthands

Most often needed quantifiers have shorthands:

+

Means “one or more”, the same as {1,}.

For instance, \d+ looks for numbers:

let str = "+7(903)-123-45-67";

alert(str.match())s // 7,903,123,45,67

?

Means “zero or one”, the same as {0,1} . In other words, it makes the symbol optional.

For instance, the pattern ou?r looks for o followed by zero or one u, and then r.

So it can find or inthe word color and our in colour:

let str = "Should I write color or colour?";
alert(str.match())5 // color, colour
%k

Means “zero or more”, the same as {0, } . That is, the character may repeat any times or be absent.

The example below looks for a digit followed by any number of zeroes:
alert("100 10 1".match()) // 1ee, 1o, 1

Compare it with '+' (one or more):
alert("100 10 1".match()); // 1ee, 1e

More examples

Quantifiers are used very often. They are one of the main “building blocks” for complex regular
expressions, so let’s see more examples.

Regexp “decimal fraction” (a number with a floating point): \d+\.\d+

In action:

alert("0 1 12.345 7890".match(Y); // 12.345

Regexp “open HTML-tag without attributes”, like or <p>: /<[a-z]+>/1i

In action:

alert("<body> ... </body>".match()); // <body>

We look for character '<' followed by one or more English letters, and then '>" .

Regexp “open HTML-tag without attributes” (improved): /<[a-z][a-z0-9]*>/i

Better regexp: according to the standard, HTML tag name may have a digit at any position except
the first one, like <hl>.

alert("<hl>Hil</h1>".match())5 // <h1l>

Regexp “opening or closing HTML-tag without attributes”: /<\/?[a-z][a-z0-9]*>/i

We added an optional slash /? before the tag. Had to escape it with a backslash, otherwise
JavaScript would think it is the pattern end.

alert("<hl>Hil</h1>".match())5 // <h1l>, </h1>

© More precise means more complex

We can see one common rule in these examples: the more precise is the regular expression —
the longer and more complex it is.

For instance, HTML tags could use a simpler regexp: <\w+> .

Because \w means any English letter or a digitor '_" , the regexp also matches non-tags, for
instance <_> . But it’s much simpler than <[a-z][a-z0-9]*>.

Are we ok with <\w+> orwe need <[a-z][a-z0-9]*>?

In real life both variants are acceptable. Depends on how tolerant we can be to “extra” matches
and whether it’s difficult or not to filter them out by other means.

© YRV

How to find an ellipsis "..." ?
EE:5

Create a regexp to find ellipsis: 3 (or more?) dots in a row.

Check it:

let reg = H

alert("Hello!... How goes?.....".match(reg)); // ...y ...
FREN
Regexp for HTML colors

Create a regexp to search HTML-colors written as #ABCDEF : first # and then 6 hexadimal
characters.

An example of use:

let reg =
let str = "color:#121212; background-color:#AA@@ef bad-colors:f#fddee #fd2 #12345678";

alert(str.match(reg)) // #121212,#AA00ef

P.S. In this task we do not need other color formats like #123 or rgb(1,2,3) etc.

'3

R

Greedy and lazy quantifiers

Quantifiers are very simple from the first sight, but in fact they can be tricky.

We should understand how the search works very well if we plan to look for something more
complex than /\d+/ .

Let’s take the following task as an example.

We have a text and need to replace all quotes
preferred for typography in many countries.

with guillemet marks: «...» . They are

For instance: "Hello, world" should become «Hello, world».

Some countries prefer ,,Witam, swiat!” (Polish) oreven [{R4F, 85, (Chinese) quotes. For
different locales we can choose different replacements, but that all works the same, so let’s start with

Keoo?,

To make replacements we first need to find all quoted substrings.

The regular expression can look like this: /".+"/g . That is: we look for a quote followed by one or
more characters, and then another quote.

...But if we try to apply it, even in such a simple case...

let reg = 5
let str = 'a "witch" and her "broom" is one';

alert(str.match(reg)); // "witch" and her "broom"

...We can see that it works not as intended!

Instead of finding two matches "witch" and "broom", it finds one: "witch" and her "broom" .

That can be described as “greediness is the cause of all evil”.

Greedy search
To find a match, the regular expression engine uses the following algorithm:

« For every position in the string
« Match the pattern at that position.
+ If there’s no match, go to the next position.

These common words do not make it obvious why the regexp fails, so let’s elaborate how the search
works for the pattern ".+" .

1. The first pattern character is a quote

The regular expression engine tries to find it at the zero position of the source string a "witch"
and her "broom" is one, butthere’s a there, so there’s immediately no match.

Then it advances: goes to the next positions in the source string and tries to find the first
character of the pattern there, and finally finds the quote at the 3rd position:

a "witch" and her "broom" 1s one

2. The quote is detected, and then the engine tries to find a match for the rest of the pattern. It tries
to see if the rest of the subject string conformsto .+" .

In our case the next pattern characteris . (a dot). It denotes “any character except a newline”,
so the next string letter 'w' fits:

e

a "witch" and her "broom" 1s one

3. Then the dot repeats because of the quantifier .+ . The regular expression engine builds the
match by taking characters one by one while it is possible.

...When it becomes impossible? All characters match the dot, so it only stops when it reaches the
end of the string:

1]]
& @ @ & & & @& @ & & & & B 8 & B 8 8 B 8 B B B B B 8 B @ @

a "witch" and her "broom" 1s one

4. Now the engine finished repeating for .+ and tries to find the next character of the pattern. It's
the quote " . But there’s a problem: the string has finished, there are no more characters!

The regular expression engine understands that it took too many .+ and starts to backtrack.
In other words, it shortens the match for the quantifier by one character:

=

n n
& @& @ & & & & @ & & & B & & & & F & & & B 8 & &5 & B @

a "witch" and her "broom" 1s one

Now it assumes that L+ ends one character before the end and tries to match the rest of the
pattern from that position.

If there were a quote there, then that would be the end, but the last characteris 'e' , so there’s
no match.

5. ...So the engine decreases the number of repetitions of .+ by one more character:

a "witch" and her "broom" 1s one

The quote does not match 'n

6. The engine keep backtracking: it decreases the count of repetition for '." until the rest of the
pattern (in our case

) matches:

a "witch" and her "broom" 1s one

7. The match is complete.

8. So the first match is "witch” and her "broom" . The further search starts where the first match
ends, but there are no more quotes in the rest of the string is one, so no more results.

That’s probably not what we expected, but that’s how it works.
In the greedy mode (by default) the quantifier is repeated as many times as possible.

The regexp engine tries to fetch as many characters as it can by .+, and then shortens that one by
one.

For our task we want another thing. That’s what the lazy quantifier mode is for.

Lazy mode

The lazy mode of quantifier is an opposite to the greedy mode. It means: “repeat minimal number of
times”.

We can enable it by putting a question mark '?' after the quantifier, so that it becomes *? or +?
oreven ?? for '?'.

To make things clear: usually a question mark ? is a quantifier by itself (zero or one), but if added
after another quantifier (or even itself) it gets another meaning — it switches the matching mode from
greedy to lazy.

The regexp /".+?"/g works as intended: it finds "witch" and "broom" :

let reg = H
let str = 'a "witch" and her "broom" is one';

alert(str.match(reg)); // witch, broom

To clearly understand the change, let’s trace the search step by step.

1. The first step is the same: it finds the pattern start '"' at the 3rd position:

a "witch" and her "broom" 1s one

2. The next step is also similar: the engine finds a match for the dot '

e

1)
L]

a "witch" and her "broom" 1s one

3. And now the search goes differently. Because we have a lazy mode for +? , the engine doesn't
try to match a dot one more time, but stops and tries to match the rest of the pattern '" ' right
now:

+

a "witch” and her "broom"™ 1s one

If there were a quote there, then the search would end, but there’s "i' , so there’s no match.

4. Then the regular expression engine increases the number of repetitions for the dot and tries one
more time:

—--

n n
& @

a "witch" and her "broom" 1s one

Failure again. Then the number of repetitions is increased again and again...
5. ...Till the match for the rest of the pattern is found:

_--

n 1]
& & @ B @

a "witch” and her "broom" 1s one

6. The next search starts from the end of the current match and yield one more result:

ﬁ- —-

1]] i i i
& @ @ @& @ & @ & & @

a "witch" and her "broom" 1s one

In this example we saw how the lazy mode works for +? . Quantifiers +? and ?? work the similar
way — the regexp engine increases the number of repetitions only if the rest of the pattern can’t

match on the given position.
Laziness is only enabled for the quantifier with ? .
Other quantifiers remain greedy.

For instance:

alert("123 456" .match())5 // 123 4

1. The pattern \d+ tries to match as many numbers as it can (greedy mode), so it finds 123 and
stops, because the next character is a space ' '.

2. Then there’s a space in pattern, it matches.

3. Then there’s \d+? . The quantifier is in lazy mode, so it finds one digit 4 and tries to check if the
rest of the pattern matches from there.

...But there’s nothing in the pattern after \d+? .

The lazy mode doesn’t repeat anything without a need. The pattern finished, so we’re done. We
have a match 123 4.

4. The next search starts from the character 5.

© oOptimizations

Modern regular expression engines can optimize internal algorithms to work faster. So they may
work a bit different from the described algorithm.

But to understand how regular expressions work and to build regular expressions, we don’t need
to know about that. They are only used internally to optimize things.

Complex regular expressions are hard to optimize, so the search may work exactly as described
as well.

Alternative approach

With regexps, there’s often more then one way to do the same thing.

In our case we can find quoted strings without lazy mode using the regexp "[~"]+":

let reg = ;
let str = 'a "witch" and her "broom" is one';

alert(str.match(reg)); // witch, broom

The regexp "[~"]+" gives correct results, because it looks for a quote '"' followed by one or
more non-quotes [~"], and then the closing quote.

When the regexp engine looks for [*"]+ it stops the repetitions when it meets the closing quote,
and we’re done.

Please note, that this logic does not replace lazy quantifiers!

It is just different. There are times when we need one or another.

Let’s see one more example where lazy quantifiers fail and this variant works right.

For instance, we want to find links of the form , with any href.
Which regular expression to use?

The first idea might be: //g.

Let’s check it:

let str

'......";
let reg ;

)

// Works!
alert(str.match(reg)); //

...But what if there are many links in the text?

let str

'...... ...';
let reg ;

)

// Whoops! Two links in one match!
alert(str.match(reg)); // ...

Now the result is wrong for the same reason as our “witches” example. The quantifier .* took too
many characters.

The match looks like this:

@ href=" . i it ittt i et itieitnaeannns class="doc">
...

Let’s modify the pattern by making the quantifier .*? lazy:

let str
let reg

'...... ...';

B

// Works!
alert(str.match(reg)); // ,

Now it works, there are two matches:

...

Why it works — should be obvious after all explanations above. So let’s not stop on the details, but try
one more text:

let str

'...... <p style="" class="doc">..."';
let reg ;

B

// Wrong match!
alert(str.match(reg)); // ... <p style="" class="doc">

We can see that the regexp matched not just a link, but also a lot of text after it, including <p...>.

Why it happens?

1. First the regexp finds a link start <a href=".

2. Then it looks for .*? , we take one character, then check if there’s a match for the rest of the
pattern, then take another one...

The quantifier .*? consumes characters until it meets class="doc"> .

...And where can it find it? If we look at the text, then we can see that the only class="doc"> is
beyond the link, in the tag <p> .

3. So we have match:

... <p style="" class="doc">

So the laziness did not work for us here.

We need the pattern to look for , but both greedy
and lazy variants have problems.

The correct variant would be: href="[2~"]*" . It will take all characters inside the href attribute till
the nearest quote, just what we need.

A working example:

let strl = '...... <p style="" class="doc">..."';
let str2 = '...... ..."';
let reg = 5

// Works!

alert(strl.match(reg)); // null, no matches, that's correct
alert(str2.match(reg)); // ,

Summary

Quantifiers have two modes of work:

Greedy

By default the regular expression engine tries to repeat the quantifier as many times as possible. For
instance, \d+ consumes all possible digits. When it becomes impossible to consume more (no
more digits or string end), then it continues to match the rest of the pattern. If there’s no match then it
decreases the number of repetitions (backtracks) and tries again.

Lazy

Enabled by the question mark ? after the quantifier. The regexp engine tries to match the rest of the
pattern before each repetition of the quantifier.

As we’ve seen, the lazy mode is not a “panacea” from the greedy search. An alternative is a “fine-
tuned” greedy search, with exclusions. Soon we’ll see more examples of it.

© YRV

A match for /d+? d+?/

What’s the match here?
"123 456" .match())5 /] ?

‘3

R

Find HTML comments

Find all HTML comments in the text:

let reg = H

let str = . <l-- My -- comment

test --> .. <l----> ..

h

alert(str.match(reg)); // '<!-- My -- comment \n test -->', '<l---->"
RRE A

Find HTML tags

Create a regular expression to find all (opening and closing) HTML tags with their attributes.

An example of use:

let reg = H
let str = '<> <input type="radio" checked> "';

alert(str.match(reg)); // '"', '<input type="radio" checked>"', ''

Let’s assume that may not contain < and > inside (in quotes too), that simplifies things a bit.

‘3

BRE A

Capturing groups

A part of the pattern can be enclosed in parentheses (...) . That’s called a “capturing group”.

That has two effects:

1. It allows to place a part of the match into a separate array item when using String#match = or
RegExp#exec = methods.

2. If we put a quantifier after the parentheses, it applies to the parentheses as a whole, not the last
character.

Example

In the example below the pattern (go)+ finds one or more 'go' :

alert('Gogogo now!"'.match()); // "Gogogo"

Without parentheses, the pattern /go+/ means g, followed by o repeated one or more times. For
instance, goooo or gooo000000 .

Parentheses group the word (go) together.
Let’'s make something more complex — a regexp to match an email.

Examples of emails:

my@mail.com
john.smith@site.com.uk

The pattern: [-.\w]+@([\w-]+\.)+[\w-]{2,20}.

« The first part before @ may include wordly characters, a dot and a dash [-.\w]+, like
john.smith.

« Then @

« And then the domain. May be a second-level domain site.com or with subdomains like
host.site.com.uk . We can match it as “a word followed by a dot” repeated one or more times
for subdomains: mail. or site.com. , and then “a word” for the last part: .com or .uk.

The word followed by a dotis (\w+\.)+ (repeated). The last word should not have a dot at the
end, so it’s just \w{2,20} . The quantifier {2,20} limits the length, because domain zones are
like .uk or .com or .museum, butcan’t be longer than 20 characters.

So the domain patternis (\w+\.)+\w{2,20} . Now we replace \w with [\w-], because
dashes are also allowed in domains, and we get the final result.

That regexp is not perfect, but usually works. It’s short and good enough to fix errors or occasional
mistypes.

For instance, here we can find all emails in the string:

let reg = 5

alert("my@mail.com @ his@site.com.uk".match(reg)); // my@mail.com,his@site.com.uk

Contents of parentheses

https://developer.mozilla.org/ja/docs/Web/JavaScript/Reference/Global_Objects/String/match
https://developer.mozilla.org/ja/docs/Web/RegExp/exec

Parentheses are numbered from left to right. The search engine remembers the content of each and
allows to reference it in the pattern or in the replacement string.

For instance, we can find an HTML-tag using a (simplified) pattern <.*?> . Usually we’d want to do
something with the result after it.

If we enclose the inner contents of <...> into parentheses, then we can access it like this:

let str '<h1>Hello, world!</h1>";
let reg 5

alert(str.match(reg)); // Array: ["<h1>", "h1"]

The call to String#match =2 returns groups only if the regexp hasno /.../g flag.

If we need all matches with their groups then we can use RegExp#exec = method as described in
Methods of RegExp and String:

let str = '<hl>Hello, world!</hl>";

// two matches: opening <hl> and closing </h1l> tags
let reg = B

let match;
while (match = reg.exec(str)) {
// first shows the match: <hil>,hl

// then shows the match: </hl>,/hl
alert(match);

}
Here we have two matches for <(.*?)>, each of them is an array with the full match and groups.

Nested groups

Parentheses can be nested. In this case the numbering also goes from left to right.

For instance, when searching a tag in we may be interested in:

1. The tag content as a whole: span class="my".

2. The tag name: span.

3. The tag attributes: class="my" .

Let’s add parentheses for them:

let str = '"';
let reg = ;

let result = str.match(reg);
alert(result); // , span class="my", span, class="my"

Here’s how groups look:

https://developer.mozilla.org/ja/docs/Web/JavaScript/Reference/Global_Objects/String/match
https://developer.mozilla.org/ja/docs/Web/JavaScript/Reference/Global_Objects/RegExp/exec
http://localhost:1339/regexp-methods

| span class="my |
1

<(([a-z]+H)\s*([*>]*))>
2 3 |

span class="my"

At the zero index of the result is always the full match.

Then groups, numbered from left to right. Whichever opens first gives the first group result[1].
Here it encloses the whole tag content.

Thenin result[2] goes the group from the second opening (till the corresponding) —tag
name, then we don’t group spaces, but group attributes for result[3].

If a group is optional and doesn’t exist in the match, the corresponding result index is
present (and equals undefined).

For instance, let’s consider the regexp a(z)?(c)? . It looks for "a" optionally followed by "z"
optionally followed by "c" .

If we run it on the string with a single letter a, then the result is:

let match = "a'.match()
alert(match.length); // 3
alert(match[e]); // a (whole match)

alert(match[1]); // undefined
alert(match[2]); // undefined

The array has the length of 3, but all groups are empty.

And here’s a more complex match for the string ack :

let match = "ack'.match()

alert(match.length); // 3

alert(match[@]); // ac (whole match)

alert(match[1]); // undefined, because there's nothing for (z)?
alert(match[2]); // c

The array length is permanent: 3. But there’s nothing for the group (z)?, so the resultis ["ac",
undefined, "c"].

Non-capturing groups with ?:

Sometimes we need parentheses to correctly apply a quantifier, but we don’t want their contents in
the array.

A group may be excluded by adding ?: in the beginning.

For instance, if we want to find (go)+, but don’t want to put remember the contents (go) in a
separate array item, we can write: (?:g80)+.

In the example below we only get the name “John” as a separate member of the results array:

let str = "Gogo John!";
// exclude Gogo from capturing
let reg = H

let result = str.match(reg);

alert(result.length); // 2
alert(result[1]); // John

© RV

Find color in the format #abc or #abcdef

Write a regexp that matches colors in the format #abc or #abcdef . Thatis: # followed by 3 or 6
hexadimal digits.

