Properties of Light

- Visible light is a form of ______ energy that exhibits behavior as it travels through space.
 - o different wavelengths of visible light are interpreted by your eye as different colors
 - o other forms of EM radiation include
- Together, all forms of EM radiation form the

- Rutherford's model of the atom was pretty good, but it didn't explain exactly _____ the electrons were or
- The arrangement of electrons became clearer when experiments revealed the close relationship between .

Dual Nature of Light: light has properties of both _____ and ____.

Wave Properties of Light

- all types of light energy travel at the same speed
- $\lambda = \lambda = \text{distance}$ between two consecutive peaks in a wave
- $\underline{\hspace{1cm}} = \nu = \text{the number of}$ peaks that pass a point in space in one second

Relationship between wave velocity, wavelength, and frequency:

$$c = \lambda \times \nu$$

c is a constant (speed of light) = $3.0 \times 10^8 \text{ m/s}$

Example: The yellow light given off by a sodium vapor lamp used for public lighting has a wavelength of 589 nm. What is the frequency of this radiation?

Particle Properties of Light

1900: Max Planck looked at the emission of light from hot objects, & explained that: o a hot object does not emit radiation _____ [like a wave] o it instead emitted energy in He called this ______ $\underline{\mathbf{quantum}}$ (plural = quanta) – amount of energy gained or lost by an atom Relationship between energy of light and its frequency: $E = h \times v$ h is a constant (called Planck's constant) = $6.626 \times 10^{-34} \text{ J x s}$ Example: Microwave ovens emit microwave energy with a wavelength of 0.129 m. What is the energy of microwave radiation? Wave theory could not explain the ______:

o the emission of _____ [electricity] when ____ of a specific frequency shines on a metal o light with specific amount of _____ was capable of knocking the loose from metals Electrons knocked out 1905: Albert Einstein explained this & described light as a stream of particles called o Photon - of EM radiation with no mass carrying 1 quantum of energy. **Photoelectric Effect Explained:** Since now we know that different wavelengths of light carry different , the frequency tells us how much is needed to knock an _____loose from the metal. o Therefore, we know how tightly bonded the ______ is to the _____.