Data DiFect

TECHNOLOGIES

DataDirect
Connect’ Series for ODBC

User’s Guide and Reference

Release 5.1

April 2006

© 2006 DataDirect Technologies Corp. All rights reserved. Printed in the U.S.A.

DataDirect, DataDirect Connect, DataDirect Connect64, and Sequelink are registered trademarks of
DataDirect Technologies Corp. in the United States and other countries and DataDirect Spy, DataDirect
Test, DataDirect XQuery, and SupportLink are trademarks of DataDirect Technologies Corp. in the
United States and other countries. Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

Other company or product names mentioned herein may be trademarks or registered trademarks of
their respective companies.

DataDirect products for UNIX platforms include:

ICU Copyright © 1995-2003 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and that both the
above copyright notice(s) and this permission notice appear in supporting documentation.

DataDirect Connect for SOL/XML includes:

Xerces, developed by the Apache Software Foundation (http://www.apache.org). Copyright ©
1999-2003 The Apache Software Foundation. All rights reserved.

Xalan, developed by the Apache Software Foundation (http:/www.apache.org). Copyright © 1999-2003
The Apache Software Foundation. All rights reserved.

JDOM, developed by the JDOM Project (http://www.jdom.org). Copyright© 2001 Brett McLaughlin &
Jason Hunter. All rights reserved.

DataDirect Sequelink includes:

Portions created by Eric Young are Copyright © 1995-1998 Eric Young (eay@cryptsoft.com). All Rights
Reserved.

OpenLDAP, Copyright © 1999-2003 The OpenLDAP Foundation, Redwood City, California, US. All rights
reserved.

DataDirect XQuery includes:

Saxon-B Version 8.5 provided by Initial Developer, Michael Kay, and subject to the terms and conditions
of the Mozilla Public License Version 1.0 located at http://www.mozilla.org/MPL/. Certain parts of the
Saxon-B Version 8.5 product have been modified by DataDirect. The source code for the modifications
made by DataDirect are included with the DataDirect XQuery product and all required notices are
contained in the source code files. The source code for Saxon-B Version 8.5 (without DataDirect
modifications) can be obtained at
http://sourceforge.net/project/showfiles.php?group_id=29872&package_id=21888&release_id=346428.
No part of this publication, with the exception of the software product user documentation contained
in electronic format, may be copied, photocopied, reproduced, transmitted, transcribed, or reduced to
any electronic medium or machine-readable form without prior written consent of DataDirect
Technologies.

Licensees may duplicate the software product user documentation contained on a CD-ROM, but only to
the extent necessary to support the users authorized access to the software under the license
agreement. Any reproduction of the documentation, regardless of whether the documentation is
reproduced in whole or in part, must be accompanied by this copyright statement in its entirety,
without modification.

Table of Contents

Listof Tables 7
Preface i 9
UsingthisBook i 9
Conventions Used inthisBook 1
About the Product Documentation 12
1 QuickStartConnect.ccviiiirinennnn 13
Configuring and Connecting on UNIX and Linux 13
2 UsingTheProduct......................ccnn. 17
What Is ODBC?.o 17
Environment-Specific Information, 19
Binding Parameter Markers 24
Version String Information................., 25
Retrieving Data Type Information 26
3 The NSK SQL/MX Wire Protocol Driver 29
Driver Requirements i 29
Configuring DataSources., 29
Connecting to a Data Source Using a Connection String 30
Data Typeso 33
Persisting a Result Set asan XML DataFile 35
Isolation and Lock Levels Supported 37

