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Abstract: It is well known that cyclic codes are very useful because of their applications, since they are not
computationally expensive and encoding can be easily implemented. The relationship between cyclic codes and
invariant subspaces is also well known. In this paper a generalization of this relationship is presented between
monomial codes over a finite field F and hyperinvariant subspaces of [F”* under an appropriate linear transformation.
Using techniques of Linear Algebra it is possible to deduce certain properties for this particular type of codes,
generalizing known results on cyclic codes.
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1 Introduction

It is well known that error correcting codes and cryptographic systems have conflicting objectives, since the first
are codes protecting the information of occasional errors due to handling, that is, those searching to solve the
difficulties posed by unreliability of the channel, but cryptosystems, also called secret codes, try to ensure its
confidentiality, integrity and security. However, they also have complementary objectives. The difficulty for decoding
error correcting codes has been used to build cryptographic systems from these codes. Among these systems there
is the well known public key McEliece system. In this system the private key of each user is the generator matrix G
of a linear code C over a finite field IF; joint with a decoding algorithm. The matrix G is hidden by a permutation
matrix thus obtaining the public key, ([1], [2], [3]).

Alongside the use of cryptography to protect communications, there is the technique known as ‘“steganogra-
phy”’whose use is increasing and which consists in the concealment of information. It is used in order to protect
information in an anodyne numerical support and it is the support that is sent over a public transmission channel.
These techniques of concealment of information are based on cyclic codes over the ring Zg4, ([4], [5]). Possibly they
can improve the efficiency in dissimulation using a generalization of cyclic codes such as the monomial codes.

A first generalization of cyclic codes were constacyclic codes, introduced by E. R. Berlekamp in [6]. Monomial
codes are a broader generalization. Linear algebra as a tool to study such codes was introduced in [7]. Monomial
codes are widely used because they can be encoded with shift registers.

Let p be a prime number, ¢ = p* for some k > 1. A monomial g-ary code of length 1 can be defined through

an x n generator-matrix with the property that each row (except the last one) (¢, c2,...,cn), ¢; € GF(q) defines
the row as (a,cn,aic1,azca,...,an—1¢cn—1), Where ay, ..., a, are certain fixed elements of GF(g)\{0}. Cyclic
codes (a; = ... = a, = 1) and constacyclic codes (a; = ... = a,—1 = 1) are special subclasses of monomial

codes of GF(g)". Monomial codes can also be described in terms of linear algebra, which constitutes our starting
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point that will be the characteristic polynomial of the endomorphism of GF (¢)” whose matrix in the canonical basis
is the one representing the monomial code.

Recall that, given an endomorphism ¢ of a F-vector space E, a g-invariant subspace V' C E is hyperinvariant
when it is invariant under all linear transformations commuting with ¢.

2 Invariant subspaces of monomial matrices

Let p be a prime number, ¢ = pX for some k > 1 and F = GF(g) and F” thee n-dimensional F-vector space.

Leta = (ay,...ayn) be a set of n parameters of IF and consider the following linear map
g F" — F"
()
(x19"-axn) — (anxn5a1xl9"-aal’l—l-xl‘l—l)
whose associated matrix with respect to the canonical basis {¢1 = (1,0,...,0),ex = (0,1,...,0),e, =
(0,0,...,1)}is:
0 0... 0 ay
air 0... 0 O

Ag = 0Oaz... 0 0O )

0 0...an—1 O

This matrix is called a monomial matrix. We note that this matrix can be written as the product of a diagonal matrix

diag (a,,ai,...,an—1) and the permutation matrix
00...01
10...00
01...00
00...10
Properties

This matrix verifies:
) AZ=ay...anly
2) if[T—ja; #0then A7' = ol —AZ™" = AL where @ = (5;..... 5~

i=1%i

3) its characteristic polynomial is p,(s) = det(Az — sI,) = (=1)"(s" = [/— a;)-

s an’”

Proposition 2.1. Suppose that a = ]_[?=1 a; # 0. Then, the matrix (2) is equivalent under similarity to

00...0a
10...00
A, =|01...00

00...10

Proof. Itis easy to prove that
AgS = SA,
with
0 0 0 [I'=ai
ap 0 0 0
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In this section we prove that a ¢z-invariant subspaces are also ¢z-hyperinvariants; that is to say, invariant under all
linear maps commuting with ¢z, (see [8] and [9] for more information about these subspaces).
We need to know the centralizer of Az. To do that, we first calculate the centralizer of the matrix A,.

