Dhirubhai Ambani Institute of Information and Communication Technology

1 Mathematical Aptitude and Reasoning All candidates must attempt Part-1

1. If the arithmetic mean of a and b is

$$
\frac{a^{n}+b^{n}}{a+b}
$$

then
(a) $n=0$
(b) $n=1$
(c) $n=2$
(d) $n=-1$
(e) none of these
2. What is the value of the following limit?

$$
\lim _{x \rightarrow 4}\lfloor x-4\rfloor+|x+4| .
$$

where $\lfloor x\rfloor$ is the greatest integer function.
(a) 0
(b) 4
(c) 2
(d) 8
(e) none of these
3. Which of the following statement is true for the function $f(x)=\lfloor x+9\rfloor$?
(a) The function $f(x)$ is continuous at $x=-9$ but not differentiable at $x=-9$
(b) The function $f(x)$ is continuous at $x=-9$ but differentiable at $x=-9$
(c) The function $f(x)$ is continuous and differentiable at $x=-9$
(d) The function $f(x)$ is neither continuous nor differentiable at $x=-9$
(e) none of these
4. The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is
(a) convergent
(b) divergent for $n=-2$
(c) divergent
(d) divergent for $n=2$
(e) none of these
5. $\frac{d y}{d x}+y=0$ has solution
(a) $y=e^{-x}+c$
(b) $x=e^{y}+c$
(c) $y=e^{x}+c$
(d) $x=e^{-y}+c$
(e) none of the above
6. The propositional logic formula $p \Rightarrow q$ is equivalent to:
(a) $p \wedge q$
(b) $\bar{p} \vee \bar{q}$
(c) $\bar{p} \vee q$
(d) $\bar{p} \wedge \bar{q}$
(e) none of the above
7. Consider the First Order Logic formulae $\mathcal{F}_{1}=\exists x \forall y(\ldots)$ and $\mathcal{F}_{2}=\forall y \exists x(\ldots)$. Which of the following is true?
(a) $\mathcal{F}_{1} \Rightarrow \mathcal{F}_{2}$
(b) $\mathcal{F}_{1} \Leftrightarrow \mathcal{F}_{2}$
(c) $\mathcal{F}_{2} \Rightarrow \mathcal{F}_{1}$
(d) It depends on the propositional logic form represented in the bracket as (...)
(e) none of the above
8. Suppose two unbiased (six-sided) dice are rolled. The outcome represented as the total of the values shown by the two dice is a random variable and can take values in the range $\{2, \ldots, 12\}$. Which of these outcomes has highest probability of occurrence?
(a) 9
(b) 12
(c) 3
(d) 7
(e) none of the above
9. Rank of the matrix A given below is

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
2 & 4 & 6
\end{array}\right)
$$

(a) 1
(b) 2
(c) 3
(d) 4
(e) none of the above
10. The Eigen values of the matrix A given below are

$$
A=\left(\begin{array}{ccc}
2 & 8 & 16 \\
0 & 3 & 9 \\
0 & 0 & 4
\end{array}\right)
$$

(a) $2,2,2$
(b) 2,3,4
(c) $0,1,2$
(d) $3,4,0$
(e) none of the above
11. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ is
(a) convergent
(b) absolutely divergent
(c) divergent
(d) divergent for $n=2$
(e) none of these
12. The differential equation $\left(\frac{d y}{d x}\right)^{2}+y^{2}=0$ has
(a) only one real solution
(b) no real solution
(c) two real solutions
(d) three complex solutions
(e) none of these
13. If set $A=\{2,4, \ldots, 2 n\}$ then power set of A has
(a) 2^{n-1} elements
(b) 2^{n} elements
(c) 2^{n+1} elements
(d) 2^{n-5}
(e) none of these
14. A function f is said to be one-to-one and onto if
(a) Whenever $f(x)=f(y) \Rightarrow x=y$
(b) Whenever $f(x)=f(y) \Rightarrow x \neq y$
(c) Whenever $f(x) \neq f(y) \Rightarrow x \neq y$
(d) Whenever f is injective
(e) none of these
15. A function f is said to be one-to-one if
(a) Image set is super set of codomain
(b) Image set is sub set of codomain
(c) Image set is dense
(d) Image set is equal to codomain
(e) none of these