DataDirect Connect Series for oDBC User’s Guide and Reference

4 Table of Contents

ODBC Conformance Level 37
Number of Connections and Statements Supported. 38
A ODBC API and Scalar Functions 39
APLFuNnctions 39
Scalar Functions e 42
B Locking and Isolation Levels................... 51
Locking . ..ot e 51
Isolation Levels. 52
Locking Modesand Levels............................ 55
C Threading...........ciiiiiiiiiiiii e 57
Driver Threading Information......................... 58
D UsingIndexes..........viiiiiiiiirennnnnnnns 59
Introduction 59
Improving Record Selection Performance 61
Indexing Multiple Fields. 61
Deciding Which Indexesto Create 63
Improving Join Performance 65
E Performance Design of ODBC Applications. 67
Using Catalog Functions 68
RetrievingData. i i 72
Selecting ODBC Functions 77
Managing Connectionsand Updates 81

DataDirect Connect Series for oDBC User’s Guide and Reference

Table of Contents 5

F Values for IANAAppCodePage Connection

String Attribute L. 87
G The UNIX/Linux Environments................. 93
Environment Variables 93
The ivtestlib/ddtestlib Tool 9%
Data Source Configuration............................ 97
demoodbc 99
example ... 100
DSN-less Connections 101
FileDataSources i 102
UTF-16 Applications on UNIX and Linux 104
H Diagnostic Tools, Error Messages, and
Troubleshooting. 105
DiagnosticTools.o 105
Error Messages. 108
Troubleshooting. 110
Glossary e 115
IndexX ... 119

DataDirect Connect Series for oDBC User’s Guide and Reference

6 Table of Contents

DataDirect Connect Series for oDBC User’s Guide and Reference

List of Tables

Table 3-1.

Table 3-2.

Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-5.
Table A-6.

Table B-1.
Table E-1.
Table F-1.

NSK SQL/MX Wire Protocol Connection String Attributes 32
NSK SQL/MX Data Typeso oo e e e e e 33
Function Conformance for 2.x ODBC Applications. 40
Function Conformance for 3.x ODBC Applications. 41
Scalar String Functions e 43
Scalar NumericFunctions 45
Scalar Time and Date Functions. 47
Scalar System Functions e 49
Isolation Levels and Data Consistency 54
Common Performance Problems Using ODBC Applications 67
IANAAppCodePage Values. 88

DataDirect Connect Series for ODBC User’s Guide and Reference

8 List of Tables

DataDirect Connect Series for ODBC User’s Guide and Reference

Preface

This book is your user’s guide and reference to the DataDirect
Connect® Series for oDBC drivers (DataDirect Connect for ODBC and
DataDirect Connect64® for oDBC) from DataDirect Technologies™.
This product includes database drivers that are compliant with
the Open Database Connectivity (ODBC) specification.

Using this Book

The content of this book is based on the assumption that you are
familiar with your operating system and its commands. It
contains the following chapters:

B A quick start chapter (Chapter 1 “Quick Start Connect” on
page 13) that explains the basics for quickly configuring and
testing the drivers.

m An introductory chapter (Chapter 2 “Using The Product” on
page 17) that explains the drivers and ODBC, and discusses
environment-specific subjects.

B A chapter for the NSK SQL/MX ODBC driver. First, it lists
which versions of the databases the driver supports, the
operating environments on which the driver runs, and the
driver requirements for your operating environment. Next, it
explains how to configure a data source and how to connect
to that data source. Finally, the chapter provides information
about data types, ODBC conformance levels, isolation and
lock levels supported, and other driver-specific information.

DataDirect Connect Series for obBC User’s Guide and Reference

10

Preface

This book also includes several appendixes that provide
information on technical topics:

Appendix A “ODBC API and Scalar Functions” on page 39 lists
the supported ODBC API functions. Any exceptions are listed

in the driver chapter, under the section "ODBC Conformance

Level." This appendix also lists the ODBC scalar functions.

Appendix B “Locking and Isolation Levels” on page 51
provides a general discussion of isolation levels and locking.

Appendix D “Using Indexes” on page 59 provides general
guidelines on how to improve performance when querying a
database system.

Appendix C “Threading” on page 57 discusses how ODBC
ensures thread safety.