Proposition 2.2 ([7). ] The centralizer C(Ay) is the set of the matrices X in the form:

X ax| axy ax3 ...axXp—p AXp—|
Xn—1 Xp axy abxy ...ax,—3 axp—»
Xa =
X3 X4 X5 X6 ... 4axi axn
X3 X3 X4 X5 ... Xp ax
X] X2 X3 X4 ... Xp—1 Xn

Proposition 2.3. The centralizer C(Ag) of Ag is the set of the matrices Yz = SX,S™\, if AzS = SAq.

Proof. Proposition 2.2, we have X, Ay = AqXq. Then, SXo,S 1 Ag = AgSXqS™1. O
Note that if v = (v1,..., vy) is an eigenvector of Az, then:

anv, = Avg
ajvy = )va
arvy = Avs

3)

Ap—2Vp—2 = AVp—1
Ap—1Vp—1 = Avp

An—l An—2 A
v = . .1 4)
ay...ap—1 4z ...dp—1 an—1

and the following Proposition holds.

In particular, we have that

Proposition 2.4. Let & € GF(q)* be an element such that " = [[7_, a;. Then, the one-dimensional subspace [v]
spanned by the vector v given in (4) is an hyperinvariant subspace.

Proof.
Agv = Av
and given any Yz € C(Ag), then

ng =

S(xnl + xp—14g + xp—2A2 4+ ...+ x1AZ"HS ™y
= XpV + xp—1S4,8S v + xn_zSAgS_lv + ...+
+x2SAZ_zS_1v + xlSAg_lS_lv

= XpU + X1 AV + xp2A2v + ...+ x A1y

= v

witha = X, + Xp—1A + 242 + ...+ A2 4 A"~ L e F. O
Proposition 2.5. Let F be an invariant subspace of Ag. Then, F is hyperinvariant.

Proof. 1t suffices to observe that, for all Yz € C(Az),

SXoS™V = x, 1 + xp—1A47 + xn_zA%+ ot xlAg_l.



1102 =— M.I. Garcia-Planas et al. DE GRUYTER OPEN

Therefore, in this case the lattice of invariant subspaces coincides with the lattice of hyperinvariant subspaces:
Hinv (Ag) = Inv (Ag).

Definition 2.6. i) Letu = (uy,...,up) and v = (vy,...,vy,) be two vectors in . We define an inner product
over I as follows:
<uU,v>=uUv; +...+uyv,.

ii) Two vectors u, v in " are said to be orthogonal if < u,v >= 0.
iii) Let F be a subspace of F"'. The dual subspace of F (denoted by F=) is

Ft={elF"|VYueF, <uv>=0}
Proposition 2.7. Let F be an invariant subspace of Ag. Then F is an invariant subspace of A%l.

Proof. Letv € F-. Forall u € F (consequently, Azu € F) we have

— _ — t — n o gn—1
0 =< Agu,v >=<u, AZv >=<u, [Ti=: a,Ai v >
=<u, A=y >
a

Thus A;v e FL. O

Let F[A1,..., A;] be the algebraic extension of F = GF(q) and let Aq,...,A, be the eigenvalues of ¢z with

th oot of unity and {/ ]_[:’= 1 @; is a fixed, but otherwise

Ai = % ]_[l’-’=1/\i, i =1,...,n, where A is a primitive n
arbitrary zero of the polynomial s — [[7_, a;, where 0 # [[/_, a; € F.