2 Mathematics, Physics, Computer Science and IT, Electronics and Communication, Bioinformatics and Biomedical Engineering All candidates must attempt atleast one section

A. Mathematics and Physics

1. Give an example of a real-valued function which is discontinuous everywhere on \mathbb{R}. Justify your answer.
2. How many groups are there of order 4? Justify your answer by writing their Cayley Tables.
3. For a prime number p define a $p \times p$ matrix V_{p} as

$$
V_{p}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & 2 & 2^{2} & \cdots & 2^{p-1} \\
1 & 3 & 3^{2} & \cdots & 3^{p-1} \\
1 & 4 & 4^{2} & \cdots & 4^{p-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & (p-1) & (p-1)^{2} & \cdots & (p-1)^{p-1} \\
1 & p & p^{2} & \cdots & p^{p-1}
\end{array}\right] .
$$

Find the rank of V_{p}.
4. Show that the complex valued function $f(z)=|z|^{2}$ is differentiable only at $z=0$. Will it be analytic at origin? Justify your answer.
5. Solve the following differential equation.

$$
\frac{d^{2} y}{d x^{2}}+9 y=\sin 2 x+\cos (\sqrt{3} x)
$$

6. A free particle of mass m is given an initial velocity v_{0}. If the dissipative force acting on the particle is given by $-\gamma v^{2}$ (v is the speed of the particle and γ is the dissipation constant), calculate and sketch v as a function of time. Compare your result with the one obtained when the dissipative force varies linearly with the velocity $(-\gamma v)$.
7. The electric field of an electromagnetic wave propagating through vacuum is given by

$$
\vec{E}(\vec{r}, t)=E_{0} \cos (4 \pi x-3 \pi y-\omega t)
$$

(a) Calculate the wave vector \vec{k}.
(b) If this field is acting on a point charge q moving with velocity $v=v_{0} \hat{x}$ at $t=0$, calculate the instantaneous Lorentz force acting on the point charge.
8. A particle with mass m moves in a potential given by

$$
V(x)= \begin{cases}V_{0}, & x>0 \\ 0, & \text { otherwise }\end{cases}
$$

(a) What is the general solution for the wave functions in regions I \& II, if the energy of the particle $E<V_{0}$.
(b) Calculate and make a plot of the reflection coefficient for $0<E<2 V_{0}$.
9. Consider a Young's 2-slit experiment in which the separation between the two slits is a.
(a) Calculate and sketch the interference pattern obtained on a screen kept far away from the slits when they are illuminated by monochromatic light.
(b) Explain the effect on the interference pattern when the slit separation is increased by means of a representative sketch.
(c) What would happen to the interference fringes in (a) when a thin film of refractive index μ and thickness t is placed in the path of one of the interfering beams?