Appendix E “Performance Design of ODBC Applications” on
page 67 provides guidelines for designing performance-
oriented ODBC applications.

Appendix G “The UNIX/Linux Environments” on page 93
discusses UNIX and Linux, environment variables and
configuration of the drivers. It also explains the structure of
the system information file (used in the UNIX and Linux
environments) and provides a sample system information file,
as well as discussing other driver tools for UNIX and Linux.

Appendix F “Values for ANAAppCodePage Connection String
Attribute” on page 87 provides the valid values for the
IANAAppCodePage connection string attribute.

Appendix H “Diagnostic Tools, Error Messages, and
Troubleshooting” on page 105 discusses the diagnostic tools
that are available, explains error messages, and provides a
troubleshooting section.

A “Glossary” on page 115.

DataDirect Connect Series for oDBC User’s Guide and Reference

Conventions Used in this Book

If you are writing programs to access ODBC drivers, you need to
obtain a copy of the ODBC Programmer’s Reference for the
Microsoft Open Database Connectivity Software Development
Kit, available from Microsoft Corporation.

NOTE: This book refers the reader to Web URLs for more
information about specific topics, and may include Web URLs not
maintained by DataDirect Technologies. Because it is the nature
of Web content to change frequently, DataDirect Technologies
can guarantee only that the URLs referenced in this book were
correct at the time of publishing.

Conventions Used in this Book

The following sections describe the typography, terminology,
and other conventions used in this book.

Typographical Conventions

This book uses the following typographical conventions:

Convention Explanation

italics Introduces new terms with which you may not be
familiar, and is used occasionally for emphasis.

bold Emphasizes important information. Also indicates
button, menu, and icon names on which you can act.
For example, click Next.

UPPERCASE Indicates the name of a file. For operating
environments that use case-sensitive file names, the
correct capitalization is used in information specific
to those environments.

Also indicates keys or key combinations that you can
use. For example, press the ENTER key.

DataDirect Connect Series for oDBC User’s Guide and Reference

1

12

Preface

Convention
monospace
monospaced
italics

forward slash /

vertical rule |

brackets []

braces { }

ellipsis . . .

Explanation

Indicates syntax examples, values that you specify, or
results that you receive.

Indicates names that are placeholders for values that
you specify. For example, fi | enane.

Separates menus and their associated commands. For
example, Select File / Copy means that you should
select Copy from the File menu.

The slash also separates directory levels when
specifying locations under UNIX.

Indicates an "OR" separator used to delineate items.

Indicates optional items. For example, in the
following statement: SELECT [DISTINCT], DISTINCT is
an optional keyword.

Also indicates sections of the Windows Registry.

Indicates that you must select one item. For example,
{yes | no} means that you must specify either yes or
no.

Indicates that the immediately preceding item can

be repeated any number of times in succession. An
ellipsis following a closing bracket indicates that all
information in that unit can be repeated.

About the Product Documentation

DataDirect product documentation is provided in PDF format,
which allows you to view the books online or print them. You can
view DataDirect online documentation using Adobe Acrobat
Reader 4.x or higher.

DataDirect Connect Series for oDBC User’s Guide and Reference

1 Quick Start Connect

This chapter provides basic information for configuring and test
connecting with your DataDirect Connect Series for ODBC drivers
immediately after installation. To take full advantage of the
features of the drivers, we recommend that you read Chapter 2
“Using The Product” and the NSK SQL/MX driver chapter.

Information that the drivers needs to connect to a database is
stored in a data source. The ODBC specification describes three
types of data sources: user data sources, system data sources (not
a valid distinction on UNIX and Linux), and file data sources. On
Windows, user and system data sources are stored in the registry
of the local computer. The difference is that only a specific user
can access user data sources, whereas any user of the machine
can access system data sources. On Windows, UNIX, and Linux,
file data sources, which are simply text files, can be stored locally

or on a network computer, and are accessible to other machines.