Letv;,i = 1,...,n be the respective eigenvectors. More particularly we have

! a2 Ai 1)

s seees s
al...dp—1 d4az...dp—1 apn—1

Agvi = Ajvi, v = (

i=1,...,n,
where Ag is the matrix associated to

@z FAL, .. An)t — FlAg, ..., An]"

(defined as in 2).
Let us consider the basis v = (vy,..., v,) of eigenvectors of ¢z. Applying basis change to Az, we obtain the
following diagonal matrix
A1 0 ... 0
0Ar... 0O |
Dgz=|. . . |=8"4S§
0 0 ...4,
and taking into account (4) we have
Al sl Ap—l
01).;’1.’%—1 al)@%—l al)-t-za_ré—l
az...dy—1 az...dp—1 """ az...dp—
S = :
Al Ao An
an—1 an—1 an—1
1 1 1
We define now the following vectors:
u; = (Ajay .. .an_l,kl.zaz ceilp—1, ... ,A”_lan_l,kl’.’),

&)

1<i<n
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Proposition 2.8. The set of vectors defined in (5) verify the following relationship.

ay...apnifi = j
<u,~,vj>:% " J

0 ifi #j
Proof.
Aban=e)¢
<upvy >=Y g AT =3 % =
j

2\ A"

n n

zio (57) 4 =i (57) - -
al...anzz;lle:al...annifi:j

ar...an y y—1(A)¢ = 0 (with A aroot of unit) if i # j

From this Proposition the inverse matrix of the matrix .S can easily obtained.

3 Monomial codes as invariant subspaces

Definition 3.1. A code C of length n over the field F is called monomial with respect to ay, ..., dn, if whenever
¢ =(c1,...,cn) belongs to C, then sc = (ancy,aici,...,an—1cn—1) is also in C.
The shift (the map ¢ — sc) can be represented in a matrix form

0 0... 0 ay c1 anCp
ar 0 ... 0 O 2 aicq
0Oar... 0 O c3 | = anco
0 0...ap—1 O Cn an—1Cn

Note that this matrix is the matrix (2).

In the particular case where a; = 1, for all i, the code is a cyclic code and if a1 = ... = a,—1 = lisa
constacyclic code (see [10]).

Applying Proposition 2.1 the study can be reduced to the case of constacyclic codes. Nevertheless, we will not
make use of this result, but directly consider monomial codes.

We are interested in the case where a,, # a; for some i = 2,...,a,—1 and ]_[,’-'=l a; # 0. In particular, we
need to consider g > 2. As an immediate consequence of Definition 3.1 we have the following Proposition.

Proposition 3.2. A linear code C with length n over the field F is monomial if, and only if, C is an Ag-invariant
subspace of F".

And after Proposition 2.5 we have the following result.

Proposition 3.3. A linear code C with length n over the field F is monomial if, and only if, C is an Ag-hyperinvariant
subspace of F".

Suppose now that (n,q) = 1 and pg(r) = (—=1)"(t" — [[/—, ;) has no multiple roots and splits into distinct
irreducible factors.
General Linear Algebra theory over finite fields yields the following statement.

Proposition 3.4. Let C be a monomial code, and

pa(s) = (=1)"pa,(s)- ... pa,(s)

the decomposition of pg(s) into irreducible factors. Then C = Ker Pa;, (A7) ® ... ® Ker pg; (Ag) = Kerh(4g),
h(s) = pa;, (s) : .t pay, (s) for some minimal Ag-invariant subspaces Ker pa;, (Ag) de F".
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Example 3.5. Consider the matrix Ag with a, = 2,a1 = 4, a» = ... = an—1 = I, n = 8andq = 5.
Then p(s) = pa(s) = s8 — 1. Factorizing p(s) into irreducible factors over F = GF(5) we have pz(s) =
P1(5)p2(5) p3(s) pa(s) p5(s)pe(s) = (s + D(s + 2)(s + 3)(s + 4)(s* + 2)(s* + 3). The factors p;(s) define
minimal Ag-invariant subspaces, F; = Ker p; (Ag), fori =1,2,3,4,5,6.

Let us consider

C = F1 & F5 = Ker (p1(4z)) ® Ker (p5(4z))

Ker (A2 + A2 4+ 245 +21) =
20000133
22000034
24200003
44420000
03442000
00344200
00034420
00003442

Ker

This is a monomial code, C = Ker h(Agz) with h(s) = p1(s)ps(s) = s> + 52 4+ 25 + 2.