Usage example:

let reg = H
let str = "color: #3f3; background-color: #AA@@ef; and: #abcd";

alert(str.match(reg)); // #3f3 #AAoef

P.S. Should be exactly 3 or 6 hex digits: values like #abcd should not match.

‘3

BEN

Find positive numbers
Create a regexp that looks for positive numbers, including those without a decimal point.

An example of use:

let reg 5
let str = "1.5 0 12. 123.4.";

alert(str.match(reg)); // 1.5, 0, 12, 123.4

I

BREAN

Find all numbers

Write a regexp that looks for all decimal numbers including integer ones, with the floating point and
negative ones.

An example of use:

let reg = H
let str = "-1.5 0 2 -123.4.";

alert(str.match(re)); // -1.5, @, 2, -123.4

‘3

FREA

Parse an expression

An arithmetical expression consists of 2 numbers and an operator between them, for instance:

e 1+ 2

« 1.2 * 3.4

- -3/ -6

c -2-2

The operator is one of: "+", "-", "*" or "/".

There may be extra spaces at the beginning, at the end or between the parts.
Create a function parse(expr) that takes an expression and returns an array of 3 items:

1. The first number.
2. The operator.
3. The second number.

For example:

let [a, op, b] = parse("1.2 * 3.4");

alert(a); // 1.2
alert(op); // *
alert(b); // 3.4

I

BREA

Backreferences: \n and $n

Capturing groups may be accessed not only in the result, but in the replacement string, and in the
pattern too.

Group in replacement: $n

When we are using replace method, we can access n-th group in the replacement string using
$n.

For instance:

let name = "John Smith";

name = name.replace(, "$2, $1");
alert(name); // Smith, John

Here $1 in the replacement string means “substitute the content of the first group here”, and $2
means “substitute the second group here”.

Referencing a group in the replacement string allows us to reuse the existing text during the
replacement.

Group in pattern: \n

A group can be referenced in the pattern using \n.

To make things clear let’s consider a task. We need to find a quoted string: either a single-quoted
'..." oradouble-quoted "..." —both variants need to match.

How to look for them?

We can put two kinds of quotes in the pattern: [""](.*?)["'"] . That finds strings like "..." and
"...", butit gives incorrect matches when one quote appears inside another one, like the string
"She's the one!":

let str = "He said: \"She's the one!\".";
let reg = H

// The result is not what we expect
alert(str.match(reg)); // "She'

As we can see, the pattern found an opening quote
quote ', that closes the match.

, then the text is consumed lazily till the other

To make sure that the pattern looks for the closing quote exactly the same as the opening one, let’s
make a group of it and use the backreference:

let str = "He said: \"She's the one!\".";
let reg = 5

alert(str.match(reg)); // "She's the one!"

Now everything’s correct! The regular expression engine finds the first quote (['"]) and
remembers the content of (...), that’s the first capturing group.

Further in the pattern \1 means “find the same text as in the first group”.

Please note:

« To reference a group inside a replacement string —we use $1, while in the pattern — a backslash
\1.

- Ifweuse ?: inthe group, then we can’t reference it. Groups that are excluded from capturing
?:...) are notremembered by the engine.

Alternation (OR) |

Alternation is the term in regular expression that is actually a simple “OR”.

In a regular expression it is denoted with a vertical line character | .

For instance, we need to find programming languages: HTML, PHP, Java or JavaScript.

The corresponding regexp: html|php|java(script)?.

A usage example:

let reg = H
let str = "First HTML appeared, then CSS, then JavaScript";

alert(str.match(reg)); // 'HTML', 'CSS', 'JavaScript’

We already know a similar thing — square brackets. They allow to choose between multiple
character, for instance gr[ae]y matches gray or grey.

Alternation works not on a character level, but on expression level. A regexp A|B|C means one of
expressions A, B or C.

For instance:

- gr(ale)y means exactly the same as gr[aely.

+ graley means “gra” or “ey”.

To separate a part of the pattern for alternation we usually enclose it in parentheses, like this:
before(XXX|YYY)after.

Regexp for time

In previous chapters there was a task to build a regexp for searching time in the form hh:mm, for
instance 12:00 . But a simple \d\d:\d\d is too vague. It accepts 25:99 as the time.

How can we make a better one?

We can apply more careful matching:

« The first digit must be @ or 1 followed by any digit.
« Or 2 followed by [0-3]

As aregexp: [01]\d|2[0-3].

Then we can add a colon and the minutes part.

The minutes must be from @ to 59, in the regexp language that means the first digit [0-5]
followed by any other digit \d .

Let’s glue them together into the pattern: [01]\d|2[@-3]:[0-5]\d.

We’re almost done, but there’s a problem. The alternation | is between the [@1]\d and 2[0-3]:
[0-5]\d . That’s wrong, because it will match either the left or the right pattern:

let reg = H

alert("12".match(reg)); // 12 (matched [01]\d)

That’s rather obvious, but still an often mistake when starting to work with regular expressions.
We need to add parentheses to apply alternation exactly to hours: [01]\d OR 2[0-3].

The correct variant:

let reg = 5

alert("00:00 10:10 23:59 25:99 1:2".match(reg)); // 00:00,10:10,23:59

© RV

Find programming languages
There are many programming languages, for instance Java, JavaScript, PHP, C, C++.

Create a regexp that finds them in the string Java JavaScript PHP C++ C:

let reg = 5

alert("Java JavaScript PHP C++ C".match(reg)); // Java JavaScript PHP C++ C

‘a3

BEEAN

Find bbtag pairs
A “bb-tag” looks like [tag]...[/tag], where tag isone of: b, url or quote.

For instance:

[b]text[/b]
[url]http://google.com[/url]

BB-tags can be nested. But a tag can’t be nested into itself, for instance:

Normal:
[url] [b]lhttp://google.com[/b] [/url]
[quote] [b]text[/b] [/quote]

Impossible:
[b][b]text[/b][/b]

Tags can contain line breaks, that’s normal:

[quote]
[b]ltext[/b]
[/quote]

Create a regexp to find all BB-tags with their contents.

For instance:

let reg = H

let str = "..[url]http://google.com[/url]..";
alert(str.match(reg)); // [url]lhttp://google.com[/url]

If tags are nested, then we need the outer tag (if we want we can continue the search in its content):

let reg = H

let str = "..[url][b]http://google.com[/b][/url]..";
alert(str.match(reg)); // [url][b]lhttp://google.com[/b][/url]

‘3

FREA

Find quoted strings

Create a regexp to find strings in double quotes "..."

The important part is that strings should support escaping, in the same way as JavaScript strings do.
For instance, quotes can be inserted as \" anewline as \n, and the slash itself as \\ .

let str = "Just like \"here\".";

For us it's important that an escaped quote \" does not end a string.
So we should look from one quote to the other ignoring escaped quotes on the way.
That’s the essential part of the task, otherwise it would be trivial.

Examples of strings to match:

"test me" ..

"Say \"Hello\"!" ... (escaped quotes inside)

"\\" .. (double slash inside)

"\\ \"" .. (double slash and an escaped quote inside)

In JavaScript we need to double the slashes to pass them right into the string, like this:

let str = ' .. "test me" .. "Say \\"Hello\\"!™ .. "\\\\ \\"" .. ';
// the in-memory string
alert(str); // .. "test me" .. "Say \"Hello\"!™ .. "\\ \""
BEN
Find the full tag

Write a regexp to find the tag <style...>. It should match the full tag: it may have no attributes
<style> or have several of them <style type="..." id="...">.

...But the regexp should not match <styler> !

For instance:

let reg = H

alert('<style> <styler> <style test="...">".match(reg)); // <style>, <style test="...">
BEN
String start A and finish $

The caret '~"' and dollar '$' characters have special meaning in a regexp. They are called
“anchors”.

The caret » matches at the beginning of the text, and the dollar $ —in the end.

For instance, let’s test if the text starts with Mary :

let strl = "Mary had a little lamb, it's fleece was white as snow";
let str2 = 'Everywhere Mary went, the lamp was sure to go';

alert(.test(strl)); // true

alert(.test(str2)); // false

The pattern ~“Mary means: “the string start and then Mary”.
Now let’s test whether the text ends with an email.

To match an email, we can use aregexp [-.\w]+@([\w-]+\.)+[\w-]{2,20} . It’s not perfect, but
mostly works.

To test whether the string ends with the email, let’s add i to the pattern:

let reg = ;

let strl
let str2

'My email is mail@site.com’;
'Everywhere Mary went, the lamp was sure to go';

alert(reg.test(strl)); // true
alert(reg.test(str2)); // false

We can use both anchors together to check whether the string exactly follows the pattern. That’s
often used for validation.

For instance we want to check that str is exactly a color in the form # plus 6 hex digits. The
pattern for the color is #[0-9a-f]{6}.

To check that the whole string exactly matches it, we add ~...$:

let str = "#abcdef";

alert(.test(str)); // true

The regexp engine looks for the text start, then the color, and then immediately the text end. Just
what we need.

© Anchors have zero length

Anchors just like \b are tests. They have zero-width.

In other words, they do not match a character, but rather force the regexp engine to check the
condition (text start/end).

The behavior of anchors changes if there’s a flag m (multiline mode). We’ll explore it in the next
chapter.

© 9RY

Regexp *$
Which string matches the pattern *$?

‘3

R

Check MAC-address

MAC-address = of a network interface consists of 6 two-digit hex numbers separated by a colon.

For instance: '01:32:54:67:89:AB" .

Write a regexp that checks whether a string is MAC-address.

Usage:

let reg = H

alert(reg.test('01:32:54:67:89:AB")); // true

alert(reg.test('0132546789AB')); // false (no colons)

alert(reg.test('01:32:54:67:89")); // false (5 numbers, must be 6)

alert(reg.test('01:32:54:67:89:22")) // false (ZZ ad the end)

‘3

R

Multiline mode, flag "m"

The multiline mode is enabled by the flag /.../m.

It only affects the behavior of » and $.

In the multiline mode they match not only at the beginning and end of the string, but also at start/end
of line.

https://en.wikipedia.org/wiki/MAC_address

Line start A

In the example below the text has multiple lines. The pattern /~\d+/gm takes a number from the
beginning of each one:

let str = “1st place: Winnie
2nd place: Piglet
33rd place: Eeyore’;

alert(str.match()) // 1, 2, 33

Without the flag /.../m only the first number is matched:

let str = "1st place: Winnie
2nd place: Piglet
33rd place: Eeyore’;

alert(str.match(Yy)s // 1

That’s because by default a caret * only matches at the beginning of the text, and in the multiline
mode — at the start of a line.

The regular expression engine moves along the text and looks for a string start ~ , when finds —
continues to match the rest of the pattern \d+ .

Lineend $

The dollar sign $ behaves similarly.
The regular expression \w+$ finds the last word in every line
let str = "1st place: Winnie

2nd place: Piglet
33rd place: Eeyore’;

alert(str.match()); // Winnie,Piglet,Eeyore

Without the /.../m flag the dollar i would only match the end of the whole string, so only the very
last word would be found.

Anchors A$ versus \n

To find a newline, we can use not only ~ and i but also the newline character \n.

The first difference is that unlike anchors, the character \n “consumes” the newline character and
adds it to the result.

For instance, here we use it instead of i:

let str = “1st place: Winnie
2nd place: Piglet
33rd place: Eeyore’;

alert(str.match()); // Winnie\n,Piglet\n

Here every match is a word plus a newline character.

And one more difference — the newline \n does not match at the string end. That’s why Eeyore is
not found in the example above.

So, anchors are usually better, they are closer to what we want to get.

Lookahead (in progress)

The article is under development, will be here when it’s ready.

Infinite backtracking problem

Some regular expressions are looking simple, but can execute veeeeeery long time, and even
“hang” the JavaScript engine.

Sooner or later most developers occasionally face such behavior.

”»

The typical situation — a regular expression works fine sometimes, but for certain strings it “hangs
consuming 100% of CPU.

That may even be a vulnerability. For instance, if JavaScript is on the server, and it uses regular
expressions to process user data, then such an input may cause denial of service. The author
personally saw and reported such vulnerabilities even for well-known and widely used programs.

So the problem is definitely worth to deal with.
Example

The plan will be like this:

1. First we see the problem how it may occur.
2. Then we simplify the situation and see why it occurs.

3. Then we fix it.

For instance let’s consider searching tags in HTML.

We want to find all tags, with or without attributes — like .We
need the regexp to work reliably, because HTML comes from the internet and can be messy.

In particular, we need it to match tags like <a test="<>" href="#"> —with < and > in attributes.
That’s allowed by HTML standard = .

Now we can see that a simple regexp like <[*>]+> doesn’t work, because it stops at the first >,
and we need to ignore <> inside an attribute.

// the match doesn't reach the end of the tag - wrong!
alert('<a test="<>" href="#">".match()) // <a test="<>

We need the whole tag.

https://html.spec.whatwg.org/multipage/syntax.html#syntax-attributes

To correctly handle such situations we need a more complex regular expression. It will have the form
<tag (key=value)*>.

In the regexp language that is: <\w+(\s*\w+=(\w+|"[*"]*")\s*)*> :

1. <\w+ —is the tag start,

2. (\s*\w+=(\w+|"[~"]*")\s*)* —is an arbitrary number of pairs word=value , where the value
can be either a word \w+ or a quoted string "[~"]*" .

That doesn’t yet support few details of HTML grammar, for instance strings in ‘single’ quotes, but
they can be added later, so that’s somewhat close to real life. For now we want the regexp to be
simple.

Let’s try it in action:

let reg = 5
let str="...<a test="<>" href="#">... ...";

alert(str.match(reg)); // <a test="<>" href="#">,

Great, it works! It found both the long tag <a test="<>" href="#"> and the short one .

Now let’s see the problem.

If you run the example below, it may hang the browser (or whatever JavaScript engine runs):

let reg 5

let str
a=b a

L
A
—~+

1]

(0]

)]

|
(o

o]

b a=b a=b a

// The search will take a long long time
alert(str.match(reg));

Some regexp engines can handle that search, but most of them don't.
What'’s the matter? Why a simple regular expression on such a small string “hangs”?
Let’s simplify the situation by removing the tag and quoted strings.

Here we look only for attributes:

// only search for space-delimited attributes
let reg = 5

a=b

let str = "<a=b a=b a=b a=b a=b a=
= a= a=b a=b a=b a=b’;

b a=b
a=b a=b a=b a=b a=b a=b a=b b a=b

// the search will take a long, long time
alert(str.match(reg));

The same problem persists.

Here we end the demo of the problem and start looking into what’s going on and why it hangs.

Backtracking

To make an example even simpler, let’s consider (\d+)*$.
This regular expression also has the same problem. In most regexp engines that search takes a very

long time (careful — can hang):

alert('12345678901234567890123456789123456789z " .match())s

So what’s wrong with the regexp?

First, one may notice that the regexp is a little bit strange. The quantifier * looks extraneous. If we
want a number, we can use \d+$.

Indeed, the regexp is artificial. But the reason why it is slow is the same as those we saw above. So
let’s understand it, and then return to the real-life examples.

What happen during the search of (\d+)*$ inthe line 123456789z ?

1. First, the regexp engine tries to find a number \d+ . The plus + is greedy by default, so it
consumes all digits:

(123456789)z

2. Then it tries to apply the star around the parentheses (\d+)*, but there are no more digits, so it
the star doesn’t give anything.

Then the pattern has the string end anchor $, and in the text we have z.

X

(123456789)z

No match!
3. There’s no match, so the greedy quantifier + decreases the count of repetitions (backtracks).

Now \d+ is not all digits, but all except the last one:

(12345678)9z

4. Now the engine tries to continue the search from the new position (9).

The start (\d+)* can now be applied — it gives the number 9 :

(12345678)(9)z

The engine tries to match $ again, but fails, because meets z:

(12345678)(9)z

There’s no match, so the engine will continue backtracking.

5. Now the first number \d+ will have 7 digits, and the rest of the string 89 becomes the second
\d+

(1234567)(89)z

...Still no match for i

The search engine backtracks again. Backtracking generally works like this: the last greedy
quantifier decreases the number of repetitions until it can. Then the previous greedy quantifier
decreases, and so on. In our case the last greedy quantifier is the second \d+, from 89 to 8,
and then the star takes 9:

X
\d+...... \d+\d+
(1234567)(8)(9)z

6. ...Fail again. The second and third \d+ backtracked to the end, so the first quantifier shortens
the match to 123456, and the star takes the rest:

(123456)(789)z

Again no match. The process repeats: the last greedy quantifier releases one character (9):

X
\d+..... \d+ \d+
(123456)(78)(9)z

7. ...And so on.

The regular expression engine goes through all combinations of 123456789 and their
subsequences. There are a lot of them, that’s why it takes so long.

A smart guy can say here: “Backtracking? Let’s turn on the lazy mode — and no more backtracking!”.

Let’s replace \d+ with \d+? and see if it works (careful, can hang the browser)

// sloooooowwwwww
alert('12345678901234567890123456789123456789z" .match())

No, it doesn't.

Lazy quantifiers actually do the same, but in the reverse order. Just think about how the search
engine would work in this case.

Some regular expression engines have tricky built-in checks to detect infinite backtracking or other
means to work around them, but there’s no universal solution.

In the example above, when we search <(\s*\w+=\w+\s*)*> in the string <a=b a=b a=b a=b —
the similar thing happens.

The string has no > at the end, so the match is impossible, but the regexp engine does not know
about it. The search backtracks trying different combinations of (\s*\w+=\w+\s*) :

(a=b a=b a=b) (a=b)
(a=b a=b) (a=b a=b)

How to fix?

The problem — too many variants in backtracking even if we don’t need them.

For instance, in the pattern (\d+)*$ we (people) can easily see that (\d+) does not need to
backtrack.

Decreasing the count of \d+ can not help to find a match, there’s no matter between these two:

(123456789)z

\d+...\d+....
(1234)(56789)z

Let’s get back to more real-life example: <(\s*\w+=\w+\s*)*> . We want it to find pairs
name=value (as many as it can). There’s no need in backtracking here.

In other words, if it found many name=value pairs and then can’t find >, then there’s no need to
decrease the count of repetitions. Even if we match one pair less, it won’t give us the closing > :

Modern regexp engines support so-called “possessive” quantifiers for that. They are like greedy, but
don’t backtrack at all. Pretty simple, they capture whatever they can, and the search continues.
There’s also another tool called “atomic groups” that forbid backtracking inside parentheses.