When you define and configure a data source, you store default
connection values for the drivers that are used each time you
connect to a particular database. You can change these defaults
by modifying the data source.

Configuring and Connecting on UNIX and

Linux

The following basic information enables you to configure a data
source and test connect with a driver immediately after
installation. See Appendix G “The UNIX/Linux Environments” on
page 93 for detailed information about how to define and
configure a data source in the UNIX and Linux environments.

DataDirect Connect Series for obBC User’s Guide and Reference

13

14

Chapter 1 Quick Start Connect

Environment Setup

1 Check your permissions: You should log in as a user with full
r/w/x permissions recursively on the entire product installation
directory.

2 Determine which shell you are running by executing the env
command.

3 Run the DataDirect Technologies setup script to set variables.
Two scripts, odbc.sh and odbc.csh, are installed in the
installation directory. For Korn, Borne, and equivalent shells,
execute odbc.sh. For a Cshell, execute odbc.csh. After running
the setup script, execute the env command to verify that the
installation_directoryl/lib directory has been added to your
shared library path.

4 Set the ODBCINI environment variable. The variable should
point to the path from the root directory to the system
information file where your data source will reside. The
system information file can have any name, but the product is
installed with a default template file called odbc.ini in the
installation directory. For example, if you use the default
installation directory and the default system information file,
from the Korn or Borne shell you would enter:

CDBCI NI =/ opt / odbc/ odbc. i ni; export CDBCIN

Test Loading the Driver

The 32-bit driver tool, ivtestlib, is described in the following
section. For 64-bit drivers, substitute the name ddtestlib for the
tool and ddnsk21.so for the driver. The tool is located in the
installation_directory/bin directory, and is a utility to verify that
the driver can be loaded into memory. For example, to load a 32-
bit driver you would enter:

ivtestlib /opt/odbc/lib/driver_shared_object _name

DataDirect Connect Series for oDBC User’s Guide and Reference

Configuring and Connecting on UNIX and Linux

where driver_shared_obj ect _nane is the name of the specific
driver file. For example, the NSK SQL/MX Wire Protocol on Linux
is ivnsk21.so0.

An error message is returned if the load is not successful.

Configuring a Data Source in the
System Information File

In the UNIX and Linux environments, there is no ODBC
Administrator. To configure a data source in the UNIX and Linux
environments, you must edit the system information file (by
default, odbc.ini) to which the ODBCINI variable points. The
default odbc.ini installed by Setup in the installation directory is
a template into which you enter your site-specific database
connection information. Using a text editor, you modify the
default attributes in this file as necessary, based on your system
values (for example, your server name and port number).

To configure a file data source, you must create a text file that
contains the required data source information in a format very
similar to the odbc.ini file.

Consult the "Connection String Attributes" table of the driver
chapter for specific connection attribute values to use in creating
data sources. See Appendix G “The UNIX/Linux Environments”
on page 93 for details about how to create and edit these files.

IMPORTANT: The "Connection String Attributes"” table of the
driver chapter lists both the long and short name of the
attribute. When entering attribute names into data source files,
you must use the long name of the attribute. The short name is
not valid in the odbc.ini file.

DataDirect Connect Series for oDBC User’s Guide and Reference

15

16 Chapter 1 Quick Start Connect

Testing the Connection

The product installation includes an ODBC application called
example that can be used to connect to a data source and
execute SQL. The application is located in the
installation_directory/example directory.

To run the program after setting up a data source in the odbc.ini,
enter exanpl e and follow the prompts to enter your data source
name, user name, and password. If successful, a SQL> prompt
appears and you can type in SQL statements such as SELECT *
FROMt abl e. If example is unable to connect, the appropriate error
message appears.

DataDirect Connect Series for oDBC User’s Guide and Reference

2 Using The Product

This chapter contains the following sections:

“"What Is ODBC?”
"Environment-Specific Information”
"Binding Parameter Markers”
"Version String Information”
"Retrieving Data Type Information”

What Is ODBC?