Example 3.6. With the notations as in the Example above,

Pz(s)
h(s)

It is straightforward to check that

g(s) = = p2(s)p3(s) pa(s) pe(s) = s° + 9s* + 295> + 5357 + 785 + 72

(A2 + 9A% + 2943 + 5342 + 7845 + 721)(v1) =0
a a a a

(A2 + 9A% + 2942 + 5342 + 7845 + 721 )(v2) =0
(A3 + 9A% + 2943 + 5342 + 7845 + 721 )(v3) =0

with
vy =(1,4,2,1,3,4,2,1),v2 = (1,0,4,0,2,0,1,0),v3 = (0,3,0,4,0,2,0, 1).

Corollary 3.7. Let C be a monomial code. There exists g(s) verifying pz(s) = g(s)-h(s) with gcd(g(s), h(s)) =1
such that g(Ag)c =0, Ve € C.

Considering the inner product introduced in definition 2.6.

Proposition 3.8. Ler C be a monomial code with respect ay, . .., an. Then, its dual code Ct is a monomial code
with respect a]—l, . %.

Proof. The statement follows from Proposition 2.7. O
In the case a; = ... = a, = 1 we obtain the well known result about cyclic codes.

Corollary 3.9. The dual of a cyclic code is a cyclic code.

4 Parity matrices of monomial codes

LetF[A1,...,A,] be the algebraic extension considered in Section 2.
Let C be a monomial code and g(s) as in corollary 3.7. Let us consider a basis v = (vy, ..., v,) of eigenvectors
of pg.

In this basis, the matrix of ¢z is a diagonal matrix, which will be denoted by Dg.
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Since Dy is a diagonal matrix, the matrix g(Dg) is also diagonal and

g(Az) = g(SDzS™") = Sg(Dz)S ™!

Condition g(Ag)c = 0 is equivalent to g(Dgz)c’ = 0 where ¢’ = S~ l¢.

Without loss of generality we can assume that A1, ..., A, are ordered in such a way that g(4;) = 0, for all
I <i<kandg(A;) =a; #0,forallk + 1 <i <n.With h(s) as in corollary 3.7, h(A;) # 0, forall 1 <i <k
and h(A;) = 0,forallk +1 <i < n.Givenc = (c1,...,¢y) € Cand ¢’ = (c].....c;) = s~ 1¢ we have that
g(Dgz) =(0,...,0, 0541 Cl/c—}-l’ ..., apc),). Equivalently:
0
Aidai...anp—1 )\%az...an_1 /'L'll_lan_l )\1’ 1
1 . 0 Azaj...an—1 )\%az...an71 )\gflanfl )\g €2
ai...apn k+1 : :
Andi...apn—1 k%az...an_1 Aﬁ_lan_l Al n
On
0
T C1
1 ) c2
= a o anm 1 Ak411 - eAn—1 QR AR )= 0
Cn
a,,)knaf...an_l an.)u’,}

Then we can deduce the following proposition.

Proposition 4.1. Letu;;, 1 < j <r = n —k be a family of vectors as in (S) corresponding to A;;, with g(A;;) =
a;; # 0. Then c is a codeword of the monomial code C if and only if

uj;c = 0, foralll1 < j <r.

As a consequence the matrix 4 = (u;;) € M(n—k)xn(F[A1,...,A,]) is a parity matrix of the monomial code over
the field F[Aq, ..., A,].

Example 4.2. Over F = GF(5) we consider a monomial code C witha, = a; =2, a> = ... =a—1 = 1 and
n = 4 defined by g(s) = s2—2. Over F[</2,4~/2, \/3, 4/3], the polynomial h(s) = s2+2 = (s—/3)(s —4-/3).

Then
V3:233-/34
3-4332-/34

is a parity matrix of the code C over F[/2,4+/2, v/3,4/3].

5 Hamming distance of monomial codes

Remember that the Hamming weight (for short, weight) of a vector v is the number of its nonzero entries and is
denoted wyz (v). We have wg (x) = dg (x,0). The minimum weight of a code C is the minimum nonzero weight
among all codewords of C,
Winin(€) = ming«yec (wa (X))

Taking into account that d gy (x, y) = dp (x—z, y—z) for all z and that in particular d7 (x, y) = dg (x—y,y—y) =
dr(x — y,0) we have that over a field, the Hamming distance is translation invariant and, in particular, for linear
codes, the minimum weight is equal to the minimum distance.