Unfortunately, but both these features are not supported by JavaScript.

Although we can get a similar affect using lookahead. There’s more about the relation between
possessive quantifiers and lookahead in articles Regex: Emulate Atomic Grouping (and Possessive
Quantifiers) with LookAhead 2z and Mimicking Atomic Groups 2 .

The pattern to take as much repetitions as possible without backtracking is: (?=(a+))\1.

In other words, the lookahead i looks for the maximal count a+ from the current position. And
then they are “consumed into the result” by the backreference \1.

There will be no backtracking, because lookahead does not backtrack. If it found like 5 times of a+
and the further match failed, then it doesn’t go back to 4.

http://instanceof.me/post/52245507631/regex-emulate-atomic-grouping-with-lookahead
http://blog.stevenlevithan.com/archives/mimic-atomic-groups

Let’s fix the regexp for a tag with attributes from the beginning of the chapter <\w+(\s*\w+=(\w+]|"
[~"T*")\s*)*> . We’ll use lookahead to prevent backtracking of name=value pairs:

// regexp to search name=value
let attrReg =

// use it inside the regexp for tag
let reg = new RegExp('<\\w+(?=(" + attrReg.source + "*))\\1>', 'g');

let good = '...<a test="<>" href="#">... ...";

let bad = ‘<tag a=b a

= b a=b a=b a=b a=b a=b
a=b b a=b a=b a =

b a=b a=b a=b a=b a=b a=b a=b’;

alert(good.match(reg)); // <a test="<>" href="#">,
alert(bad.match(reg)); // null (no results, fast!)

Great, it works! We found a long tag <a test="<>" href="#"> and a small one and didn’t
hang the engine.

Please note the attrReg.source property. RegExp objects provide access to their source string in
it. That’s convenient when we want to insert one regexp into another.

Promises, async/await
i\ : callbacks

JavaScript DZ< D7 V> a V& FFEH TY,
BZ (L. XD loadScript(src) ERTLIEELY

function loadScript(src) {
let script = document.createElement('script');
script.src = src;
document.head.append(script);

}

;@E&ﬁ;&@ﬁﬂ’](iﬂfﬁbb\ZOUTI\%}ﬁ ZETY, RFaAYRIT <script src=".."> &
EBiMULfcEE, 709 EEENZEHRIFAHF. EITUET,

COXDICESTENTEET:

/] AV T bEZIHFAH, ETT D
loadScript('/my/script.js");

ZTDTVY 3V (RV)T EOHEFHFAH)E. STERBREBETEDSSH. B IEEE" SFEEN
X9,

loadScript OIFUHULICKW ., RV VT OiEHFAHERIAL. TOERETEHRITET, AUV
T EDEAFAFNTUVBE. ENUEOI— RERTHINEDY | £ URHFAH CEHREHAHIDBIHEE
(F. DRV)T FERTEINBAEMENDVET,

loadScript('/my/script.js');
// loadScript O TFDI—RERV VT FDHEHFAHFDEDZIOEFEELA
/] ...

S.HULWRZ U RAO—-REIhicETCZENEFENVWELET, BS5<HLLEHEESL
TWLWBDT., ZNEZEETLIEVLWEULET,

UMD U, loadScript(..) MUK UDEEICZNZ UL TELEFKEELEBA:

loadScript('/my/script.js'); // TDRZ T k& "function newFunction() {.}" EHF->TWLET

newFunction(); // D& D/REEIEH W FEA!

E53h, BELTIUHCERYV VT FEFRHAOK-BNHD D XFEATURE, EDRH. FILL
B DEIRFIFOE UIFEKBRUET, SDET B, loadScr'lpt I HIAF DT T Z1BINT 55
EERBUTVWERA, RV VT REGRFAEN., RENICETINEITDH. ZORI U T O
ULV DPEREFERT 2hIC. TNEHDNVDREDIDHNZELV LT,

loadScript ([C2DB®DSIIC. AT UT FHRIHFAENTCEE(CEITIT S callback FEEZEIENM
LEL&D:

function loadScript(src, callback) {
let script = document.createElement('script');
script.src src;

script.onload = () => callback(script);

document.head.append(script);

}

O—RULERAZUTRCHZDFUVERZIFOTZLSE (S callback CEEX T,

loadScript('/my/script.js', function() {
/1 A=W\ EZA2)7 A O— RRICETEINET
newFunction(); // XM T. CNEFEELET

by;

That's the idea: 5825 |84(&. 77 a VDT U EETCETINZEE (BEEESR) T
T, EBORV T b7 E > e ETrRERGlERUET:

function loadScript(src, callback) {
let script = document.createElement('script');
script.src = src;
script.onload = () => callback(script);
document.head.append(script);

}

loadScript('https://cdnjs.cloudflare.com/ajax/libs/lodash.js/3.2.0/1lodash.js"', script => {
alert(Cool, the ${script.src} is loaded’);
alert(_); // O—RENERVUTFTEESNTLSEH

1)

INET=INYyIR=R" EFEENZIEREB 7O STV ITDRAIALILTY, IERIEADNIEZ T
B, BEHDTT UIcBICETIBHOD Callback ZIRHUXT,

C ZTlX loadScript TENZTUVLELED., TEAA—MRNABRT77O0—-FTY,

Callback ®H® callback

2DDAY) T +EIER: DHE: RYID 1 DZHHAHF. 2DBEEZDEICHEHFAD?

BARREEARAK(L. 2DBD loadScript WUH L% callback ODFRICEL ZETY, MMDLDCRY
X7

loadScript('/my/script.js', function(script) {
alert(Cool, the ${script.src} is loaded, let's load one more’);
loadScript('/my/script2.js"', function(script) {
alert(Cool, the second script is loaded’);

1)
1)

IMBID loadScript OFTT#E. ZOO—)L/\y 2V (EREID loadScript ZHWBULET,
CARICE LD ERV) T R EGHFAHFTCVIGEFE DR TTH?

loadScript('/my/script.js', function(script) {
loadScript('/my/script2.js"', function(script) {
loadScript('/my/script3.js', function(script) {
/ I RTORV VT EDRIAAENDIETHSET
1
)

1)

Lieh» T, IRTOFLWLWZ 2> a3V Ea—-ILNyIDOFRTY, MW7 o> ayDigaldRbE
HUEFBAD., ZUVSEICIIRETYT, ZDEH. CORIDOAFEERTULWEZET,

I 55—

FOBITRIZ—ZZRBLTLWERRBATLRE, BULRAV VT FERAFRAFDRBUIHZEES LET
MN? D—ILNy I BZENCEIRT 2RENHDEXT,

CNIE. SEHIAHFLT T —ZIBINT D loadScript OMEIRTTY:

function loadScript(src, callback) {
let script = document.createElement('script');
script.src src;

script.onload = () => callback(null, script);
script.onerror = () => callback(new Error(Script load error for ${src}));

document.head.append(script);

CHNIEEINEF(C callback(null, script) ZIFU. ZNLAIDIHFE(C(E callback(error) Z[E
UXEY,

{ERRA:
loadScript('/my/script.js', function(error, script) {

if (error) {
// IT5—AE

} else {
/1 R VT kDFHFIAH DRI

}
1)

EO5—EBEVXTH. loadScript TE>THEIE. RECIERC—RWREDTY, chld“T
=77 —=ARRBRIOA=ILINy D" A ERENET,

BHIRDEY) TY:

(Il

1. callback ORADSIEIE. T7—HIREEULHEEDLOHCFHSNTVET, LT
callback(err) HDIEENET,

2. 278 D51 B(EMECIE U TUFRDS) FIERREREBDICHDEDT, callback(null,
resultl, result2.) HMIEENZET,

IRDT., B—D callback L. IZ—HEELERELAADIEHICEOLNET,

WRoES=y R

VIRTE. SNEFIEREATD—T « VT DEITAIRERBAETT . BHCZDRBY TI, 1DFEEF2D
BEORAFTNFUE LUDHEICEBERKRAFT,

LD, RLRCHELEBHROFERPT7 I 3> DIHFE. ROKL DRI —REFDOZECRVFT:

loadScript('1.js', function(error, script) {

if (error) {
handleError(error);
} else {
/...
loadScript('2.js"', function(error, script) {
if (error) {
handleError(error);
} else {
/] ...
loadScript('3.js"', function(error, script) {
if (error) {
handleError(error);
} else {
/[IRNTORI VT EHFEHFAENDETHL (*)
}
1)

}
1}

}
1)

riEoad— RTE:

1. 1.js 20— FL. I 7—HRFNE
2. 2.3s ZO0—RULFEYT., I7-HRFNE
3 3.js 20— FULFET, I 7 -HRFNE - fo@h (*) Z1TVET,

HFOHEUHAKVRZAFENBEDONT, HFC ... TR ERLCIVZLDIL—TOEHERR
EZBVI—FHAHBHE. - FRIVRBY | BREEHHEULLBVET,

CNE“T—ILNY JHIR » EROES Iy F” EEENBIHEENH D FT,

loadScript ("1.9s function (error, script
if (error
handleError [error
else

loadScript ('2.9s function (error, script
if (error
handleError [error
else

loadScript (3. function (error, script
if {(error
handleError | error
else
J .conti er all scri are loaded |

XARSTNEHUOHLD “ESZy R IR TOIERAT7 7> a Y THCHARLTVWEXRT, T
B< ENEHEAREELCRVET,

Lich>T. COO-—T 1V IRERBTVRLL DU E B,

MIcBE>. ROKSLCITRTDT7 I aVveERXI Y F7OVORMRICTSIET, COBEEER
TBIENTEXT,

loadScript('1.js", stepl);

function stepl(error, script) {
if (error) {
handleError(error);
} else {
/...
loadScript('2.js"', step2);
}
}

function step2(error, script) {
if (error) {
handleError(error);
} else {
/...
loadScript('3.js"', step3);
}
}

function step3(error, script) {
if (error) {
handleError(error);
} else {
/] IRTORI VT RDFEHFATNIECHE LS (%)
}
}s

EDTL&D? AULZEZELETN SPRVRALEIHBVERRA, BEBRSIRTOT7 I3V
Ehy 7T LNILOBBICOBRLUIENSTT,

CNEFHEELEIN., - FREESESCHETERT LY RY—FDOLSICRAET, cFHEH
<LK, BREBGIOVETLELD, 1D HATULIRBICEABBITREEDY v THRECRL)
£F9, CNIERNET, BEDI—FRICHRBELTHET., ECCHERAZBEIELSILDHDHER
WEEEFCRVET,

Flo. step* EVVDRBIOBAMEINRTEDFERTHY ., “BWHOEZZ Y R” Z#(TBIEF

CEBNTWVWETD, ENECDT707>aVDINTENSEBIHAI S DODEVEHVEFEA, TD
L ZZICEFEDVDUEIE DS TLBRBITENASH Y T,

MBS REALKVRVWEDEEATVET,

FLWCHE. COEORBESZTY RERBT ZHOMDSIFENBVET, RARFEDIDER
DF v+ 745 —TiiBET % “promises” EES & T,

© 9RY

A= LNV IRFEDT_A—yaviahizH

A X% Animated circle [ClF. 7ZA— a3V TARELRZALBUET,

S, EOHTREBLKZORICAYE—IZRRITBIVENDHDELELLD, AvE—YEF7Z
A= a VDT T UE(ANREICKELRZ) Z [CHIRSELEDIHARULTY, D TRVWEE
W T,

ZDH AT DEETIE., B showCircle(cx, cy, radius) AAZEHEEXT, H. LWDEFENT
TEHEEBINT 2HEFRHELUTULE A,

T A= a VPR T UIEEELCHEENDI—-IL/NY V5|8 ZEBIMULTLIEEU): showCircle(cx,
cy, radius, callback) , callback (5| & UTH® <div> ZF TRV KT,

IR

showCircle(150, 150, 100, div => {
div.classlList.add('message-ball');

div.append("Hello, world!");

})s

TE:

Click me

4 2% Animated circle DIEZEE. CDIRITDR—=Z(fF>TLETLY,

oy

FREA

Promise

http://localhost:1339/task/animate-circle
http://localhost:1339/task/animate-circle

BRIEF Y TIUAH-T, 77 VBSEOIVIIVCDODVWTHATER TS ERREL TS
L\o

%h(CEEJbTLK SHBENB=. BRI ABESCZOMEEZCEENRUET, Fio.
7VICEMZEBR TEDVRAMERMUET, BEFEFA-ITRLRAZEATDIIENT
% HAOFIBREEICRE E TR TOBRENTCCENEZ(TENZ LDICRVET, ZUT. A
H—EINFEBUODH Y ZOMZERRT 25TEHNBRVESNEELTE. BESEZ0OBMEZITED

CEMNTEBTLL D,
HABEBTT: 77V ECNUAEHBTEOTANIBUFEESCEREULERA, Tol 77 VIEZFDOH
EREITEEHYEEA,

INRI7O77IVTCENWTLRELIBL S ENDRENRZRYFOY—TT,

1. ANETVEBELEET S “ERI— R, fIZAEE. J-FRUE-FXZUT7FZEO-FLE
¥, TNE U H-"TT,

2 EENESISICERI— R OBRIMMUWVWIEEI— R, ZLOBRENZOERENEL
geahELNFRA, TNEE T 72" TY,

3. promise [F “bAI— K" & SEEO— R &) V0 9545578 JavaScript 74 7 1 LT,
Bo7+0Y—-TEZENE “BRYAL T, £ — RIFHRINIE %%‘:Eﬁiﬁ'%t&b(;%
ERIFBZE VXY, TUT “promise” (FEFBHTELS., BRLIEIRTOI— RHERZEF
HTE5&LD(CULET,

JavaScript @ promise (ZIBIND4FHHPHIREH D V) B4L73 BBt A b KWEEMTH o, D
7Oy —FHFVIEETEHYEFBA, UHL. RYIICEFEICIIRLTT,

promise 7 7YV FOAVA LSV IEBXIERDEL TY:

let promise = new Promise(function(resolve, reject) {
// executor (ERI—F, "IV AH-—")
1)

new Promise NJEXIN 2B executor(#H77&) EFIENE T, primise DNMERISND &, BEN
CMHEENET, TNEREBNICERE—BEICERTIBZIERI-RFEZEATUVEY, Fico7rOY
—D=ETIE. executor (> H—"TT,

AN promise A7 FEARBTONT « EFOTULET:

state — &4#(& “pending(fREEF)” TdH L) . ZD1& “ultiled(5E7T)” © L < (& “rejected(IER)” (T
TESNFXT,
result —(EFEDMETT ., #HAE(L undefined TT,

executor Ny 3 7 ZELT U, ROFOWVWITNMDODZEFUET:

resolve(value) — Y a 7HERCRT UICEZERLET,
state & "fulfilled" [CEREUET,
result & value [CEREULXT.
reject(error) — IS —DRELUECEERUET:
state & "rejected" [CEREULZET,
result & error [CEREULET.

state: "fulfilled"

result: wvalue

new Promise(executor)

state: "pending”

result: wundetined

state: "rejected"

result: error

ZZIClE. 7)3 executor HYdpL) E£T ., :

let promise = new Promise(function(resolve, reject) {

// promise PMESNTIz&E. BEIIBEMNICRTINET

alert(resolve); // function () { [native code] }
alert(reject); // function () { [native code] }

/] 1%, T a 7D "done!" EWSBERE—EICTET UL EEARULET

setTimeout(() => resolve("done!"), 1000);
1)

FOO—REETITEE2DDEBENRZFT:

1. executor (ZBEINDENE (CIEENE T (new Promise ([CK>T),

2. executor [F2D D3| EZ(FENL) £T: resolve & reject TI — I B DEEIE JavaScript
IVIVUDEERTHEY ., INSEEZDEEHY EFBA, KHVIC, executor (FEBH TEMHE
CZNSZEFSHENHIET,

1701& . executor (FERETEMT %76 (C resolve("done") ZIFVHULET, :

new Promise(executor)

state: "pending" resolve(“done”) state: "fulfilled”

result: undefined result: "done”

ZnE. “YaTHAERLCET LR FlTLE,
Z UL T. RIEI S —T executor H promise £IEEHE T ZH T, :
let promise = new Promise(function(resolve, reject) {
/] 1. Y3 THI T —TERDOTEZEEZBRILET

setTimeout(() => reject(new Error("Whoops!")), 1000);
})s

new Promise(executor)

state: "pending” state: "rejected”

result: wundeftined result: error

BT B E . executor (XY 3 T(EBESIERONMDBZEAMNETL. ZTDE. XI5T B promise 7
VIV FDOREELTETB=HIC. resolve £z reject ZEFVUHLET,

FRERFT=(ZIEFT TN TULVS promise (E. “pending” @ promise & (FIFTRAYIC “settled” EIE(ENZE
7.