The Open Database Connectivity (ODBC) interface by Microsoft
allows applications to access data in database management
systems (DBMS) using SQL as a standard for accessing the data.
ODBC permits maximum interoperability, which means a single
application can access different DBMS. Application end users can
then add ODBC database drivers to link the application to their
choice of DBMS.

The ODBC interface defines:
m A library of ODBC function calls of two types:

e (Core functions that are based on the X/Open and SQL
Access Group Call Level Interface specification

e Extended functions that support additional functionality,
including scrollable cursors

B SQL syntax based on the X/Open and SQL Access Group SQL
CAE specification (1992)

B A standard set of error codes

DataDirect Connect Series for obBC User’s Guide and Reference

17

18 Chapter 2 Using The Product

B A standard way to connect and logon to a DBMS

B A standard representation for data types

The ODBC solution for accessing data led to ODBC database
drivers, which are dynamic-link libraries on Windows and shared
objects on UNIX and Linux. These drivers allow an application to
gain access to one or more data sources. ODBC provides a
standard interface to allow application developers and vendors
of database drivers to exchange data between applications and
data sources.

How Does It Work?

The ODBC architecture has four components:

B Application, which processes and calls ODBC functions to
submit SQL statements and retrieve results

m Driver Manager, which loads drivers for the application

m Driver, which processes ODBC function calls, submits SQL
requests to a specific data source, and returns results to the
application

m Data source, which consists of the data to access and its
associated operating system, DBMS, and network platform (if
any) used to access the DBMS

DataDirect Connect Series for oDBC User’s Guide and Reference

Environment-Specific Information

The following figure shows the relationship among the four

components:

Application

Driver Manager

—— ODBC Interface

Driver

Driver

Driver

Data
Source

Data
Source

Data
Source

T9®

Why Do Application Developers Need

ODBC?

Using ODBC, an application developer can develop, compile, and
ship an application without targeting a specific DBMS. In this
scenario, the application developer does not need to use
embedded SQL; therefore, he does not need to recompile the
application for each new environment.

Environment-Specific Information

The following section refer to threading models. See Appendix C
“Threading” on page 57 for an explanation of threading.

DataDirect Connect Series for oDBC User’s Guide and Reference

19

20

Chapter 2 Using The Product

For UNIX and Linux Users

The following are requirements for UNIX and Linux operating
systems. The DataDirect Connect for ODBC drivers are 32-bit drivers
and the DataDirect Connect64 for ODBC drivers are 64-bit drivers.

32-Bit Drivers

B If your application was built with 32-bit system libraries, you
must use a 32-bit driver. The database you are connecting to
can be either 32-bit or 64-bit enabled.

AIX
m Power PC.

B AIX 5.2 and 5.3 operating systems with the 5.0.2.1 C++
runtime libraries.

B An application compiled with VisualAge C++ Professional 6.0
on AIX 5.2.

B An application built using the AIX native threading.

NOTE: To determine the installed version of your C++ runtime
libraries, execute the following command:

Islpp -al | grep xICrte

HP-UX 11 aCC (PA-RISC)

m HP-UX 11i (11.11) operating system.

B An application compiled with HP aCC 3.30.

B An application built using the HP-UX 11 native (kernel)
threading model (posix draft 10 threads).

DataDirect Connect Series for oDBC User’s Guide and Reference

Environment-Specific Information

HP-UX 11 aCC (IPF)

B HP-UX 11i(11.22 and 11.23) operating system.

m An application compiled with HP aCC 5.36.

B An application built using the HP-UX 11 native (kernel)
threading model (posix draft 10 threads).

Solaris

B Sun Solaris 9 and 10 operating systems.

B Sun SPARGCstation.

B An application compiled with Sun C++ 5.6 (Sun Studio 9) on
Solaris 2.9.