B. Computer Science and Information Technology

1. Consider a stack $S[1, \ldots, n]$ of n elements stored in an array implementation with the array running from index 1 to index n (top of the stack). Write a pseudocode for reversing the elements t of the stack such that $i \leq t \leq j$. The other elements of the stack must retain their positions at the end of the process. You are allowed to use two extra stacks S_{1} and S_{2} each the same size as S. What is the time complexity of the procedure as a function of n, i, j ? Would a similar problem take more or less time if we were given the input in a queue, and allowed to use two extra queues?
2. Assume we have a connected simple undirected graph G with a specific adjacency list representation. Suppose running BFS and DFS on this graph starting from the same source vertex, results in the same tree (BFS Tree and DFS Tree respectively). Additionally, the order in which the various vertices of the graph are visited by the two algorithms is the same. What can you conclude about the graph we started with and also the vertex from which BFS and DFS were initiated?
3. Consider two random permutations of the integers $\{1, \ldots, n\}$ and you need to determine which of the two appears first in the lexicographic ordering of all the permutations. Will you look for the first discrepancy starting from the left end, starting from the right end or any arbitrary position where the two permutations differ? Explain your decision.
4. Consider a DFA (deterministic finite automaton) \mathcal{A} with 8 states. Let the language accepted by it be represented by $L(\mathcal{A})$. The automaton \mathcal{A} accepts a particular word of length 12 characters. Given this information, determine the number of words in $L(\mathcal{A})$.
5. Draw a DFA (deterministic finite state automaton) which accepts the language over the alphabet $\Sigma=\{a, b\}$ in which each word contains an odd number of a 's and an odd number of b 's.
6. Using counting semaphores, solve the readers-writers problem with following attributes: If both Readers and Writers are present, they must alternate with each having exclusive access to the resource.
7. Explain the basic attributes of a memory subsystem that supports demand paging.
8. Briefly outline the relative merits and demerits of ALOHA and Slotted ALOHA protocols. Give example where the use of one protocol is preferable over the others.
9. A group of 10 class-C address blocks are required to serve an organization. Using a concrete example, describe a CIDR (classless inter-domain routing) scheme for efficient routing.

C. Electronics and Communication

1. Medium $1(z \geq 0)$ has a dielectric constant of 2 and a conductivity of $40 \mu S / m$. Medium $2(z \leq 0)$ has a dielectric constant of 5 and a conductivity of $50 \mathrm{nS} / \mathrm{m}$. If \vec{J}_{2} has a magnitude of $2 \mathrm{~A} / \mathrm{m}^{2}$, and $\theta_{2}=60$ with the normal to the interface, compute \vec{J}_{1} and θ_{1}. What is the surface charge density at the interface? $\left(\epsilon_{0}=\frac{10^{9}}{36 \pi} \mathrm{~F} / \mathrm{m}\right)$
2. (a) Using the concept of displacement current, explain how the differential form of Ampere's law in static magnetic field is modified for time-varying electromagnetic field.
(b) A lossless transmission line is 80 cm long and operates at a frequency of 600 MHz . The line parameters are $\mathrm{L}=0.25 \mathrm{H} / \mathrm{m}$ and $\mathrm{C}=100 \mathrm{pF} / \mathrm{m}$. Find the characteristic impedance, the phase constant, the velocity on the line, and the input impedance for load.
3. Consider the first-order difference equation $y[n]-\frac{1}{2} y[n-1]=x[n]$. Assuming the condition of initial rest (i.e., if $x[n]=0$ for $n<n_{0}$, then system output $y[n]=0$ for $n<n_{0}$), find the impulse response of the system.
4. Using zero locations of FIR filters, justify clearly as to why we can't design FIR filters in analog domain.
5. Let $s(t)$ be a general angle modulated signal given by $s(t)=A_{c} \cos \left[\theta_{i}(t)\right]=A_{c} \cos \left[\omega_{c} t+\phi(t)\right]$. It is given that when the modulating signal is $m(t)=\cos \left(\omega_{m} t\right), s(t)$ has the instantaneous frequency given by $f_{i}(t)=f_{c}+2 \pi k f_{m}^{2} \cos \left(\omega_{m} t\right)$, where k is a suitable constant.
(a) Find the expression for $\theta_{i}(t)$ and $s(t)$.
(b) Now, if the modulating signal is $m(t)$, what could be the general expression for $\theta_{i}(t)$ and $s(t)$.
6. Suppose that X takes on one of the values $0,1,2$ and there exists a constant c such that $P(X=i)=$ $c P(X=i-1), i=1,2$. What would be the value of c such that $E(X)=10 / 7$?
7. A random variable X has the following probability function

x	0	1	2	3	4	4	6	7
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	0	k	2 k	2 k	3 k	k^{2}	$2 k^{2}$	$k^{2}+7 k$