O 1H-oERFIEITIS—DHTY

executor (1 DD resolve F£Tld reject EIFEFOTEITUNENDH) ET ., promise DILRE
DENEREDEDTT,

S5RBIANTD resolve ¥ reject (FEFEINET:

let promise = new Promise(function(resolve, reject) {
resolve("done");

reject(new Error(".")); // BRINEKT
setTimeout(() => resolve(".")); // BRINFET
})s

CDEZII. executor [CEVITONTEY a7 DOGERFEEIZT—DHEFDOEWLNDTET
g, 7OV IZIVITIE. AR —APFa—RE, <O 70" OEREHBTI 20T
—IBENFELET, TNS(CE promise ELEB UTcE ECRAEEMAHVET, Th5E

(& JavaScript D7 TIEHR—FSNTH 5T . promsise HRHET 2L DD DFBEEEEDT B
LTWEITH, ZZTIld promise (CEFTB=HICENSEEHBLEE A,

£, 1DALED3|ET resolve/reject ZIUH LEHE. RYIOS|IEHIMEDN., KXD3|E
FEHEINET,

O Error #7Y 15 FTreject 33

FHEICE., FEDEDS|IET reject EMHUH T ZEDABETI (resolve DL SI(T), LH
L. reject (XEZZENEMELIEED)TIE, Error 73V FEFIBTZCEEHEL
£9, TOEHEGEREEHESHICRVET,

© Resolve/reject can be immediate

SRR (C (X, executor (FBEIEREATAIZEITLY, BL<EZBUEIC resolve/reject ZFV
HUETH, ZREVETEHVEBA, ZDELDIC. IT<IC resolve W reject ZFVH
TZENEEETT,

let promise = new Promise(function(resolve, reject) {
resolve(123); // BIFE(CHERZIRLET: 123
1)

BIZE. ¥ a7 ORBE. ITICRTUTWVWRZEDDD > EEETY, FHTHIC(XBNEEC
promise ZREAT 5 & (IR D FE A,

O state & result BRFOTONFT«TY

promise 7 7Y U @7 O/NT « state & result (FAFLHWREDTT, HAXOI—KHh
SHET7IVERATRCEETEXBA, KDOVUIC .then/catch XAV Yy RZEFIHLEY, Zh
BICDOWCTIEFTFCH#HIBLET,

JHEE: ".then" and ".catch"

promise 4 7Y =V kIFER O — R(executor) ESHEBRAMER/T - 22 TRV TEVLWED)DED)
VOEUTHEELZ T, HBREX promise.then & promise.catch AV v R&EFAL TEEE

TBRBZENTEZXT,
.then OEBXIIXDE TT:

promise.then(
function(result) { /* BMIMULIEERERD */ },
function(error) { /¥ TZ—%&k/KD */ }

)5

VDD EE. promise RS NEREBICETICHRITINEYT., TLUT2DEE-EESE
N, I5—ZREBULEEEICETINET,

IR

let promise = new Promise(function(resolve, reject) {
setTimeout(() => resolve("done!"), 1000);

1)

// resolve (& .then ORVWDOEHEETITS
promise.then(
result => alert(result), // 1¥&IC "done!" ZZFHRR
error => alert(error) // E{T=NREL

)5

let promise = new Promise(function(resolve, reject) {
setTimeout(() => reject(new Error("Whoops!")), 1000);

1)

// reject (& .then M2 DBEOEMEETI S
promise.then(
result => alert(result), // EfTNEW
error => alert(error) // 1¥MZ(C "Error: Whoops!" ZZFRR

)5

EL. EERTDBEETEIRULEWVSESI(E. .then [T1DDS|ETEIEEIT B EETEE
9, :

let promise = new Promise(resolve => {
setTimeout(() => resolve("done!"), 1000);

1)

promise.then(alert); // 1f1&(C "done!" ZRXRR

IS5 —OBEEFTEENGNIE. .then(null, function) FEIEFZZD“TAUT R THd
.catch(function) Z{EWLXT,

let promise = new Promise((resolve, reject) => {
setTimeout(() => reject(new Error("Whoops!")), 1000);

1)

// .catch(f) (X promise.then(null, f) &[EUTYT
promise.catch(alert); // 1F¥)&(C "Error: Whoops!" Z&E&R/R

.catch(f) OFUHE U, .then(null, f) OFEERBRFELUMTHY . BCHEBLLEEDTT,

© On settled promises then runs immediately

promise D pending Mi5&E. .then/catch N\Y RS ERZFEET, O TEEL.
promise N9 TI(C settled THBHE. EBICETNET,

// BIEEIC promise HfRRENZET

let promise = new Promise(resolve => resolve(“"done!"));

promise.then(alert); // done! (T <I[CRRINET)

ZNE. BEAIDBZEEHY, T[CBR DB EEHBZ Y aTCE>TREFTT, /\YV
RS EEADBEICETINBI I EMMRIESNTULET,

© .then/catch ®/N\Y RS EEICIEFBETT

SHICEEICES&. .then/catch N\Y RSIHAETINZ EE. TNEFRMICHREBF 1 —I(C
AWET, JavaScript TV EFa -5\ EFZZEZRUEL. setTimeout(..., 0) &[E
ULDICIREDI— RHRT UFBRICEITULET,

SLRZ % &E. .then(handler) NEUHT B EE. ENIE setTimeout(handler, 0) DK
SR EELUET,

TOFITIE. promise (FEBICERAINET, XD T, .then(alert) FIT (TR ALET:
alert U L([FFa— (T, O— AR T UBBIECEITLUET,

// BNEE(CEERENTZ promise

let promise = new Promise(resolve => resolve(“done!"));
promise.then(alert); // done! (JREMNI— R TEH®E)

alert("code finished"); // CD7 35— rDRIICRRINKT

LMo T, .then DEICHZDI—REEIC/\Y RSORICETINET (& AFERICHER
SNfc promise 2E LTE), BEZNEEETEHY EBAD. HHERICK > TEREERGEH
HUET,

=T, RO - REZELL(CHT=Y . promise NED LS [CRILDH. L WEBRNLEHIERTHE
L&D,

f5l: loadScript
MEIOF + 759 —T. RV)T bZZFRIHFADT-HDEE loadScript HHW E U,

BOHEITESHIC, cZCa-ILN\yIR-—ZAD/\NY—>=ERxUET,

function loadScript(src, callback) {
let script = document.createElement('script');

script.src = src;

script.onload = () => callback(null, script);

script.onerror = () => callback(new Error(Script load error ~ + src));

document.head.append(script);

promise ZfF> THEERLTHIL & D,

FTUVEEEL loadScript FO—ILNv I ZREBEELFEFBA, KDV, SHAFDTET UIEEIIC
fRRY % promise 773 0 FEAERURLEY, MBI — K& .then ZEALTZENIC/N\V R
SEEMITRCENTEFXT,

function loadScript(src) {
return new Promise(function(resolve, reject) {

let script = document.createElement('script');
script.src src;

script.onload = () => resolve(script);

script.onerror = () => reject(new Error("Script load error: " + src));

document.head.append(script);

1)
}

ERAE:

let promise = loadScript("https://cdnjs.cloudflare.com/ajax/libs/lodash.js/3.2.0/lodash.js");

promise.then(
script => alert(${script.src} is loaded!),
error => alert(Error: ${error.message})

)5

promise.then(script => alert('One more handler to do something else!'));

J—=ILNy IR=ZADEXICLENT, F<IEEEFAEEIEEAEDV TR, :

TAUy k AUy b+

- loadScript &EMFUH TRE. - Promise Z{#> L BARIEE TNEZ
callback FIZEEET I2HENH) O—FRHTBZENTEFT ., &I
£d, DFW. loadScript HIFEE loadScript &ESH. .then [F%F
N3 prlc., TOHERTEAZTZDH DEREEDIT BN ZLRLET,
> THEMEFNERDFE A, - L\DTEH. BEREET promise ([CXFT

< d=JLN\yJ1DEIFTY, % .then ZHUH T Z EHNABET

CI

ZOT. promise FEECLIVREWI—-RF7O-EFBUEERLSULET, LHLESEZLLDT
EDBVEYT, ENELCDVTROF+ 79 —TRTVWEXL £ D,

Q@ YRV

promise O resolve ?

MTOI-FOENEHMTTL & 57

let promise = new Promise(function(resolve, reject) {
resolve(l);

setTimeout(() => resolve(2), 1000);
1)

promise.then(alert);

‘3

R

promise TDIEIE

HAHIAHEE setTimeout FO—ILNy IV ZERLET, promise N—ATREBDEDZIER L T
<fEEL,

B9%L delay(ms) (& promise ZIRITMEMNIH) EFT, ZD promise (& ms S UFRCEERSIN, Z
Z/\ .then ZBMTBZZENTEFT, ROLDTR)ET:

function delay(ms) {
// HRRTzOI—F
}

delay(3000).then(() => alert('runs after 3 seconds'));

‘a3

FREN

promise TO7 A= av{dEY—o)L

AR A=\ IREOT7 Z A= avfbesnicH OFZE(CH D showCircle FEE. O—)L
Ny U &Z(FT3HVI(C promise ZIRT LD ICEZTHLTLREZU),

FTULMELT:

showCircle(150, 150, 100).then(div => {
div.classlList.add('message-ball');
div.append("Hello, world!");

1)

CDIRTDR=RAELT, FRY D=L\ IREDT7 A=Y avftenicH OREEFRAL
TLIEELY,

I

FREAN

Promises ¥ —

F ¥ 45— E)\:callbacks TEAUEMEBICRUELL D,

http://localhost:1339/task/animate-circle-callback
http://localhost:1339/task/animate-circle-callback
http://localhost:1339/callbacks

FATEBIRIRR(CETSNZ—EDIREAY AV EF>TVET, BIZAEFE. RV VT HOHEHAH
TY,

EFL<O-FETBCEESTNELNTL & D?

Promise (EZNZE T BHDOWVK DHOOFEERMHLE T,
CDF v+ 75 —TE promise Fx—V&HBLET,
RDELDICIR)ET:

new Promise(function(resolve, reject) {
setTimeout(() => resolve(l), 1000); // (*)
}).then(function(result) { // (**)

alert(result); // 1
return result * 2;

}).then(function(result) { // (***)

alert(result); // 2
return result * 2;

}).then(function(result) {

alert(result); // 4
return result * 2;

1)

CDEZHIE, RN .then NV RFESZOFI—VEBUTESNEELWDZETY,
CZTCORNIEIRDE) TY:

1. RHD promise [F1TERSNET (*),

2. ZDE. .then N\ FEIHFENET (**),

3. BREASNIERD .then \Y RSINESINET (F**),
4. . ARCHEEET,

GEREDNYEZOF—VICBE>TESNDDT., —ED alert FUELE 1 - 2 —» 4 DJE
ETRRSINEYT,

new Promlse

resolve(l1) l

.then
return 2 l

LTher
return 4 l

Ther

promise.then MIFUH UL promise ZiIRT DT, (T TRD .then ZHVHET ZENTEE
T, ZOHIRNTOI— RFHMEEELET,

N RSHMEZIRT EE. ZNIL promise DERCTRVET, BDOT. JRD .then (FZNE—4
(CMEENET,

NEDEEELVIAEICTBHIC, SITRFI—VDIRFINHVET:

new Promise(function(resolve, reject) {
setTimeout(() => resolve(l), 1000);
}) .then(function(result) {

alert(result);
return result * 2; // <-- (1)

Y) // <-- (2)
// .then..

.then [CKWIRETNBEIL promise TH 37D, (2) THID .then ZEBMIT D ENTEE
9. (1) TEIRIANETND EE. D promise [FFREIRTNDZTcH . RD/N\NY R EZEDETEITS
nxdv,

Fr—VERFERY ., BRNIECIERDLS(C1DD promise ANZ LD .then &EIMT B &EAEE
T9Y, :

let promise = new Promise(function(resolve, reject) {
setTimeout(() => resolve(l), 1000);
1)

promise.then(function(result) {
alert(result); // 1
return result * 2;

1)

promise.then(function(result) {
alert(result); // 1
return result * 2;

1)

promise.then(function(result) {
alert(result); // 1
return result * 2;

1)

L ULDWU, CNREEZCHMNTT ., SCLERNBY XTI (LERDOF -V EERULTSETV)):

new Promise

resolve(l1)

[El—® promise LT RTD .then [FEUEREBFETT — TD promise DEERTT ., > T, L
DO— RTIE, IXRTO alert [FEAU 1 ZRARULET., TNSOBITOERELIEHY FE A,

ERRICIE. B—O promise ([CXF UEED/N\Y FSHDDERT —AB>EEAEBVEFRL, FI—V
DHEDEBINMCEZLLFBFTNET,

promise DiRA]

BE. .then \Y FILCKWVEBRHSNER. ES5IORODNY FZCESNET, LHLAEISNED
L) ijo

E UREETNT-BD promise THh D155 . TNUBDEITIEZ D promise HERT 5 X THEITN
£9, TDE. promise DERHIRD .then N\ RZ(TETNET,

IR

new Promise(function(resolve, reject) {
setTimeout(() => resolve(l), 1000);
}).then(function(result) {
alert(result); // 1
return new Promise((resolve, reject) => { // (*)

setTimeout(() => resolve(result * 2), 1000);
1

}).then(function(result) { // (**)
alert(result); // 2
return new Promise((resolve, reject) => {

setTimeout(() => resolve(result * 2), 1000);
1

}).then(function(result) {

alert(result); // 4

1)

CZTRYIO .then [1 XKL, 1T (*) T new Promise(..) ®RULET, 1#1&. ZNIIR
REN., &R (resolve DS, T ZTIE result*2) (X1T (**) (CHB2FEBED .then D/\V K
FICESNET, ZhE 2 2RRL. @ALTEELET,

LTieh> T, BHRBEBU 15254 TIH., & alert FUOHE UDBEIIC 1 OEBENSH Y T,
promise ZIRENT B E T, FEREA7 V> a Vv DF 1 —VEHMHIUTBDENTEEXT,

Anchor exists already: "anchor"

loadScript T DHEEZEFE>T. ATV T FE1DIDIEEICO-RLTHEL LD, :

loadScript("/article/promise-chaining/one.js")
.then(function(script) {
return loadScript("/article/promise-chaining/two.js");

}
.then(function(script) {
return loadScript("/article/promise-chaining/three.js");

)
.then(function(script) {

/] ENEHAO-RETNTVBILERRIBIEHIC. RVVTFTEFTh TV 2E8ZER

one();
two();
three();

3)s
CZT. % loadScript IFOH Ul promise ZIRL . XD .then [FZNHBERAINICE E(TET
TINEXT, TDER. ROAVVTroO—-RZRAIRLET, EDH. AT VT RIRLZICO—- R
INET,
hfeBlE, COFI—VICKVBSLKDIRIE7 VY aVEEBMNT B ENTEEXFIT, 2T, 2D
O—REMERAELT T Iy R THBICEIEBLTLKEZTL, ZNEARELLBE>TOLERTHAIC
TREBWEBA, “BHOEZ =Y R OIKRITH Y ZE A,

FATRIIC [EZNZNOD promise DEIC. XD K ST promise ZIRAT B2 L1 <EHIE .then &
KZEERRETH B EICEELTLIESL,

loadScript("/article/promise-chaining/one.js").then(function(scriptl) {
loadScript("/article/promise-chaining/two.js").then(function(script2) {
loadScript("/article/promise-chaining/three.js").then(function(script3) {
// CTOREEIEEZEL scriptl, script2 & script3 ATV ERATBZTENTEET

one();
two();
three();

3

COD—FREILCEEUVETIBECBDORI U7 AZO-FLET, LHL. “AICARELRY
x97, EDcH. -y 7 LEUEBHRHVET, TENEEITBHICF T —>(.then H'5

promise ZIRT)ZEFERAL TLIEEUL),
RAFETNEAMPIMIDOR - (CZTRERRERALLTVWRI—IILN\Y JFTRTDEE
scriptX N7V BZATEX)ICT7 IV ERATESH. .then ZEIEEKCEETEXIN, £
NEEIL=ILTERBZRLBISNTT,

©® Thenables

IEHE(C(X. .then [FfEED “thenable” 77 =7 FZ&RIAREMENH Y., Z1E promise &
LTEIULS RN ET,

‘thenable” 772 U b &ld. AV Y R .then ZFDATI 1V LT,

COREE. Y—FN=—FT 1 A4 T7Z)HIHEESBED “promise BIRIX" AT 1V FEERET
TBEVDEDTY, TNSFIRREINTEAV Y RO Y I\%?—:’Dgtb“‘c‘%i’g“b\ .then
EREELTUVBRESDH. 1T 1 7D promise EEERMAHUET,

NI thenable 773 7 FOHITY

class Thenable {
constructor(num) {
this.num = num;

then(resolve, reject) {
alert(resolve); // function() { native code }
// 1¥1&(C this.num*2 T resolve T3

setTimeout(() => resolve(this.num * 2), 1000); // (**)
}
}

new Promise(resolve => resolve(1l))
.then(result => {
return new Thenable(result); // (*)
})
.then(alert); // 1leeems 1&2(C 2 Z&R/R

JavaScript (31T (*) T .then NV RS [CX>TREASNEA TV IV EFz v I UET:
EU then EWVLWDRBRBIOAY Y RHAIFOE UATGETHNIE. R4 T« 7EFEX resolve,
reject &5|#& U T(executor A TVVET)ZENZFOUH L. ZNS5OVTNHDIFUETN
2FETEHEBEEI, LOFHITIE. resolve(2) MIEIC (**) TIHRIENFT, ZDE. BRI
Fr—YVDETS5ICTFICESTNEXYT,

Z(J)#i?%{(:d:‘) DRI LATS TV % Promise H'SMET 5 &7 <. promise F T —
THEITDCENTEET,

& V) KE7LH: fetch

70VRIVROT7OTSIVI T, promise Ry FT7—2 U0 IR FDBECLIEULIXED
NEI, DT, ZOIRSINEFZEZRTHEL & D,

feBlE, VE—FT—/\D51—TFICEAT3EHRZEO— RIBH(C fetcher AV vy REFELE
T, AVY RIFIEECEMT., Z<LOEBNTA=—IHHBVEFIN. BEXOFEVAFETEY VT
ILTY:

let promise = fetch(url);

ZhE, url ARY RT—=0)OI A RZEITL., promise ZIRU X T, promise (X')E— Kk —N
PNYS —TRBEITBDEE, TERLARN IS D> O0—RTABEIIC response A7 17 k
TRASNET,

https://developer.mozilla.org/ja/docs/Web/API/WindowOrWorkerGlobalScope/fetch

REBRLRARYRERZIHICIE. response.text() AV v REESUENGHY XT: NIF5T
ERTFARDNVE—FT—N\DEFUO-RSNEEETCERATN, TOTFANEZERET
% promise ZiIRL XY,

MATFDO—R(E user.json NJIVITZARZETL, U—N\DLZDTHFA+ZO-FULET:

fetch('/article/promise-chaining/user.json")
// @ .then [FUE—FH—N\HDREUEESCETINET
.then(function(response) {
// response.text() (. LARVADF 70— RKHRT UEERRIC
/] REBLARYATHF R THRRASNDHIC/R promise ZIRUET
return response.text();

})
.then(function(text) {

// ... ZTLUT, TCTRUE-—F77MILOFENSRBTEERT
alert(text); // {"name": "iliakan", isAdmin: true}

1)

J)E—FrFT—H5ZFAT. JSON EUT/IN—RAFTB AV Y R response.json() EHWEYT, L
DT —ATIE, KW—BEMNBGOTENICESHRATHET,

HHPITLTBREHIC, 7O-FHBENXT:

// EEBUTI D, response.json() [FUE—FIVFTVUVY%E ISON ELTN—ZULET
fetch('/article/promise-chaining/user.json")

.then(response => response.json())