B An application built using the Solaris native (kernel)
threading model.

Linux

m The following Linux distributions are supported:
e Red Hat Enterprise Linux 3.0
® SuSE Linux Enterprise Server 8.0 and 9.0

B Intel x86 machine

B An application compiled with GNU project g++ 3.2.3 on
RedHat Enterprise Linux 3.0.

B An application built using the Linux native pthread

threading model (Linuxthreads)

DataDirect Connect Series for oDBC User’s Guide and Reference

21

22 Chapter 2 Using The Product

64-Bit Drivers

m All required network software supplied by your database

system vendors must be 64-bit compliant.

AIX

Power PC.
AIX 5L (5.2 and 5.3) operating system.

An application compiled with VisualAge C++ Professional 6.0
on AIX 5.2

An application built using the AIX native threading model.

HP-UX 11 aCC (IPF)

m Itanium Il

m HP-UX IPF 11i versions 1.6 and 2 (B.11.22 and B.11.23)
operating systems.

B An application compiled with HP aCC v. 5.36.

B An application built using the HP-UX 11 native (kernel)
threading model (posix draft 10 threads).

Solaris

B Sun SPARGCstation.

B Sun Solaris 9 and 10 operating systems.

B An application compiled with Sun C++ 5.6 (Sun Studio 9) on
Solaris 2.9.

B An application built using the Solaris native (kernel)

threading model.

DataDirect Connect Series for oDBC User’s Guide and Reference

Environment-Specific Information

Linux
B AMD Opteron and Intel Xeon EM64T x64 processors.
m The following operating systems are supported:

® SuSE Linux Enterprise Server 9.0 for x64
e Red Hat Enterprise Linux AS, ES, and WS version 4.0 for
x64

B An application compiled with g++ GNU project C++ Compiler
version 3.3.3.

B An application built using the Linux native pthread
threading model (Linuxthreads).

Setup of the Environment and the Drivers

On UNIX and Linux, several environment variables and the
system information file must be configured before the drivers
can be used. See Chapter 1 “Quick Start Connect” on page 13 for
a quick guide to this process. See Appendix G “The UNIX/Linux
Environments” on page 93 for complete details about using the
drivers on UNIX and Linux systems.

Driver Names

The DataDirect Connect Series for ODBC driver is an ODBC
API-compliant dynamic link library, referred to in UNIX and Linux
as shared objects. The prefix for the driver file name is iv for the
32-bit driver and dd for the 64-bit driver, the driver file name is
lowercase, and the extension is .so or .sl. This is the standard
form for a shared object. For example, the 32-bit NSK SQL/MX
Wire Protocol driver file name is ivnsk21.so on all platforms
except HP-UX, in which case it is ivnsk21.sl. The 64-bit driver file
name is ddnsk21.so on all platforms.

DataDirect Connect Series for oDBC User’s Guide and Reference

23

24 Chapter 2 Using The Product

Binding Parameter Markers

An ODBC application can prepare a query that contains dynamic
parameters. Each parameter in a SQL statement must be
associated, or bound, to a variable in the application before the
statement is executed. When the application binds a variable to a
parameter, it describes that variable and that parameter to the
driver. Therefore, the application must supply the following
information:

m The data type of the variable that the application maps to the
dynamic parameter

m The SQL data type of the dynamic parameter (the data type
that the database system assigned to the parameter marker)

The two data types are identified separately using the
SQLBindParameter function. You can also use descriptor APIs as
described in the Descriptor section of the ODBC specification
(version 3.0 or higher).

The driver relies on the binding of parameters to know how to
send information to the database system in its native format. If
an application furnishes incorrect parameter binding information
to the ODBC driver, the results will be unpredictable. For
example, the statement might not be executed correctly.

To ensure interoperability, the DataDirect Connect Series for ODBC
driver uses only the parameter binding information provided by
the application. Some DBMSs cannot publish dynamic parameter
information back to an ODBC driver.