We are going to obtain a bound for the minimum distance of two parametric monomial codes in a similar way
to that presented by Roos in [11] for cyclic codes.

Let IF be a finite field and
ail ... dani
A= (al ...an) =

dlg ... dpye
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Let C be a linear code over F having A as a parity matrix and dz7 (A) the minimum distance of C.
Remember that dy (A) = d if and only if every set of d — 1 columns is linearly independent and some set of d
columns of A is linearly dependent.
X11 ... X1n

For any matrix X = : : with nonzero columns x; € F" for 1 <i < n we consider

Xml -+« Xmn

AX) = (x1®al ... Xp ®an)

The following result is well known due to Roos ([12]).

Lemma 5.1. If diy (A) > 2 and every m x (m + dg (A) — 2) submatrix of X has full rank, then dp (A(X)) >
dy(A) +m—1.

Definition 5.2. Let M = [A;,,...,A;,] be a set of € roots of s — [1/—, a; in F[A1, ..., Ay). We will say that
M is a consecutive set of length £, if there exists a primitive n-root of the unit A and an exponent i such that
M =3 qu:] ai)ti, ces v/ l_[?=1 aili—i_e_l].

Definition 5.3. a) Let A = [A,....,;,] be a set of zeros of the polynomial s" — [ —, a;. We define the matrix

)leal oo dp—1 )ka.laz...a,,_l A;‘l
AA = € Mﬁxn(F[Ala--qAn])-

, 2 n
/\Mal co.Ap—1 Ajeaz...an_l /\jl

b) LetU = [x1,...,Xxm]| be a set of consecutive zeros of the polynomial s — 1. We define the matrix

X1 )cl2 cooxy

Xv=|: : C | € Mpxcn (F[A g, ..., An)).
Xm X2, ... xI,

Let C be the monomial code defined by the polynomial pz(s) = g(s) - h(s) over the splitting field F[Aq,..., ;]

of pz(s) and consider now as A the set of all zeros of A(s). Following 4.1 the matrix A is a parity matrix of the

code C, if the minimum distance of C over F[A1,...,A,]is dg (A ). Then, the minimum distance of C over F is

at least dpy (A ), since C over F is a subfield subcode of C over F[A1,...,A,].
Remark 5.4. Notice that the minors of A are of Vandermonde type.

Theorem 5.5. Let A be the set defined in 5.3 and U be a consecutive set of roots of s" —1 such that dg (Ap)—2 > 0.
Then, dpy (AA(Xv)) = d(Ay) + cardU — 1.

Proof. Tt suffices to observe that in this particular setup dz7 (AA) > 2, then we can apply Lemma 5.1. O

As a Corollary we obtain the following result.

Theorem 5.6. Let C be a monomial code of length n over F, and pg = g(s)h(s). For some integers £,m > 1,
suppose that h(s) has a string of m consecutive zeros: h(Ag) = h(Ag41) = ... = h(Ap4m—1) = 0. Then, the
minimum distance of C is at least d.

Example 5.7. Letn = 9,q =7, a, =2, a1 =3,a2 = ... = an—1 = 1 and let a be a 18th-primitive root of
unity. Taking into account that (x'8 — 1) = (x° — 1)(x® + 1), « is a root of x° + 1 and «® = B is a primitive
root of x° — 1. We want to classify the zeros with respect to the various irreducible polynomial divisors of x° + 1.
We will determine the cyclotomic cosets of 7 modulo 18 containing the odd integers: C1 = [1,7,13], C3 = [3],
Cs =[5,17,11], Cg = [9], C15 = [15].
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Let the zeros of h(s) be o' withi € C1 UCs, so h(s) = (s —a)(s —a)(s —a'3) (s —a®) (s —al7) (s — ).

Given that B; = af’ = a2 11 the zeros of h(s) can be written as B2,B3; Bs.Be; g, Po. Since h(s) has a string of
two consecutive zeros. Then, the two parametric monomial code has a minimum distance d > 3.
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