.then(user => alert(user.name)); // iliakan

R, O—kRUEDI-YTRAINLTHEL & D,

BIZE, github AES1DUI TR METV., A—H707 1 —IILEHRHAFTINY —ERRSET
HET,

// user.json NDUJU I~
fetch('/article/promise-chaining/user.json")
// json <O—F
.then(response => response.json())
// github "DUI T~
.then(user => fetch(https://api.github.com/users/${user.name}))
// json <O—F
.then(response => response.json())
// 37 INY —EfRZERTR (githubUser.avatar_url)
.then(githubUser => {
let img = document.createElement('img');
img.src = githubUser.avatar_url;
img.className = “promise-avatar-example";
document.body.append(img);

setTimeout(() => img.remove(), 3000); // (*)
1

COOD—REEELEIT(OA—FROFMACOVWTEORAY FZEHTLETV)D ., BE(CEHZ IR
THBRNETYT, ZZICIS promise Z{ELVIES B ADTO HBIIBREENH U E T,

T (*) ZRTLKESTV NI —DORADET U THIFRE Nz £ (CRAINZET B (CEE S TN
L\Tbot’)t)\? BIZIE., I—VERERET B7HDT # —LAZRRLIEVWELET, SD&
5. AiEEH DT,

Fr—VZEIRABECTBCIE. PN —DRRHET Ul &EE(C resolve Z1TD promise ZiRY
MENBHUEXET,

RDED TR XTI

fetch('/article/promise-chaining/user.json")
.then(response => response.json())
.then(user => fetch(https://api.github.com/users/${user.name}))
.then(response => response.json())
.then(githubUser => new Promise(function(resolve, reject) {
let img = document.createElement('img"');
img.src = githubUser.avatar_url;
img.className = "promise-avatar-example";
document.body.append(img);

setTimeout (() => {
img.remove();
resolve(githubUser);
}, 3000);

1)
/] 3WELC R HENFET
.then(githubUser => alert(Finished showing ${githubUser.name}));

5. setTimeout (& img.resolve() ZX{TUTEIC resolve(githubUser) ZIFUHUE
9, BDT, Fz—VHADRD .then [CHIHEEL. 1—FT7—5EEHELET,

IW=ILELT, FEEEE7 7Y 3V (EEI(C promise EIRINETT,

N, 3702 aVORICBIDT IS aVERITSRBIIEDNTEXRT, LEARBRTEF
I —VOIGRFERBLSTE, BTRECEZIDELNEEA,

RRIC, FBEOI— FEBFAAEREARICHEI TEEXT:

function loadJson(url) {
return fetch(url)
.then(response => response.json());

}

function loadGithubUser(name) {
return fetch(https://api.github.com/users/${name})
.then(response => response.json());

}

function showAvatar(githubUser) {
return new Promise(function(resolve, reject) {
let img = document.createElement('img"');
img.src = githubUser.avatar_url;
img.className = "promise-avatar-example";
document.body.append(img);

setTimeout (() => {
img.remove();
resolve(githubUser);
}, 3000);
s
}

/] LEREFES:
loadJson('/article/promise-chaining/user.json")
.then(user => loadGithubUser(user.name))
.then(showAvatar)
.then(githubUser => alert(Finished showing ${githubUser.name}));
/] ...

IS5—/I\YRUVT

BTV a VI FKKTBEEENGDEFT: TS5 —DIFE. Wind B promise [reject TN E
9, FIRE. UE— RS —/N\DFIBEARRT fetch NI BHETI, ITF—(3FES/rejec) iR D
[C(E .catch &{FELFT,

promise DF 1 —V(FZDRTENTULET, promise Nreject sz &, IV FO—-ILIEF—
VICHE>THRBEWreject N\ RS LY v T7ULET, TNEERCIFZCEFTT,

BIZIE, TOO—RTIEURL DR THVIFELRBRWT =), .catch DI Z—ZN\VRUVT
LET:

fetch('https://no-such-server.blabla') // rejects
.then(response => response.json())
.catch(err => alert(err)) // TypeError: failed to fetch (IZ—AvtE—YABRIERZBENHVEY)

Fleld. BES LY —NEIRNTEULLEBELLD. BEDBIE JSON TRWEE:

fetch('/") // fetch EO2FLEEL. U—NERHEISELET
.then(response => response.json()) // rejects: _—IH HTML TEH json TEEBHN->T=HES
.catch(err => alert(err)) // SyntaxError: Unexpected token < in JSON at position @

TOFITIE, 7NN —DFHIAHFERTODFI—VTOINTOIT—&IET S .catch ZIiEM
LTULXT:

fetch('/article/promise-chaining/user.json")
.then(response => response.json())
.then(user => fetch(https://api.github.com/users/${user.name}))
.then(response => response.json())
.then(githubUser => new Promise(function(resolve, reject) {
let img = document.createElement('img"');
img.src = githubUser.avatar_url;
img.className = "promise-avatar-example";
document.body.append(img);

setTimeout(() => {
img.remove();
resolve(githubUser);
}, 3000);
)

.catch(error => alert(error.message));

CZ T, .catch EE-TE<KHFENFCRA, BELBRSIS—HDREETVLVERLHNSTY, ULHL.
F @ prmise DWLV\FT DD reject E7E>TeiH A . catch (FERTINET,

B2 try..catch
executor & promise /\> RZDI— R "RARRL try..catch" ZHF->TUVWET, TS5 —HESE
feBa. ¥ v vFUTreject &E LTIRLET,
BIZE. cOoa—kFRZRTLLIZELN,

new Promise(function(resolve, reject) {

throw new Error("Whoops!");
}).catch(alert); // Error: Whoops!

LCNIRDERUKX S CEMELET:

new Promise(function(resolve, reject) {
reject(new Error("Whoops!"));
}).catch(alert); // Error: Whoops!

executor (C3H D "RAMRL try..catch FTZ7—ZB#HMNCF v+ vF UL reject & LTHKR->TLIE
—a—o

Z N3 executor IE(FTRLKNY FSOHRTERFKRTT ., .then NV FSOHT throw LTt
&. promise O reject ZRIKT 2D T, IV FO=ILEREEWVIS—-/N\VRICI¥ VT UE
7.

CZICEDBEINGYXT:

new Promise(function(resolve, reject) {
resolve("ok");
}) .then(function(result) {
throw new Error("Whoops!"); // promise Z rejects
}).catch(alert); // Error: Whoops!

. NI throw BT THRLKEZRICTOVSAIZ—ZEDEEODIS—(CWLTTTY:

new Promise(function(resolve, reject) {
resolve("ok");
}) .then(function(result) {
blabla(); // COLOREHEHVEEA
}).catch(alert); // ReferenceError: blabla is not defined

BIEE LT, RED .catch (FEARAUA reject 7213 TR LEED/N\Y RSO X SREBRNLT
Z—EFvrvFUET,

B20-—

TTIEHETIEDLSC, .catch [F try..catch DL ITIRBZEEVLET, B E>RELRHOD
.then ZH5, REICE—OD .catch ZERALTIRTOIS—ZNIELET,

BED try..catch T, IZ—Z@EFL. LWEBTERVGEEIBRAO-9 358N HVET,
promise TERIUZ ENAJBETT ., .catch DFAT throw T 3i5E. IV FO-IJLIERDRER
WIS—N\VEREZLI¥VTUEYT, ZUT. I7—ZREBUTEECETIZE, RICHRERL
BIfUTe .then NV RS [CHEETET,

TOFITIE, .catch NIS—ZFIERCMIBLTULET:

// FT: catch -> then
new Promise(function(resolve, reject) {

throw new Error("Whoops!");
}).catch(function(error) {
alert("The error is handled, continue normally");

}).then(() => alert("Next successful handler runs"));

ZZTIE. .catch 7OV IDEECERTUTVWET, BOT. ROMIN/NY ESHEENET,
KIAIEIRTZEETE, ZTOBEERUTI(EINESNET),

. ZFUTZZTIE .catch 7Ov 7 FI5—%@HiL. BEAO-ULTULET:

// FT: catch -> catch -> then
new Promise(function(resolve, reject) {

throw new Error("Whoops!");
}).catch(function(error) { // (*)

if (error instanceof URIError) {
// IT5—A3E
} else {
alert("Can't handle such error");

throw error; // CZTERIFENEIZ—(FRD catch NI+ VT UET
}

}).then(function() {
/* RITSNEEA */
}).catch(error => { // (**)

alert (" The unknown error has occurred: ${error});

/] ABRULERA => RTEREBYICEHXT

1)

NVEZ () BIS—ZF+v vy FUEUEIUEBLTLWEBA, BELES. URIError TIEAEULN
MN5TY, BDOT. BURO—-ULXT, TDE. E1TIFRD .catch ABVZXT,

ToOtEr>avTlE. BAO-OERNLGHZERTLETT,

Fetch TS5 —E Dl

A—THAIAFDFDITS MR ERELF L £ D,

fetch ([C&K WIRENE Tz promise . BRZITDZENTERVMEGE(C reject LET, HIAIK,
JE— S —N\DHBERATDEHE. £(E URL A RERBETY, LU, UE— KR —/\H1404
P 500 TS — &L EDIGEDFES. BNRNEEHFILET,

RICH—/\DYT (*) T500 TS5 —NDIEJSONR—IEIRLIEBEDIRBTLLD? ZOLDIRI
—F>EH 5T, github ' (¥*) T404 IS —%IRIT EEDRBTLL D?

fetch('no-such-user.json") // (*)
.then(response => response.json())
.then(user => fetch(https://api.github.com/users/${user.name})) // (**)
.then(response => response.json())
.catch(alert); // SyntaxError: Unexpected token < in JSON at position @

/] ...

B TIE, - RIEAHDERETEIGEZ JSON £ UTHRMHAEDEL. BX I —TIICET,
no-such-user.json [FEFEELRBZLDT, LOFIEETIBCETENERDICENTEXRT,

CDIZ7—RFFz—VZBUTRHBULLEDTHY ., FH{INKBLIZOD, ECTRELEED
MESTRVCHRL B FEA,

LTeD> T, ED1RTYTEMUEL & D:HTTP X7 —4%9 AHHE> TLVP response.status %
FrvlIUXY, NN 200 TRIHFNEIZ—Z2RO-UET,

class HttpError extends Error { // (1)
constructor(response) {
super(${response.status} for ${response.url});
this.name = 'HttpError';
this.response = response;

}

https://developer.mozilla.org/ja/docs/Web/API/WindowOrWorkerGlobalScope/fetch

}

function loadJson(url) { // (2)
return fetch(url)
.then(response => {
if (response.status == 200) {
return response.json();
} else {
throw new HttpError(response);

¥
1
}

loadJson('no-such-user.json') // (3)
.catch(alert); // HttpError: 404 for .../no-such-user.json

1L OIS -9 TEXBITZEHCHTTP TS5 —DIedHDHRY AT SRAEEVET, =5IC,
FTLWLWI S R(E response 77TV U FEZITERY ., I7—CREIZDIVA LI VIZERES
FI., chTLD, ITZ7—WBOI—-KRHAT7IVEATEDRLDCRVET,

2. RIC, VIV IRAFEIS—NIEBOO—R%E url Nfetch T2ECEE. MZ TEEDIE 200
ATF—9REIZ—EULUTRVLET,

3. ZNT alert FLVRWLWAYE—IHRRINET,

IZ—([CNTBMEDOY SREFDODILDREBS LLREF. T7—AEBI—- FTHECFIvIT
TBHILETY,

BIZE. VIIALZEITLVN 404 ERSTBE - A— VP CIBREEEI 5L OMBELET,

TOI— FE github HSEESNLEBAIO -V ERHFAHFETT ., ELEFELRBVI-FTHN
. EVLLRBHIZGHRET, :

function demoGithubUser() {
let name = prompt("Enter a name?", "iliakan");

return loadJson(https://api.github.com/users/${name})
.then(user => {
alert(Full name: ${user.name}.); // (1)
return user;

)
.catch(err => {
if (err instanceof HttpError && err.response.status == 404) { // (2)
alert("No such user, please reenter.");
return demoGithubUser();
} else {
throw err;

}
1)
}

demoGithubUser();

(& Z:-ZF(EtZ

1. loadJdson NEWNRBRIA—TAT7I U FZRUEEBS. BRI (1) TRAThI-—THIRTNh
X9, chlcLWa1— YEEDT7 VY aveEFT— VICIEBIMTEXY, ZOHE. U TO
.catch [FEIREIN, IRTHIEEICI VTILTRHEHVEE A,

2. ZNSNDIBZEIF. I —DBEIET (2) TFzvIULET, BNCHTTPIS—TCTAT—%
AN 404(RDOHERW) DiFE. - ICBANZRELET, DI > —0Di5EF. NEBOT
AEHM5RBRWcHBERO-UET,

RN D reject

I5—-MUEBETNBWEEELIHEZTLLO? fIZEF. LOFIOLSCERO- Lz, £LL
[FTROESCFT—VOEDVICIZ—N\Y RSEEMULENTWSIHESETT, :

new Promise(function() {
noSuchFunction(); // CZTIZ—(ZDEKDREEIEELY)
Y); // .catch FR7IvF

EULLIE:

// REIC .catch ML) promise OF —V
new Promise(function() {

throw new Error("Whoops!");
}).then(function() {

/] . A@D. ..
}).then(function() {
/] AT

}) . then(function() {
/] ... D\ ZODEIC catch FHWELA!

1)

IS5 —Di5E. promise D AT —4 AZ “rejected” ([C7EY) . ETREFRER U reject N\ RS (LY +
VT7IBIETTT, UDWULEDBITEZDL DB\ RZEHYUEEA, ZOTEH. IT5—EF“X
v UEIT((TTmEVET).

ERICE., ZNEBEEBEVNI—-RICLZEDTY, BHNCRHBREIS—LNENZLDTL £ DHV?

Z <MD JavaScript TV I VIO X DIIRRZEBIL. ZOHEECEIO0-/NILIZ—ZEMUE
9, VYV —ILTR2ZENTEXT,

7595 T, 41XV k unhandledrejection > THF v vFTEXT, :

window.addEventListener('unhandledrejection’, function(event) {
[l ARV AT FER2D0OFRIRTONT « EF>TVET:
alert(event.promise); // [object Promise] - TS5 —Z4R L7 promise
alert(event.reason); // Error: Whoops! - KRUMEBOIZ—AT7I ¥k~

1)

new Promise(function() {
throw new Error("Whoops!");
}); /] T7—%&MET B catch AR

ZDANY FEHIMLIZEE 2 O—&TY, S, T7-DFEEL .catch HRLFE,
unhandledrejection N\ RSHRUAHUET: event 77V 12V IS —(CEATZEHREF
2TWBDT, AN ZETDIENTEXT,

BE. COLOBIZ—RFUANUARTROT., KREDHFEFI-Y(CZOMEZHSE. -
NEDA VYTV MMTDOWTHRET B LT,

Node JSD &L D727 TV UINDRIETI(E. RUEBDI S —ZBH T 2MtMOREKRDIFEDND Y F
CI

PEY,

E9BE . .then/catch(handler) (F/\Y RSHMAZE T BZHNCEL > TEKLKT BHEH LU promise
ZIRUET:

https://html.spec.whatwg.org/multipage/webappapis.html#unhandled-promise-rejections

1. 5ELEZEIRLEEY ., return (return undefined EEU) BUTRT LEEBE. il
promise 1\ resolve [C724) . REML resolve /\YV RS (.then DRFIDSIE)HZDMETIEFEEN

ESCIN
2. H5LIZ—=Z2RA0O0—-UTEHBE. $iLUL) promise (3 reject [C72 Y . |REIEL reject /\V K5
(.then £7zlE .catch M2DBEDSI)MNENE—REICIFIENET,

3. L promise ZiR T 155 . JavaScript (FZNHNTT ITBEXTHEL. BUAETEHRICERALE
3-0

.then/catch [CX > TIRENS promise NED KD ICEKT BZHNDORTY:
promise returned by .then({handler):

state: “pendlng’

result: undetined

andler does: return value throw error return promise

“ AN

state: "fulfilled" state: "rejected"

result: walue result: error

.use the result
of the new promlse...

EDEDBNY EINFEENZHD/NSRBRTT:

return value throw error return promise
run closest run closest
.then(handler) then(null, handler)

..wait for the result of the new promise,

.catch({handler)
and then use the options at the left...

FOIS-BOHFEITIE. .catch FELCF—VORETULE, ERICIE. IXTD promise F
=N .catch ZHFE>TULWBRTEHVFLEA, BEOI-RERFULDIC, BIC
try..catch TSI Y 7N TWLWBRTIEH D T,

Io—ZBUIEWIS—ZBT BHEEMIICUVIGIC .catch ZEKANETYT, ARI A
IS—VZR%ERTSE. I5-E9HL. WETSHBRVWIS-—BRAO-F3ZENTEXT,

EEINDIZ—(CDULTIE. unhandledrejection 1RV RNV RS (F7Z50HA. BIXUOMD
RIEAOHENY)) Z2BEET2UEHNHVEYT, COLDIBARPELRIZ—FEBE IEEARATEELRD
T, A—T—[CHEE T, $ZELKT-—N-LCZODA VYTV MIDWTHRET BT TT,

© YRV

Promise: then vs catch

INEOI—REEFELLWTLLEOD? EVEZ DL, ZNEREABIKITEEED/\Y RSEH#
CWULUT, BUELSICIRBEWNE T H?

promise.then(fl, f2);

Versus;

promise.then(f1l).catch(f2);

4~

BREA

setTimeout TOIL S5 —

.catch FhUASTNBEBVETH? XZDEBHZHRPTEXIH?

new Promise(function(resolve, reject) {
setTimeout(() => {
throw new Error("Whoops!");
}, 1000);
}).catch(alert);

‘3

BEN

Promise API

There are 4 static methods in the Promise class. We’'ll quickly cover their use cases here.

Promise.resolve

The syntax:

let promise = Promise.resolve(value);

Returns a resolved promise with the given value.

Same as:

let promise = new Promise(resolve => resolve(value));

The method is used when we already have a value, but would like to have it “wrapped” into a
promise.

For instance, the loadCached function below fetches the url and remembers the result, so that
future calls on the same URL return it immediately:

function loadCached(url) {
let cache = loadCached.cache || (loadCached.cache = new Map());

if (cache.has(url)) {
return Promise.resolve(cache.get(url)); // (¥*)

}

return fetch(url)
.then(response => response.text())
.then(text => {
cache[url] = text;
return text;

1)

We can use loadCached(url).then(..), because the function is guaranteed to return a promise.
That’s the purpose Promise.resolve inthe line (*) :it makes sure the interface unified. We can
always use .then after loadCached.

Promise.reject

The syntax:

let promise = Promise.reject(error);

Create a rejected promise with the error.

Same as:

let promise = new Promise((resolve, reject) => reject(error));

We cover it here for completeness, rarely used in real code.