DataDirect Connect Series for oDBC User’s Guide and Reference

Version String Information

Version String Information

The driver has a version string of the format:
X. YY. ZZZZ(BAAAA, UBBBB)

The Driver Manager on UNIX and Linux has a version string of
the format:

X. YY. ZZZZ(UBBBB)

where:

X is the major version of the product.

YY is the minor version of the product.

Z77Z7 is the build number of the driver component.

AAAA is the build number of the driver's bas component.
BBBB is the build number of the driver's utl component.

For example:

5.1.0002 (B0001, WO002

[|
Driver Bas Ul

On UNIX and Linux, you can check the version string by using the
ivtestlib tool shipped with the product. This tool is located in
install_directory/bin.

Use the following command line:
ivtestlib shared_object
For example, for the NSK SQL/MX driver:

ivtestlib ivnsk2l.so

5.1.0001 (B0002, UO001)

DataDirect Connect Series for oDBC User’s Guide and Reference

25

26

Chapter 2 Using The Product

For example, for the Driver Manager:
ivtestlib libodbc. so
5.10. 0001 (U0001)

NOTE: On Linux, the full path to the driver does not have to be
specified for ivtestlib.

getFileVersionString Function

Version string information can also be obtained
programmatically through the function getFileVersionString. This
function can be used when the application is not directly calling
ODBC functions.

This function is defined as follows and is located in each driver's
shared object:

const unsigned char* getFileVersionString();

This function is prototyped in the gesqlext.h file shipped with the
product.

Retrieving Data Type Information

At times, you might need to get information about the data
types supported by the data source, for example, precision and
scale. You can use the ODBC function SQLGetTypelnfo to do this.

On UNIX and Linux, an application can call SQLGetTypelnfo. Here
is an example of a C function that calls SQLGetTypelnfo and
retrieves the information in the form of a SQL result set.

DataDirect Connect Series for oDBC User’s Guide and Reference

Retrieving Data Type Information

voi d ODBC Get Typel nf o(SQLHANDLE hstnt, SQLSMALLI NT dat aType)

{

I
I
1

I

I

11

I

1

RETCCDE rc;

There are 19 colums returned by SQ.Get Typel nfo.
This exanple displays the first 3.
Check the CDBC 3.x specification for nore information.

Variables to hold the data fromeach colum
char t ypeNane[30] ;
short sqgl Dat aType;
unsi gned | ong col umsSi ze;

SQLI NTEGER strl enTypeNare,
strlenSql Dat aType,
strlenCol umsSi ze;

rc = SQLGet Typel nfo(hstnt, dataType);
if (rc == SQL_SUCCESS) {

Bind the colums returned by the SQ.CGet Typelnfo result set.
rc = SQLBi ndCol (hstnt, 1, SQ._C CHAR &t ypeNane,
(SDWORD) si zeof (typeNane), &strlenTypeNane);

rc = SQLBi ndCol (hstnt, 2, SQ._C SHORT, &sql DataType,
(SDWORD) si zeof (sqgl Dat aType), &strlenSqgl Dat aType);
rc = SQLBi ndCol (hstnt, 3, SQ_C LONG &col umsSi ze,

(SDWORD) si zeof (col umSi ze), &strlenCol umSi ze) ;

Print colum headi ngs

printf ("TypeNane Dat aType Col umSi ze\ n");
printf (M----m-mmi i e e \n");
do {

Fetch the results fromexecuting SQCet Typel nfo
rc = SQLFetch(hstnt);
if (rc == SQL_ERRCR) {
Procedure to retrieve errors fromthe SQ.Get Typel nfo function
CDBC_Get Di agRec(SQL_HANDLE _STMI, hstnt);
br eak;

}

DataDirect Connect Series for oDBC User’s Guide and Reference

27

28

Chapter 2 Using The Product

Il Print the results
if ((rc == SQ_SUCCESS) || (rc == SQ._SUCCESS WTH_INFO) {
printf ("% 30s 9%40i %0u\n", typeName, sql DataType, col umsSize);
}

} while (rc !'= SQL_NO DATA);

For information about how a database’s data types map to the
standard ODBC data types, see the driver chapter in this book.