Find i) The value of k ii) $E(X)$

$\left\{\mathrm{S}_{1}, \mathrm{~S}_{0}\right\}$	Function
00	Load back the present output of the FFs (@ clk-edge)
01	Load external inputs (@ clk-edge)
10	Load back the inverted version of the present output of the FFs (@) clk-edge)
11	Shift (and rotate) left (@ clk-edge)

\qquad
${ }^{0}$ I

	A_{3}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$
At time t_{1}				
At time t_{2}				
At time t_{3}				
At time t_{4}				
At time t_{5}				
At time t_{6}				
At time t_{7}				
At time t_{8}				
At time t_{9}				
At time t_{10}				

9. For the circuit given in Fig.1, find the branch currents I_{1}, I_{2}, and I_{3}, at node A.

Answer: $\mathrm{I}_{1}=$ \qquad

$$
\mathrm{I}_{2}=
$$

\qquad

$$
\mathrm{I}_{3}=
$$

\qquad

Fig. 1
10. In Fig. 2, a circuit based on an $N P N$ BJT is given. As shown, $V_{i n}=10 \mathrm{~V}$, and $V_{C C}=10 \mathrm{~V}$. Assume, $V_{B E-\text { sat }}$ $=0.7 \mathrm{~V}, V_{C E-s a t}=0.1 \mathrm{~V}$, and $h_{F E}=30$. Now answer the following questions:
10.1 Find the values of base current I_{B} and collector current I_{C}.

Answer: $\mathrm{I}_{\mathrm{B}}=$ \qquad

$$
\mathrm{I}_{\mathrm{C}}=
$$

\qquad
10.2 Find $\mathrm{I}_{\mathrm{B} \text {-sat. }}$. Is the BJT operating in Saturation?

Answer: $\mathrm{I}_{\mathrm{B} \text {-sat }}=$ \qquad
Saturation? (YES / NO)
10.3 Find the maximum value of R_{B} for which the transistor will be in saturation?

Answer: $\mathrm{R}_{\mathrm{B}}=$ \qquad

Fig. 2.
11. Draw the schematic diagram for a 4-to-16 decoder with Enable using four 2-to-4 decoder with Enable, one 2-to-4 decoder without Enable, and some gates. The 4-to-16 decoder with Enable has inputs $\left[A_{3} A_{2} A_{1} A_{0}\right]$ and enable E_{n}, and outputs [D_{0} to D_{15}]. Use the symbol (shown in Fig. 3) for the 2-to-4 decoder with Enable and 2-to-4 decoder without Enable. For multi-bit variables A, D, and S, assume that subscript-0 is the LSB bit. Clearly label all your inputs and outputs in the entire schematic.