Promise.all

The method to run many promises in parallel and wait till all of them are ready.

The syntax is:

let promise = Promise.all(iterable);

It takes an iterable object with promises, technically it can be any iterable, but usually it’s an
array, and returns a new promise. The new promise resolves with when all of them are settled and
has an array of their results.

For instance, the Promise.all below settles after 3 seconds, and then its result is an array [1,
2, 3]:

Promise.all([
new Promise((resolve, reject) => setTimeout(() => resolve(1l), 3000)), // 1
new Promise((resolve, reject) => setTimeout(() => resolve(2), 2000)), // 2
new Promise((resolve, reject) => setTimeout(() => resolve(3), 1000)) // 3
1) .then(alert); // 1,2,3 when promises are ready: each promise contributes an array member

Please note that the relative order is the same. Even though the first promise takes the longest time
to resolve, it is still first in the array of results.

A common trick is to map an array of job data into an array of promises, and then wrap that into
Promise.all.

For instance, if we have an array of URLs, we can fetch them all like this:

let urls = [
"https://api.github.com/users/iliakan',
"https://api.github.com/users/remy’',
"https://api.github.com/users/jeresig’

15

// map every url to the promise fetch(github url)
let requests = urls.map(url => fetch(url));

// Promise.all waits until all jobs are resolved
Promise.all(requests)
.then(responses => responses.forEach(
response => alert(${response.url}: ${response.status})

))s

A more real-life example with fetching user information for an array of github users by their names
(or we could fetch an array of goods by their ids, the logic is same):

let names = ['iliakan', ‘remy', 'jeresig'];
let requests = names.map(name => fetch(https://api.github.com/users/${name}));

Promise.all(requests)
.then(responses => {
// all responses are ready, we can show HTTP status codes
for(let response of responses) {
alert(${response.url}: ${response.status}); // shows 200 for every url

}

return responses;
)
// map array of responses into array of response.json() to read their content
.then(responses => Promise.all(responses.map(r => r.json())))
// all JSON answers are parsed: "users" is the array of them
.then(users => users.forEach(user => alert(user.name)));

If any of the promises is rejected, Promise.all immediately rejects with that error.

For instance:

Promise.all([
new Promise((resolve, reject) => setTimeout(()
new Promise((resolve, reject) => setTimeout(()
new Promise((resolve, reject) => setTimeout(()
]).catch(alert); // Error: Whoops!

> resolve(1), 1000)),
> reject(new Error("Whoops!")), 2000)),
> resolve(3), 3000))

Here the second promise rejects in two seconds. That leads to immediate rejection of
Promise.all, so .catch executes: the rejection error becomes the outcome of the whole
Promise.all.

The important detail is that promises provide no way to “cancel” or “abort” their execution. So other
promises continue to execute, and the eventually settle, but all their results are ignored.

There are ways to avoid this: we can either write additional code to clearTimeout (or otherwise
cancel) the promises in case of an error, or we can make errors show up as members in the
resulting array (see the task below this chapter about it).

o Promise.all(iterable) allows non-promise items in iterable
Normally, Promise.all(iterable) accepts an iterable (in most cases an array) of promises.
But if any of those objects is not a promise, it’s wrapped in Promise.resolve.

For instance, here the results are [1, 2, 3]:

Promise.all([
new Promise((resolve, reject) => {
setTimeout(() => resolve(1l), 1000)

})s

2, // treated as Promise.resolve(2)
3 // treated as Promise.resolve(3)
]).then(alert); // 1, 2, 3

So we are able to pass non-promise values to Promise.all where convenient.

Promise.race

Similar to Promise.all takes an iterable of promises, but instead of waiting for all of them to finish
— waits for the first result (or error), and goes on with it.

The syntax is:

let promise = Promise.race(iterable);

For instance, here the result will be 1 :

Promise.race([
new Promise((resolve, reject) => setTimeout(() => resolve(l), 1000)),
new Promise((resolve, reject) => setTimeout(() => reject(new Error("Whoops!")), 2000)),
new Promise((resolve, reject) => setTimeout(() => resolve(3), 3000))

1) .then(alert); // 1

So, the first result/error becomes the result of the whole Promise.race . After the first settled
promise “wins the race”, all further results/errors are ignored.

Summary
There are 4 static methods of Promise class:

1. Promise.resolve(value) — makes a resolved promise with the given value,
2. Promise.reject(error) —makes a rejected promise with the given error,

3. Promise.all(promises) — waits for all promises to resolve and returns an array of their results.
If any of the given promises rejects, then it becomes the error of Promise.all, and all other
results are ignored.

4. Promise.race(promises) — waits for the first promise to settle, and its result/error becomes the
outcome.

Of these four, Promise.all is the most common in practice.

© YRV

Fault-tolerant Promise.all
We’d like to fetch multiple URLs in parallel.

Here’s the code to do that:

let urls = [
"https://api.github.com/users/iliakan"',
"https://api.github.com/users/remy’,
"https://api.github.com/users/jeresig’
1;

Promise.all(urls.map(url => fetch(url)))
// for each response show its status
.then(responses => { // (*)
for(let response of responses) {
alert(${response.url}: ${response.status});

}
)5

The problem is that if any of requests fails, then Promise.all rejects with the error, and we loose
results of all the other requests.

That’s not good.

Modify the code so that the array responses inthe line (*) would include the response objects
for successful fetches and error objects for failed ones.

For instance, if one of URLs is bad, then it should be like:

let urls = [
"https://api.github.com/users/iliakan',
"https://api.github.com/users/remy"’,
"http://no-such-url’

1

Promise.all(...) // your code to fetch URLs...
// ...and pass fetch errors as members of the resulting array...
.then(responses => {
// 3 urls => 3 array members
alert(responses[0@].status); // 200
alert(responses[1].status); // 200
alert(responses[2]); // TypeError: failed to fetch (text may vary)

1)

P.S. In this task you don’t have to load the full response using response.text() or
response.json() . Just handle fetch errors the right way.

DRI DIEHDTY RARY I AERHL

4~

BEEN

http://plnkr.co/edit/LELb2acr99J25DkCL4Us?p=preview

Fault-tolerant fetch with JSON

Improve the solution of the previous task Fault-tolerant Promise.all. Now we need not just to call
fetch, but to load the JSON objects from given URLSs.

Here’s the example code to do that:

let urls = [
"https://api.github.com/users/iliakan',
"https://api.github.com/users/remy"',
"https://api.github.com/users/jeresig’
1;

// make fetch requests
Promise.all(urls.map(url => fetch(url)))
// map each response to response.json()
.then(responses => Promise.all(
responses.map(r => r.json())

))
// show name of each user
.then(users => { // (*)
for(let user of users) {
alert(user.name);

}
1)

The problem is that if any of requests fails, then Promise.all rejects with the error, and we loose
results of all the other requests. So the code above is not fault-tolerant, just like the one in the
previous task.

Modify the code so that the array in the line (*) would include parsed JSON for successful
requests and error for errored ones.

Please note that the error may occur both in fetch (if the network request fails) and in
response.json() (if the response is invalid JSON). In both cases the error should become a
member of the results object.

The sandbox has both of these cases.

BRI DIEHDY Y FRy IV AZ[A< »

FREAN
Async/await

There’s a special syntax to work with promises in a more comfort fashion, called “async/await”. It’s
surprisingly easy to understand and use.

Async functions

Let’s start with the async keyword. It can be placed before function, like this:

async function f() {
return 1;

}

http://localhost:1339/task/promise-errors-as-results
http://plnkr.co/edit/WS9nqto5SrSTzwiYeeyc?p=preview

The word “async” before a function means one simple thing: a function always returns a promise. If
the code has return <non-promise> in it, then JavaScript automatically wraps it into a resolved
promise with that value.

For instance, the code above returns a resolved promise with the result of 1, let’s test it:

async function f() {
return 1;

}

f().then(alert); // 1

...We could explicitly return a promise, that would be the same:

async function f() {
return Promise.resolve(1);

}

f().then(alert); // 1

So, async ensures that the function returns a promise, wraps non-promises in it. Simple enough,
right? But not only that. There’s another keyword await that works only inside async functions,
and it’s pretty cool.

Await

The syntax:

// works only inside async functions
let value = await promise;

The keyword await makes JavaScript wait until that promise settles and returns its result.

Here’s example with a promise that resolves in 1 second:

async function f() {

let promise = new Promise((resolve, reject) => {
setTimeout(() => resolve("done!"), 1000)
1)

let result = await promise; // wait till the promise resolves (*)

alert(result); // "done!"
}

LiOF

The function execution “pauses” at the line (*) and resumes when the promise settles, with
result becoming its result. So the code above shows “done!” in one second.

Let’s emphasize: await literally makes JavaScript wait until the promise settles, and then go on
with the result. That doesn’t cost any CPU resources, because the engine can do other jobs
meanwhile: execute other scripts, handle events etc.

It’s just a more elegant syntax of getting the promise result than promise.then, easier to read and
write.

Can’t use await in regular functions

If we try to use await in non-async function, that would be a syntax error:

function f() {
let promise = Promise.resolve(1l);
let result = await promise; // Syntax error

}

We can get such error in case if we forget to put async before a function. As said, await only
works inside async function.

Let’s take showAvatar() example from the chapter Promises 7 = — >/ and rewrite it using
async/await:

1. We'll need to replace .then calls by await .

2. Also we should make the function async for them to work.

async function showAvatar() {

// read our JSON
let response = await fetch('/article/promise-chaining/user.json");
let user = await response.json();

// read github user
let githubResponse = await fetch(https://api.github.com/users/${user.name});
let githubUser = await githubResponse.json();

// show the avatar

let img = document.createElement('img');
img.src = githubUser.avatar_url;
img.className = "promise-avatar-example";
document.body.append(img);

// wait 3 seconds
await new Promise((resolve, reject) => setTimeout(resolve, 3000));

img.remove();

return githubUser;

}

showAvatar();

Pretty clean and easy to read, right? Much better than before.

http://localhost:1339/promise-chaining

© await won’t work in the top-level code

People who are just starting to use await tend to forget that, but we can’t write await in the
top-level code. That wouldn’t work:

// syntax error in top-level code
let response = await fetch('/article/promise-chaining/user.json");
let user = await response.json();

So we need to have a wrapping async function for the code that awaits. Just as in the example
above.

© await accepts thenables

Like promise.then, await allows to use thenable objects (those with a callable then
method). Again, the idea is that a 3rd-party object may be not a promise, but promise-
compatible: if it supports .then, that's enough to use with await.

For instance, here await accepts new Thenable(1):

class Thenable {
constructor(num) {
this.num = num;
}
then(resolve, reject) {
alert(resolve); // function() { native code }
// resolve with this.num*2 after 1000ms
setTimeout(() => resolve(this.num * 2), 1000); // (*)
¥
}s

async function f() {
// waits for 1 second, then result becomes 2
let result = await new Thenable(1);
alert(result);

}

()

If await gets a non-promise object with .then, it calls that method providing native functions
resolve, reject as arguments. Then await waits until one of them is called (in the example
above it happens in the line (*)) and then proceeds with the result.

© Async methods

A class method can also be async, just put async before it.

Like here:

class Waiter {
async wait() {
return await Promise.resolve(1);

}
}

new Waiter()
wait()
.then(alert); // 1

The meaning is the same: it ensures that the returned value is a promise and enables await .

Error handling

If a promise resolves normally, then await promise returns the result. But in case of a rejection it
throws the error, just if there were a throw statement at that line.

This code:

async function f() {
await Promise.reject(new Error("Whoops!™));

}
...Is the same as this:

async function () {
throw new Error("Whoops!");

}

In real situations the promise may take some time before it rejects. So await will wait, and then
throw an error.

We can catch that error using try..catch, the same way as a regular throw :

async function f() {

try {
let response = await fetch('http://no-such-url");

} catch(err) {
alert(err); // TypeError: failed to fetch

}
}

O
In case of an error, the control jumps to the catch block. We can also wrap multiple lines:

async function f() {

try {
let response = await fetch('/no-user-here');

let user = await response.json();

} catch(err) {
// catches errors both in fetch and response.json
alert(err);

}
}

0N

If we don’t have try..catch, then the promise generated by the call of the async function f()
becomes rejected. We can append .catch to handle it:

async function f() {
let response = await fetch('http://no-such-url');

}

// f() becomes a rejected promise
f().catch(alert); // TypeError: failed to fetch // (*)

If we forget to add .catch there, then we get an unhandled promise error (and can see it in the
console). We can catch such errors using a global event handler as described in the chapter
Promises ¥ — .

() async/await and promise.then/catch

When we use async/await, we rarely need .then, because await handles the waiting for
us. And we can use a regular try..catch instead of .catch. That’s usually (not always)
more convenient.

But at the top level of the code, when we’re outside of any async function, we’re syntactically
unable to use await, soit’s a normal practice to add .then/catch to handle the final result or
falling-through errors.

Like in the line (*) of the example above.

o async/await works well with Promise.all

When we need to wait for multiple promises, we can wrap them in Promise.all and then
await:

// wait for the array of results
let results = await Promise.all([
fetch(urll),
fetch(url2),

;-

In case of an error, it propagates as usual: from the failed promise to Promise.all, and then
becomes an exception that we can catch using try..catch around the call.

Summary

http://localhost:1339/promise-chaining

The async keyword before a function has two effects:

1. Makes it always return a promise.
2. Allows to use await init.

The await keyword before a promise makes JavaScript wait until that promise settles, and then:

1. If it's an error, the exception is generated, same as if throw error were called at that very
place.

2. Otherwise, it returns the result, so we can assign it to a value.

Together they provide a great framework to write asynchronous code that is easy both to read and
write.

With async/await we rarely need to write promise.then/catch, but we still shouldn’t forget that
they are based on promises, because sometimes (e.g. in the outermost scope) we have to use these
methods. Also Promise.all is a nice thing to wait for many tasks simultaneously.

© RV

Rewrite "rethrow" async/await

Below you can find the “rethrow” example from the chapter Promises 7 = — /. Rewrite it using
async/await instead of .then/catch.

And get rid of the recursion in favour of a loop in demoGithubUser : with async/await that
becomes easy to do.

class HttpError extends Error {
constructor(response) {
super(${response.status} for ${response.url});
this.name = 'HttpError';
this.response = response;
}
}

function loadJson(url) {
return fetch(url)
.then(response => {
if (response.status == 200) {
return response.json();
} else {
throw new HttpError(response);
}
)
}

// Ask for a user name until github returns a valid user
function demoGithubUser() {
let name = prompt("Enter a name?", "iliakan");

return loadJson(https://api.github.com/users/${name})
.then(user => {
alert(Full name: ${user.name}.);
return user;
})
.catch(err => {
if (err instanceof HttpError && err.response.status == 404) {
alert("No such user, please reenter.");
return demoGithubUser();
} else {

http://localhost:1339/promise-chaining

throw err;

}
1)
}

demoGithubUser();

3

RREN

Rewrite using async/await

Rewrite the one of examples from the chapter Promises 7 = — >/ using async/await instead of
.then/catch:

function loadJson(url) {
return fetch(url)
.then(response => {
if (response.status == 200) {
return response.json();
} else {
throw new Error(response.status);

}
)
}

loadJson('no-such-user.json") // (3)
.catch(alert); // Error: 404

i~

BREAN

Network requests: AJAX and COMET
XMLHttpRequest and AJAX

XMLHttpRequest is a built-in browser object that allows to make HTTP requests in JavaScript.

Despite of having the word “XML” in its name, it can operate on any data, not only in XML format.

Asynchronous XMLHttpRequest

XMLHttpRequest has two modes of operation: synchronous and asynchronous.
First let’s see the asynchronous variant as it’s used in the majority of cases.

The code below loads the URL at /article/xmlhttprequest/hello.txt from the server and
shows its content on-screen:

// 1. Create a new XMLHttpRequest object
let xhr = new XMLHttpRequest();

// 2. Configure it: GET-request for the URL /article/.../hello.txt
xhr.open('GET', '/article/xmlhttprequest/hello.txt");

// 3. Send the request over the network
xhr.send();

// 4. This will be called after the response is received
xhr.onload = function() {
if (xhr.status != 200) { // analyze HTTP status of the response

http://localhost:1339/promise-chaining

// if it's not 200, consider it an error
alert(xhr.status + ': ' + xhr.statusText); // e.g. 404: Not Found
} else {
// show the result
alert(xhr.responseText); // responseText is the server response
}
s

As we can see, there are several methods of XMLHttpRequest here. Let’s cover them.

Setup: “open”

The syntax:

xhr.open(method, URL, async, user, password)

This method is usually called first after new XMLHttpRequest . It specifies the main parameters of
the request:

« method — HTTP-method. Usually "GET" or "POST", but we can also use
TRACE/DELETE/PUT and so on.

URL —the URL to request. Can use any path and protocol, but there are cross-domain limitations
called “Same Origin Policy”. We can make any requests to the same protocol://domain:port
that the current page comes from, but other locations are “forbidden” by default (unless they
implement special HTTP-headers, we’ll cover them in chapter [todo]).

« async —if the third parameter is explicitly set to false, then the request is synchronous,
otherwise it’s asynchronous. We’ll talk more about that in this chapter soon.

« user, password —login and password for basic HTTP auth (if required).

Please note that open call, contrary to its name, does not open the connection. It only configures
the request, but the network activity only starts with the call of send.

Send it out: “send”

The syntax:

xhr.send([body])

This method opens the connection and sends the request to server. The optional body parameter
contains the request body. Some request methods like GET do not have a body. And some of them
like POST use body to send the data. We’ll see examples with a body in the next chapter.

Cancel: abort and timeout

If we changed our mind, we can terminate the request at any time. The call to xhr.abort() does
that:

xhr.abort(); // terminate the request

We can also specify a timeout using the corresponding property:

xhr.timeout = 10000;

The timeout is expressed in ms. If the request does not succeed within the given time, it gets
canceled automatically.

Events: onload, onerror etc

A request is asynchronous by default. In other words, the browser sends it out and allows other
JavaScript code to execute.

After the request is sent, xhr starts to generate events. We can use addEventListener or
on<event> properties to handle them, just like with DOM objects.

The modern specification = lists following events:

« loadstart —the request has started.

« progress —the browser received a data packet (can happen multiple times).
« abort —the request was aborted by xhr.abort() .

« error —an network error has occured, the request failed.

« load —the request is successful, no errors.

« timeout - the request was canceled due to timeout (if the timeout is set).

« loadend —the request is done (with an error or without it)

« readystatechange —the request state is changed (will cover later).

Using these events we can track successful loading (onload), errors (onerror) and the amount of
the data loaded (onprogress).

Please note that errors here are “communication errors”. In other words, if the connection is lost or
the remote server does not respond at all — then it’s the error in the terms of XMLHttpRequest. Bad
HTTP status like 500 or 404 are not considered errors.

Here’s a more feature-full example, with errors and a timeout:

<script>
function load(url) {
let xhr = new XMLHttpRequest();
xhr.open('GET", url);
Xhr.timeout = 1000;
xhr.send();

xhr.onload = function() {
alert(Loaded: ${this.status} ${this.responseText});

¥

xhr.onerror = () => alert('Error');

xhr.ontimeout = () => alert('Timeout!");

}

</script>

<button onclick="load('/article/xmlhttprequest/hello.txt"')">Load</button>
<button onclick="1load('/article/xmlhttprequest/hello.txt?speed=0"')">Load with timeout</button>

https://xhr.spec.whatwg.org/#events

<button onclick="load('no-such-page')">Load 404</button>
<button onclick="load("'http://example.com"')">Load another domain</button>

1. The first button triggers only onload as it loads the file hello.txt normally.

2. The second button loads a very slow URL, so it calls only ontimeout (because xhr.timeout is
set).

3. The third button loads a non-existant URL, but it also calls onload (with “Loaded: 404”),
because there’s no network error.

4. The last button tries to load a page from another domain. That’s prohibited unless the remote
server explicitly agrees by sending certain headers (to be covered later), so we have onerror
here. The onerror handler would also trigger in other cases if we start a request, and then
sever the network connection of our device.

Response: status, responseText and others

Once the server has responded, we can receive the result in the following properties of the request
object:
status

HTTP status code: 200, 404, 403 and so on. Also can be © if an error occured.

statusText

HTTP status message: usually OK for 200, Not Found for 404, Forbidden for 403 and so on.

responseText

The text of the server response,

EcTb 1 ewwé ogHO CBOUCTBO, KOTOPOE MUCMOSb3YeTCA ropasao pexe:

responseXML

Ecnn cepep BepHyn XML, cHabame ero npaBusibHbIM 3arosioBKOM Content-type: text/xml, TO
6paysep cosgacTt U3 Hero XML-gokymeHT. Mo Hemy MOXKHO 6yaeT aenaTtb 3anpochl
xhr.responseXml.querySelector("...") wn gpyrue.

OHO ncnonb3yeTcA penko, Tak Kak 06bl4HO ncnonb3ytoT He XML, a JSON. To ecTb, cepep
BosBpalaeT JSON B BUae TekcTa, KOTopbl 6paysep npeBpawlaeT B 06HEKT BbI30OBOM
JSON.parse(xhr.responseText) .

CUHXPOHHbIE U aCUHXPOHHbIe 3anpochbl

Ecnn B MeToge open ycTaHOBUTb NapameTp async paBHbiM false, TO 3anpoc 6ynet
CUMHXPOHHbIM.

CWHXPOHHbIE BbI30BbI MCNOMb3YOTCA YPE3BbIHaNHO PenKo, Tak Kak 6/1IoKUPYOT B3aMMogencTene
CO CTpaHuLEen 0o OKOHYaHMA 3arpy3ku. lNoceTutens He MOXET Aaxke NpokKpy4dmnBaTb €€. Hukakowm
JavaScript He MOXXeT ObITb BbINOSIHEH, NOKA CUHXPOHHbLIV BbI30B HE 3aBepLUéH — B 00LLeM, B
TOYHOCTW T€ XX€ OrpaHnNyeHmA Kak alert.

// CMHXPOHHbLIA 3anpoc
xhr.open('GET", 'phones.json', false);

// OTcblnaem ero

xhr.send();
// ...Becb JavaScript "nopBucHeT", noka 3anpoc He 3aBepwuTCA

Ecnu CMHXPOHHbIN BbI30B 3aHAN CNIULLKOM MHOMO BpeMeHW, To 6paysep NpeasioxXmnT 3aKpbiTb
“3aBuUcCLLyIO” cTpaHWULy.

N3-3a Takon 61OKMPOBKKM NOTyHaETCA, YTO HENb3A OTOCNaTh ABa 3anpoca 04HOBpeMeHHOo. Kpome
Toro, 3aberana Bnepéa, 3ameTumM, 4To pAL NPOABMHYTbIX BO3MOXXHOCTEN, TAKNX KaK BO3MOXHOCTb
AenaTb 3anpocbl Ha OPYron AOMEH N yKasbiBaTb TarMayT, B CUHXPOHHOM pexxmume He paboTatoT.

3 BCero BbiecKa3aHHOro y>ke A0/KHO 6bITb MOHATHO, YTO CUHXPOHHbIE 3aNpPOChl MCMNONb3YOTCA
YypesBblYaNHO PeaKo, a aCUHXPOHHbIE — NOYTK BCeraa.

[nA Toro, 4To6bI 3aNPOC CTaN aCUHXPOHHBIM, YKaXkeMm napameTp async paBHbIM true .

N3meHéHHbIN JS-Kopa:

var xhr = new XMLHttpRequest();
xhr.open('GET", 'phones.json', true);
xhr.send(); // (1)

xhr.onreadystatechange = function() { // (3)
if (xhr.readyState != 4) return;

button.innerHTML = 'ToToBo!';
if (xhr.status != 200) {
alert(xhr.status + ': ' + xhr.statusText);

} else {
alert(xhr.responseText);

}
}

button.innerHTML = '3arpyxaw...'; // (2)
button.disabled = true;

Ecnn B open ykasaH TpeTuun aprymeHT true (Mnv ecnv TpeTbero aprymeHTa HeT), TO 3anpoc
BbINOJSIHAETCA aCMHXPOHHO. OTO 03Ha4aeT, 4YTo nocne BbidoBa xhr.send() B cTpoke (1) KoA He
“saBucaeT”, a NPecrnoKOMHO NPOAOIKAET BbINOSHATLCA, BbINOSIHAETCA CTpoKa (2) , a pesynbrar
npuxoanT Yyepes cobbiTre (3) , Mbl U3YYMM €ro 4yTb No3Xe.

[MonHbIM NpyMep B OENCTBUN:

No such plunk "/article/xmlhttprequest/phones-async"

Co6biTue readystatechange

CobbiTne readystatechange npomcxoguT HECKOMBKO pas B NpoLecce OTChISIKM 1 NOyYeHUA
oTBeTa. [1pn 3TOM MOXXHO NMOCMOTPETL “TEKyLlee COCTOAHNE 3anpoca’ B CBOUCTBE
xhr.readyState.

B npvimMepe Bhbille Mbl UCMOJIb30BaNM TOIbKO COCTOAHNE 4 (3anpoc 3aBepLUéH), HO eCTb U apyrue.

Bce cocTosHUA, no cneumdukaumn = :

http://www.w3.org/TR/XMLHttpRequest/#states

const unsigned short UNSENT = ©; // HavanbHOe cocTofHue

const unsigned short OPENED = 1; // Bbi3BaH open

const unsigned short HEADERS_RECEIVED = 2; // nony4eHbl 3aroJsioBKu

const unsigned short LOADING = 3; // 3arpyxaeTcs Teno (Mnony4vyeH oyepefHoi NakeT [AaHHbIX)
const unsigned short DONE = 4; // 3anpoc 3aBepuwéH

3anpoc npoxoout nx B nopagke ® —» 1 — 2 — 3 — ... » 3 — 4, COCTOAHME 3 MNOBTOpPAETCA
npu KaXxgom nonyyYyeHunn odyepenHoro naketa gaHHbIX no ceTu.

Mpumep HMXKe OEMOHCTPUPYET NEPEKTIOYEHNE MeX Oy COCTOAHMAMKU. B HEM cepBep oTBeYaeT Ha
3anpoc digits, nepecbinanA no ctpoke na 1000 undop pas B CEKyHAOy.

No such plunk "/article/xmlhttprequest/readystate"

Touka pa3pbiBa NakeToB He rapaHTunpoBsaHa

[Mpn cocToAHMN readyState=3 (NonyyeH o4epenHON NakeT) Mbl MOXEM MOCMOTPETb
TeKylwue gaHHble B responseText W, Kazanocb 6bl, Mornu 6bl paboTaTb C 3TUMM OaHHBIMA
Kak C “OTBETOM Ha TEeKYLLMA MOMEHT”.

OpHako, TEXHUYECKN Mbl He ynpaBfiAem paspbiBamMmn Mexay ceTeBbIMU nakeTamu. Ecnu
npoTecTUpoBaTb NPMMEP Bbille B IOKaNbHOW CETK, TO B 60NbLUIMHCTBE Bpay3epoB pas3pbiBbl
6ynyT Kaxkable 1000 CMMBONOB, HO B peasibHOCTM NakeT MOXET npepBaTbcA Ha Ntobom GaunTe.

Yem 9710 onacHo? XoTA 6bl TEM, YTO CUMBOJIbI PYCCKOro A3blka B koguposke UTF-8
KOAMPYOTCA ABYMA 6anTaMn KaXkabl — N pa3pbliB MOXET BOSHUKHYTb MEXAY HUMM.

MonyuunTtca, 4To Npu o4epenHoM readyState B KOHUe responseText OyneTt 6aunT-
NnosiCMMBONA, TO €CTb OH HE ByeT KOPPEKTHOW CTPOKOM — 4acTbio oTBeTa! Ecnn B ckpunte
KaK-To No-ocobomy 3To He o6paboTaTb, TO HEU36EXXHBI NPOBEMDI.

HTTP-3aronoBku

XMLHttpRequest ymeeT Kak yKa3biBaTb CBOW 3arojioBKW B 3anpoce, Tak U YNTaTb NpUciaHHble B
OTBeT.

[na pabotbl ¢ HTTP-3aronoskamu ectb 3 meTtoaa:
setRequestHeader(name, value)
YCcTaHaBNMBaET 3arofiloBOK name 3anpoca Co 3HadeHnem value .

Hanpumep:

xhr.setRequestHeader('Content-Type', 'application/json');

OrpaHun4yeHUA Ha 3arosIoBKu
Henb3Aa ycTaHOBUTbL 3arofloBKW, KOTOpble KOHTponupyeT 6paysep, Hanpumep Referer wunu
Host w pAag apyrnx (NOMHbIA CINCOK TYT 2).

OTO orpaHNYeHne CyLecTBYeT B LieiAX 6e30MacHOCTM U 1A KOHTPOJIA KOPPEKTHOCTM
3anpoca.

http://www.w3.org/TR/XMLHttpRequest/#the-setrequestheader-method

MocTaBfIeHHbIA 3aro/IOBOK HeNb3A CHATb

OcobeHHOCTbIO XMLHttpRequest ABNAETCA TO, YTO OTMEHUTb setRequestHeader
HEBO3MOXKHO.

MoBTOpPHbIE BbI30BbI NLLb A06ABNAT MHOPMaLMIO K 3arofIoBKy, Hanpuvep:

xhr.setRequestHeader('X-Auth', '123");
xhr.setRequestHeader('X-Auth', '456");

// B pe3ynbTaTe byaeT 3aronoBOK:
// X-Auth: 123, 456

getResponseHeader (name)

BosBpallaeTt 3HayeHne 3aronoBka oTBeTa name , Kpome Set-Cookie u Set-Cookie2.

Hanpumep:
xhr.getResponseHeader ('Content-Type')

getAllResponseHeaders()

BosBpawaeT Bce 3aronoBku oTeeTa, Kpome Set-Cookie n Set-Cookie2.
3aronoBku BO3BpaLLAOTCA B BUAE €ONHOW CTPOKKU, Hanpumep:
Cache-Control: max-age=31536000
Content-Length: 4260

Content-Type: image/png
Date: Sat, 08 Sep 2012 16:53:16 GMT

Mexxay 3aronoBkamm CTOUT NepeBo CTPOKM B asa cmmeona "\r\n" (He 3asucut ot OC),
3Ha4YeHne 3arofioBka OTAEeNEeHO aBoeToumeM ¢ npobenom ": " . JTOT chopmaT 3anaH
cTaHOapToOM.

Takum 06pasom, ecrnim Xo4eTCA NONyYUTb OOBEKT C Napamun 3aro/i0BOK-3HAYEHNE, TO ATy CTPOKY
Heob6xoaMmo pa3butb n obpaboTaThb.

TaumayT

MakcurmasibHy0 NPOAO/IKNTENIbBHOCTb aCMHXPOHHOIO 3anpoca MOXHO 3a4aTb CBOUCTBOM
timeout :

xhr.timeout = 30000; // 30 cekyHA (B MUAIMCEKYHAAX)

Mpwv NpeBbILWEeHMM 3TOro BpeMeHu 3anpoc 6yaeT o60pBaH 1 CreHepmMpoBaHo cobbiTe ontimeout :

xhr.ontimeout = function() {
alert('U3BMHMTe, 3anpocC NpeBbLICUI MaKCUManbHoe Bpema');

}

MonHbIK CAUCOK COBbLITUN

CoBpeMeHHanA crieumdukauma = npegycmaTpusaeT cnegytowme cobbiTna no xoay 06paboTku
3anpoca:

+ loadstart —3anpoc Hauar.

* progress — 6paysep nony4yusn odepenHomn nakeT AaHHbIX, MOXXHO NpoYnTaTh TeKyLmne
noJlydyeHHble JaHHble B responseText .

« abort — 3anpoc 6bin OTMEHEH BbI3OBOM xhr.abort() .
* error —npousowsia ownbka.

+ load — 3anpoc 6bia ycrnewHo (6e3 ownboK) 3aBepLUEH.
« timeout — 3anpoc 6bin NnpekpaléH No TanmayTy.

+ loadend — 3anpoc 6bin 3aBEPLUEH (YCNELHO UM HEYCMNEeLIHO)

Ncnonb3ya aTn cobbiTMA MOXHO 6onee yaobHo oTcnexxmnsaTb 3arpy3ky (onload) n owmbky
(onerror), a TakXXe KONIMYECTBO 3arpy>XeHHbIX AaHHbIX (onprogress).

PaHee mbl Buoenu ewé ogHo cobbiTne — readystatechange . OHO NOABUIOCH ropasno paHbLue,
ewé 00 NoABMEHMA TeKyLero ctaHgapTa.

B coBpeMeHHbIx 6pay3epax OT HEro MOXHO 0TKasaTbCA B NOMb3Yy OPYrMX, HEO6XOANMO NKLb, Kak
Mbl yBUAUM fanee, y4ecTb ocobeHHocTn IE8-9.

IE8,9: XDomainRequest

B IE8 u IE9 nopopep>xka XMLHttpRequest orpaHuyeHna:

+ He noppep>xunBatoTcA cobbiTUA, KpoMe onreadystatechange .

+ HekoppeKkTHO nogaep>xxmnBaeTcA coCToAHNE readyState = 3 : 6pay3ep MOXET creHepupoBaTtb
ero TONbKO OOVH pa3 BO BpeMA 3anpoca, a He Npu KaXkaoMm nakeTe AaHHbIX. Kpome Toro, OH He
OAéT O0CTyn K OTBETY responseText A0 TOro, Kak oH 6yaeT [0 KOHLA MOosy4eH.

[eno B TOM, 4TO, KOrga cosgasanucb 3Tn 6paysepsbl, cneungukaunm 6biv He 4o KOHUA
npopaboTaHsbl. NoaTomy paspaboTyunkum 6paysepa pewnnm obaBnTb CBON 0OBHEKT
XDomainRequest , KOTOPbIN peann3oBbiBan YacTb BO3MOXHOCTEN COBPEMEHHOrO CTaHAapTa.

A 06bl4HbIN XMLHttpRequest pelwwwnnm He TporaTb, YTOObI HEHAPOKOM HE CloMaTb CyLLECTBYIOLNIA
Koa,.

Mbl noapo6Hee norosopumM nNpo XDomainRequest B rnase 2% "xhr-crossdomain” HNE DM £
A. Toka nUwb 3amMeTuM, 4YTO A1A TOro, YTobbl NONYYNTb HEKOTOPbIE N3 COBPEMEHHbIX
BO3MOXHOCTeM B |IE8,9 — BMecTOo new XMLHttpRequest() HYy>XHO MCnosb3oBaTb new
XDomainRequest .

Kpocc-6pay3epHo:

var XHR
var xhr

("onload" in new XMLHttpRequest()) ? XMLHttpRequest : XDomainRequest;
new XHR();

http://www.w3.org/TR/XMLHttpRequest/#events

Tenepb B IE8,9 nonaep>xusatotca cobblTnA onload, onerror U onprogress . 3TO UMEHHO AnA
IE8,9. InA IE10 obbl4HbIN XMLHttpRequest y>e ABNAETCA NOSIHOLEHHbIM.

IE9- n KewlumpoBaHue
O6bI4HO O0TBETHI Ha 3anpocbl XMLHttpRequest KewwupytoTcA, Kak 1 06blYHbIE CTPaHMLbI.

Ho IE9- no ymonyaHuio KelwmnpyeT BCe OTBETbI, HE CHab>XEHHbIe aHTUKELL-3arosioBkoM. [pyrue
6paysepbl 3TOro He genaroT. YTobbl 3TOro n3bexkaTb, cepBep JOMKEH A06aBUTb B OTBET
COOTBETCTBYIOLWME aHTUKELL-3aronoBKun, Hanpumep Cache-Control: no-cache.

Bripoyem, ncnonbaosatb 3aronoBku TmMna Expires, Last-Modified u Cache-Control
pekomMmeHayeTcA B Ntobom cny4yae, 4Tobbl faThb NOHATL 6pay3epy (He ob6A3aTenbHo IE), 4To emy
cnepyet pgenartb.

AnbTepHaTMBHbIN BapmnaHT — nobasnTb B URL 3anpoca cnyyanHbii napameTp,
npenoTBpaLlaloLLnii KelmpoBaHme.

Hanpumep, Bmecto xhr.open('GET', 'service', false) HanucaTtb:

xhr.open('GET', 'service?r=' + Math.random(), false);

Mo nCTOpMYECKM NPUYNHAM Takor Cnocob NpeaoTBpaLleHNA KewmpoBaHma MOXHO YBUOETb
MHOrO rge, Tak Kak ctapble 6pay3epbl N10xo obpabaTtbiBanu Kewmpytowme 3aronosku. Cenyac
cepBepHble 3arofloBKM NOAAEPXKUBAIOTCA XOPOLLO.