Fig. 3

D. Bioinformatics and Biomedical Engineering

1. Suppose you downloaded the genome of a species from NCBI. It is given below:

LOCUS	DQ823385 675 bp mRNA linear VRL 08-APR-2009
DEFINITION	Influenza A virus (A/swine/Hangzhou/1/2006(H9N2)) nonstructural protein 1 (NS1) mRNA, complete cds.
ACCESSION	DQ823385
VERSION	DQ823385.1 GI:110809858
KEYWORDS	
SOURCE	Influenza A virus (A/swine/Hangzhou/1/2006(H9N2))
ORGANISM	Influenza A virus (A/swine/Hangzhou/1/2006(H9N2))
	Viruses; ssRNA negative-strand viruses; Orthomyxoviridae; Influenzavirus A.
REFERENCE 1 (bases 1 to 675)	
AUTHORS	Wang,F.-K., Yuan,X.-F., Wang,Y.-C., Zhang, C., Xu,L.-H. and Liu,S.-D.
TITLE	Cloning, prokaryotic expression and antigenicity analysis of NS1 gene of H9N2 swine influenza virus
JOURNAL	Unpublished
REFERENCE	2 (bases 1 to 675)
AUTHORS	Wang,F.-K., Yuan,X.-F., Wang,Y.-C., Zhang,C., Xu,L.-H. and Liu, S.-D.
TITLE	Direct Submission
JOURNAL	Submitted (26-JUN-2006) Veterinary Medicine, Shandong Agricultural University, Daizong Road No.61, Tai’an, Shandong 271018, China
FEATURES source	Location/Qualifiers
	1. . 675
	/organism="Influenza A virus
	(A/swine/Hangzhou/1/2006(H9N2))"
	/mol_type="mRNA"
	/strain="A/swine/Hangzhou/1/2006"
	/serotype="H9N2"
	/db_xref="taxon:395639"
gene	1. . 675
	/gene="NS1"
CDS	1. . 675
	/gene="NS1"
	/codon_start=1
	/product="nonstructural protein 1"
	/protein_id="ABG91296.1"
	/db_xref="GI:110809859"
	/translation="MDSNTVSSFQVDCFLWHVRKRFADQELGDAPFLDRLRRDQKSLR
	GRSSTLGLDIRTATREGKHIVERILEEESDEALKTTIASVPSPRYLTDMTLEEMSRDW
	LMLIPKQKVTGSLCIRMDQAIVDKNIILKANFSVIFNRLEALILLRAFTEEGAIVGEI
	SPLPSLPGHTDKDVKNAIGVLIGGFEWNDNTVRVSEALQRFAWRSSDEDGRPPLSPLE
	нннннн"

ORIGIN
1 atggattcca atactgtgtc aagcttccag gtagactgct ttctttggca tgtccgcaaa
61 cggtttgcag accaagaact gggtgatgcc ccatttctag accggcttcg ccgggatcag 121 aagtccctga gaggaagaag cagcactctt ggtctggaca tcagaaccgc cactcgtgaa 181 ggaaagcata tcgtggagcg gattctggag gaagagtcag atgaagcact taaaacgact 241 attgcttcag tgccatctcc acgctatcta actgacatga ctcttgaaga aatgtcaaga 301 gattggttaa tgctcattcc caaacagaaa gtgacagggt ccctttgcat tagaatggac
361 caagcaatag tagacaaaaa catcatattg aaagcaaatt tcagtgtgat tttcaatcga
421 ctggaagctc taatactact tagagctttt actgaagaag gagcaatagt gggcgaaatc
481 tcaccattac cttctcttcc aggacatact gataaggatg tcaaaaatgc aattggggtc
541 ctcatcggag gatttgaatg gaatgataac acagttcgag tctctgaagc tctacagaga
601 ttcgcttgga gaagcagcga tgaggatggg agacctccac tctctccact cgagcaccac 661 caccaccacc actga
//

Explain as much as you can (explain each term) from the above data about this species.
2. Find the ORF (Open Reading Frame) from the following $m R N A$ sequence:

5^{\prime} UUGGAGUAAAAUAUCAUGAAUCAA 3^{\prime}

3. The edit distance $d_{e}(\mathbf{s}, \mathbf{t})$ between two strings \mathbf{s} and \mathbf{t} of lengths m and n can be computed by the following recurrence relation

$$
\begin{aligned}
d[i, o] & =i ; 0 \leq i \leq m \\
d[0, j] & =j ; 1 \leq j \leq n \\
d[i, j] & =\min \{d[i-1, j]+1, d[i, j-1]+1, d[i-1, j-1]+t(i, j)\} ; 1 \leq j \leq n, 1 \leq i \leq m
\end{aligned}
$$

where $t(i, j)=1$, if $\mathbf{s}_{i} \neq \mathbf{s}_{j}$ and has a value 0 if they are equal.
Explain the reasoning why we can do that ? Using above arguments and the table business compute the edit distance between saturday and sunday.
4. State and prove Fourier Slice Theorem for 2-dimension.
5. Find the Radon transform for the function

$$
f(x, y)= \begin{cases}1 & \text { if }(x, y)=(0,0) \\ 0 & \text { if }(x, y) \neq(0,0)\end{cases}
$$