NToro

Tunoson kop anAa GET-3anpoca npy nomowm XMLHttpRequest :

var xhr = new XMLHttpRequest();
xhr.open('GET", '/my/url', true);
xhr.send();

xhr.onreadystatechange = function() {
if (this.readyState != 4) return;

// NO OKOHYaHMKU 3anpoca AOCTYMHbI:
// status, statusText
// responseText, responseXML (npu content-type: text/xml)
if (this.status != 200) {
// obpaboTaTb ownbKy

alert('owubka: ' + (this.status ? this.statusText : '3anpoc He ypanca'));
return;

}

// nony4nTb pe3synbTaT U3 this.responseText wnu this.responseXML

Mbl pasobpanu crnepytowme metogbl XMLHttpRequest :

« open(method, url, async, user, password)
« send(body)
« abort()

+ setRequestHeader(name, value)

« getResponseHeader(name)

« getAllResponseHeaders()
CeomnctBa XMLHttpRequest :

+ timeout

* responseText
* responseXML
+ status

e statusText
CobblITuA:

+ onreadystatechange
+ ontimeout

« onerror

+ onload

« onprogress

+ onabort

+ onloadstart

« onloadend

&

CSS-animations

Animate a plane (CSS)
CSS to animate both width and height:

/* original class */

#flyjet {
transition: all 3s;

}

/* JS adds .growing */

#flyjet.growing {
width: 400px;
height: 240px;

}

Please note that transitionend triggers two times — once for every property. So if we
don’t perform an additional check then the message would show up 2 times.

YRRy VATHREEHRLS 2

AT

http://plnkr.co/edit/3tMvNFEGBXXOGJP5syoD?p=preview

Animate the flying plane (CSS)

We need to choose the right Bezier curve for that animation. It should have y>1
somewhere for the plane to “jump out”.

For instance, we can take both control points with y>1 , like: cubic-bezier(0.25, 1.5,
0.75, 1.5).

The graph:

2 3

1

YRRy I ATHREEZRL

R

AT N

Animated circle

YRRy VATREEZRL

R

AT N

JavaScript animations

Animate the bouncing ball

To bounce we can use CSS property top and position:absolute for the ball inside the
field with position:relative.

The bottom coordinate of the field is field.clientHeight . But the top property gives
coordinates for the top of the ball, the edge position is field.clientHeight -
ball.clientHeight.

So we animate the top from @ to field.clientHeight - ball.clientHeight.
Now to get the “bouncing” effect we can use the timing function bounce in easeOut mode.

Here’s the final code for the animation:

http://plnkr.co/edit/8zovI0ZzLanZcldWBy3h?p=preview
http://plnkr.co/edit/o9dLxhPfXL1JxR9B34Ea?p=preview

let to = field.clientHeight - ball.clientHeight;

animate({
duration: 2000,
timing: makeEaseOut(bounce),
draw(progress) {
ball.style.top = to * progress + 'px'
}
3

YV PRy VATREZHRL &2

AT N

Animate the ball bouncing to the left

In the task Animate the bouncing ball we had only one property to animate. Now we need
one more: elem.style.left.

The horizontal coordinate changes by another law: it does not “bounce”, but gradually
increases shifting the ball to the right.

We can write one more animate for it.

As the time function we could use linear , but something like makeEaseOut(quad) looks
much better.

The code:

let height = field.clientHeight - ball.clientHeight;
let width = 100;

// animate top (bouncing)
animate({
duration: 2000,
timing: makeEaseOut(bounce),
draw: function(progress) {
ball.style.top = height * progress + 'px'
}
1

// animate left (moving to the right)
animate({

duration: 2000,

timing: makeEaseOut(quad),

draw: function(progress) {

ball.style.left = width * progress + "px"

}

})s

YRRy VATHREEHRLS e

AT\

Character classes

http://plnkr.co/edit/zJbDPVXyorAolcu8didO?p=preview
http://localhost:1339/task/animate-ball
http://plnkr.co/edit/1PGgwugoWOT1KOqcAhwK?p=preview

Find the time

The answer: \b\d\d:\d\d\b.

alert("Breakfast at ©9:00 in the room 123:456.".match()); // ©9:00

EUIN

Sets and ranges [...]

Java[~script]

Answers: no, yes.

In the script Java it doesn’t match anything, because [“script] means “any character
except given ones”. So the regexp looks for "Java" followed by one such symbol, but

there’s a string end, no symbols after it.
alert("Java".match()); // null

« Yes, because the regexp is case-insensitive, the [~*script] part matches the character
"S" .

alert("JavaScript".match()); // "Javas"

YA N

Find the time as hh:mm or hh-mm

Answer: \d\d[-:]\d\d .

let reg = H
alert("Breakfast at 09:00. Dinner at 21-30".match(reg)); // ©9:00, 21-30

Please note that the dash '-' has a special meaning in square brackets, but only between

other characters, not when it’s in the beginning or at the end, so we don’t need to escape it.

AT N

Quantifiers +, *, ? and {n}

How to find an ellipsis "..." ?

Solution:

let reg = 5
alert("Hello!... How goes?..... ".match(reg)); // ...y oo...

Please note that the dot is a special character, so we have to escape it and insert as \. .

AT

Regexp for HTML colors

We need to look for # followed by 6 hexadimal characters.

A hexadimal character can be described as [0-9a-fA-F] . Or if we use the i flag, then
just [0-9a-f].

Then we can look for 6 of them using the quantifier {6} .

As a result, we have the regexp: /#[a-f0-9]{6}/gi.

let reg = H
let str = "color:#121212; background-color:#AA@Qef bad-colors:f#fddee #fd2"

alert(str.match(reg)); // #121212,#AA00ef

The problem is that it finds the color in longer sequences:

alert("#12345678".match()) // #12345678

To fix that, we can add ﬁ to the end:

// color

alert("#123456".match()); // #123456

// not a color

alert("#12345678".match())5 // null
AT N

Greedy and lazy quantifiers

A match for /d+? d+?/

The resultis: 123 4.

First the lazy \d+? tries to take as little digits as it can, but it has to reach the space, so it
takes 123.

Then the second \d+? takes only one digit, because that’s enough.

EUIN

Find HTML comments

We need to find the beginning of the comment <! --, then everything till the end of --> .

The first idea could be <!--.*?--> —the lazy quantifier makes the dot stop right before --
>.

But a dot in Javascript means “any symbol except the newline”. So multiline comments
won'’t be found.

We can use [\s\S] instead of the dot to match “anything”:

let reg = H

let str = . <l-- My -- comment

test --> .. <l----> ..

s

alert(str.match(reg)); // '<!-- My -- comment \n test -->', '<l---->"
AT N

Find HTML tags

The solution is <[*<>]+>.

let reg = 5
let str = '<> <input type="radio" checked> ';

alert(str.match(reg)); // '"', '<input type="radio" checked>', '"'

XN

Capturing groups

Find color in the format #abc or #abcdef

A regexp to search 3-digit color #abc : /#[a-f0-9]{3}/1i.

We can add exactly 3 more optional hex digits. We don’t need more or less. Either we have
them or we don't.

The simplest way to add them — is to append to the regexp: /#[a-f0-9]{3}([a-f0-9]
{3})2/1

We can do it in a smarter way though: /#([a-f0-9]{3}){1,2}/1i.

Here the regexp [a-f0-9]{3} isin parentheses to apply the quantifier {1,2} toitasa
whole.

In action:

let reg = 5

let str = "color: #3f3; background-color: #AA@Qef; and: #abcd";

alert(str.match(reg)); // #3f3 #AAeef #abc

There’s minor problem here: the pattern found #abc in #abcd . To prevent that we can add
\b to the end:

let reg =

5
let str = "color: #3f3; background-color: #AA@@ef; and: #abcd";

alert(str.match(reg)); // #3f3 #AAoef

5 RXT N

Find positive numbers

An integer number is \d+ .

A decimal partis: \.\d+.

Because the decimal part is optional, let’s put it in parentheses with quantifier '?" .

Finally we have the regexp: \d+(\.\d+)?:

let reg = 5
let str = "1.5 0 12. 123.4.";

alert(str.match(re)); // 1.5, @, 12, 123.4

AT N

Find all numbers

A positive number with an optional decimal part is (per previous task): \d+(\.\d+)?.

Let’s add an optional - in the beginning:

let reg = H

let str "-1.5 0 2 -123.4.";

alert(str.match(reg)); // -1.5, @, 2, -123.4

EUIN

Parse an expression

A regexp for a numberis: -?\d+(\.\d+)? . We created it in previous tasks.

An operatoris [-+*/] . We put a dash - the first, because in the middle it would mean a
character range, we don’t need that.

Note that a slash should be escaped inside a JavaScript regexp /.../.

We need a number, an operator, and then another number. And optional spaces between
them.

The full regular expression: -?\d+(\.\d+)?\s*[-+*/]\s*-?\d+(\.\d+)?.

To get a result as an array let’s put parentheses around the data that we need: numbers and
the operator: (-?\d+(\.\d+)?)\s*([-+*/])\s*(-?\d+(\.\d+)?) .

In action:

let reg = H

alert("1.2 + 12".match(reg));

The result includes:

+ result[@0] == "1.2 + 12" (full match)

« result[1] == "1" (first parentheses)

« result[2] == "2" (second parentheses — the decimal part (\.\d+)?)

« result[3] == "+" (...)

« result[4] == "12" (..))

« result[5] == undefined (the last decimal part is absent, so it’s undefined)

We need only numbers and the operator. We don’t need decimal parts.
So let’s remove extra groups from capturing by added ?: , for instance: (?:\.\d+)?.

The final solution:

function parse(expr) {
let reg = 5

let result = expr.match(reg);

if (!result) return;
result.shift();

return result;

}

alert(parse("-1.23 * 3.45")); // -1.23, *, 3.45

AN

Alternation (OR) |

Find programming languages

The first idea can be to list the languages with | in-between.

But that doesn’t work right:

let reg 5
let str = "Java, JavaScript, PHP, C, C++";

alert(str.match(reg)); // Java,Java,PHP,C,C

The regular expression engine looks for alternations one-by-one. That is: first it checks if we
have Java, otherwise — looks for JavaScript and so on.

As aresult, JavaScript can never be found, just because Java is checked first.

The same with £ and C++.

There are two solutions for that problem:

1. Change the order to check the longer match first: JavaScript|Java|C\+\+|C|PHP.

2. Merge variants with the same start: Java(Script)?|C(\+\+)?|PHP.

In action:

let reg = H
let str = "Java, JavaScript, PHP, C, C++";

alert(str.match(reg)); // Java,JavaScript,PHP,C,C++

AT N

Find bbtag pairs

Opening tagis \[(b|url|quote)\].

Then to find everything till the closing tag — let’s the pattern [\s\S]*? to match any
character including the newline and then a backreference to the closing tag.

The full pattern: \[(b|url|quote)\][\s\ST*?\[/\1\].

In action:

let reg = 5

let str =~
[blhello![/b]
[quote]
[url]http://google.com[/url]
[/quote]

E)

alert(str.match(reg)); // [b]hello![/b],[quote][url]http://google.com[/url][/quote]

Please note that we had to escape a slash for the closingtag [/\1], because normally the
slash closes the pattern.

AT

Find quoted strings

The solution: /" (\\.|[*"\\])*"/g.

Step by step:

« First we look for an opening quote ™

« Then if we have a backslash A\ (we technically have to double it in the pattern, because
it is a special character, so that’s a single backslash in fact), then any character is fine
after it (a dot).

« Otherwise we take any character except a quote (that would mean the end of the string)
and a backslash (to prevent lonely backslashes, the backslash is only used with some
other symbol after it): [~"\\]

+ ...And so on till the closing quote.

In action:

let reg
let str

. "test me" .. ﬂSay A\ "HelIo\\"!" oo "\A\\N A\ o0 '

alert(str.match(reg)); // "test me","Say \"Hello\"!","\\ \""

AT

Find the full tag

The pattern start is obvious: <style.

...But then we can’t simply write <style.*?>, because <styler> would match it.

We need either a space after <style and then optionally something else or the ending > .

In the regexp language: <style(>]|\s.*?>).

In action:
let reg = 5
alert('<style> <styler> <style test="...">".match(reg)); // <style>, <style test="...">
B AT N

String start A and finish $

Regexp *$

The empty string is the only match: it starts and immediately finishes.
The task once again demonstrates that anchors are not characters, but tests.

The string is empty "" . The engine first matches the * (input start), yes it's there, and then
immediately the end $, it’s here too. So there’s a match.

EUIN

Check MAC-address

A two-digit hex number is [0-9a-f]{2} (assuming theiflag is enabled).

We need that number NN, and then :NN repeated 5 times (more numbers);

The regexp is: [0-9a-f]{2}(:[0-9a-f]{2}){5}

Now let’s show that the match should capture all the text: start at the beginning and end at
the end. That’s done by wrapping the patternin ~...$.

Finally:

let reg =

alert(reg.test('01:32:54:67:89:AB")); // true
alert(reg.test('0132546789AB')); // false (no colons)

alert(reg.test('01:32:54:67:89")); // false (5 numbers, need 6)

alert(reg.test('01:32:54:67:89:72")) // false (ZZ in the end)

5 AT N

iE \ : callbacks

A= ILINYIRFEDT-A—YaviahizH
YRRV IATHREEHL »

AN

Promise

promise O resolve ?

HAERE: 1.

resolve O2EBEOHFUH UFERINET, BER5 reject/resolve OHEIDIFEV
HUDHDEESINDHTY, I5RBRBZ3FUHUEEEINET,

Y RATN

promise TDiBIiE

function delay(ms) {
return new Promise(resolve => setTimeout(resolve, ms));

}

delay(3000).then(() => alert('runs after 3 seconds'));

CDH AU TIE. resolve HEIHEL CHUHIND CL(TFELTLIEEL, delay
DS (FMEDOEERVE A, TEEEZRIELET,

AN

promise TO7 Z_A—av{FEY—-o)L
B RRY IV ATREZRL »

RN

Promises ¥ —

Promise: then vs catch

http://plnkr.co/edit/H9fFJlODalIrxhXZJCGf?p=preview
http://plnkr.co/edit/Gtzo3NbRJSbAcVKubabP?p=preview

RZ: WA, ZhEREEULLHVEEA:

EBWTIH, ATFTIE f1 TIZ—DREEULREESE, .catch TUEINET:

promise
.then(f1)
.catch(f2);

LUDULZZTEREWVWXT:

promise
.then(f1, f2);

BERSIZ—RBFFI—VZETICEH 2EBOI-FE f1 OTFTOF = —VICERLESH
T9Y,

DELY . .then [FRD .then/catch NER/ITZ—ZEULEXYT, TDf6h. RVIDHIT
[FTIC catch HdH L. 2DEOHIE-HVEBA, BOT., IZ7—FNEBINEEA,

P SIZAN

setTimeout TOIL S —

T

BRE VLWWA, RITShEEA:

new Promise(function(resolve, reject) {
setTimeout(() => {
throw new Error("Whoops!");
}, 1000);
}).catch(alert);

FrT7H—ORTEoBY ., RO — RFOBYCIE "IBED try..catch" HHWET,
ZDEH, INTOEEI S —(FNIEBETNET,

ULHU. CZTEIZ—(3 executor NETHTIRL . ZORICERINE T, LD >
T. promise (FZNZNETEX B A,

AT N

Promise API

Fault-tolerant Promise.all

The solution is actually pretty simple.

Take a look at this:

Promise.all(
fetch('https://api.github.com/users/iliakan'),

fetch('https://api.github.com/users/remy'),
fetch('http://no-such-url")
)

Here we have an array of fetch(...) promises that goesto Promise.all.

We can’t change the way Promise.all works: if it detects an error, then it rejects with it.
So we need to prevent any error from occuring. Instead, if a fetch error happens, we need
to treat it as a “normal” result.

Here’s how:

Promise.all(
fetch('https://api.github.com/users/iliakan"').catch(err => err),
fetch('https://api.github.com/users/remy").catch(err => err),
fetch('http://no-such-url").catch(err => err)

)
In other words, the .catch takes an error for all of the promises and returns it normally. By

the rules of how promises work, if a .then/catch handler returns a value (doesn’t matter if
it’s an error object or something else), then the execution continues the “normal” flow.

So the .catch returns the error as a “normal” result into the outer Promise.all.

This code:

Promise.all(
urls.map(url => fetch(url))

)

Can be rewritten as:

Promise.all(
urls.map(url => fetch(url).catch(err => err))

)
YRRV IATHREEHL »

AT

Fault-tolerant fetch with JSON
YRRV IATHREZRHL »

AN

Async/await

Rewrite "rethrow" async/await

http://plnkr.co/edit/cxLtekFMlXICgb4GlgkS?p=preview
http://plnkr.co/edit/GvD8taUAwXd1Fb6LBvOp?p=preview

There are no tricks here. Just replace .catch with try...catch inside
demoGithubUser and add async/await where needed:

class HttpError extends Error {
constructor(response) {
super(” ${response.status} for ${response.url});
this.name = 'HttpError’;
this.response = response;
}
}

async function loadJson(url) {
let response = await fetch(url);
if (response.status == 200) {
return response.json();
} else {
throw new HttpError(response);
}
}

// Ask for a user name until github returns a valid user
async function demoGithubUser() {

let user;
while(true) {
let name = prompt("Enter a name?", "iliakan");

try {
user = await loadJson(https://api.github.com/users/${name});

break; // no error, exit loop
} catch(err) {
if (err instanceof HttpError && err.response.status == 404) {
// loop continues after the alert
alert("No such user, please reenter.");
} else {
// unknown error, rethrow
throw err;
}
}
}

alert(Full name: ${user.name}.);
return user;

}

demoGithubUser();

ZUIN

Rewrite using async/await

The notes are below the code:

async function loadJson(url) { // (1)
let response = await fetch(url); // (2)

if (response.status == 200) {
let json = await response.json(); // (3)
return json;

}

throw new Error(response.status);

}

loadJson('no-such-user.json")
.catch(alert); // Error: 404 (4)

Notes:
1. The function loadUrl becomes async.
2. All .then inside are replaced with await .

3. We can return response.json() instead of awaiting for it, like this:

if (response.status == 200) {
return response.json(); // (3)

}

Then the outer code would have to await for that promise to resolve. In our case it
doesn’t matter.

4. The error thrown from loadJson is handled by .catch.We can’t use await
loadJson(..) there, because we’re notin an async function.

AT N