DataDirect Connect Series for oDBC User’s Guide and Reference

3 The NSK SQL/MX Wire Protocol
Driver

The DataDirect Connect Series for oDBC NSK SQL/MX Wire
Protocol driver (the NSK SQL/MX Wire Protocol driver) supports:

HP NonStop SQL/MX database version 2.0

The NSK SQL/MX Wire Protocol driver is supported in the UNIX/
linux environments. See “Environment-Specific Information” on
page 19 for detailed information about the UNIX/linux
environments supported by this driver.

Driver Requirements

There are no database client requirements for the NSK SQL/MX
Wire Protocol driver.

Configuring Data Sources

After you have installed the driver, you will need to configure a
data source or use a connection string to connect to the
database. If you want to use a data source but need to change
some of its values, you can either modify it or override its values
through a connection string.

DataDirect Connect Series for obBC User’s Guide and Reference

30

Chapter 3 The NSK SQL/MX Wire Protocol Driver

If you choose to use a connection string, you must use specific
connection string attributes. See “Connecting to a Data Source
Using a Connection String” on page 30 and Table 3-1 on page 32
for a complete description of driver connection string attributes
and their values.

Refer to Chapter 1 “Quick Start Connect” on page 13 for a
detailed explanation of different types of data sources.

On UNIX and Linux, data sources are configured and modified by
editing the system information file (by default, odbc.ini) and
storing default connection values there. See “Data Source
Configuration” on page 97 for detailed information about
editing the system information file. See Appendix G “The UNIX/
Linux Environments” on page 93 for detailed information about
the specific steps necessary to configure the UNIX and Linux
environments and connect with the driver.

Table 3-1 on page 32 lists driver connection string attributes that
must be used in the system information file. Note that only the
long name of the attribute can be used in the file.

Connecting to a Data Source Using a
Connection String

If you want to use a connection string for connecting to a
database, or if your application requires it, you must specify
either a DSN (data source name), a File DSN, or a DSN-less
connection in the string. The difference is whether you use the
DSN=, FILEDSN=, or the DRIVER= keyword in the connection
string, as described in the ODBC specification. A DSN or FILEDSN
connection string tells the driver where to find the default
connection information. Optionally, you may specify
attribute=value pairs in the connection string to override the
default values stored in the data source.

DataDirect Connect Series for oDBC User’s Guide and Reference

Connecting to a Data Source Using a Connection String

The DSN connection string has the form:

DSN=dat a_sour ce_nane[; attri bute=val ue[; attribute=val ue]...]
The FILEDSN connection string has the form:

FI LEDSN=fi | enane. dsn[; attribute=val ue[;attribute=val ue]...]

The DSN-less connection string specifies a driver instead of a
data source. All connection information must be entered in the
connection string because there is no data source storing the
information.

The DSN-less connection string has the form:

DRI VER=[{]driver_name[}][;attribute=val ue[;attribute=val ue]
.

NOTE: Empty string is the default value for attributes that use a
string value unless otherwise noted.

Table 3-1 gives the long and short names for each attribute, as
well as a description. You can specify either long or short names
in the connection string.

The defaults listed in the table are initial defaults that apply
when no value is specified in either the data source definition or
in the connection string. If you specified a value for the attribute
when configuring the data source, that value is the default.
Attributes are optional unless otherwise noted.

An example of a DSN connection string with overriding attribute
values for NSK SQL/MX is:

DSN=NSK TABLES; NTI L=4

A FILEDSN connection string is similar except for the initial
keyword:

FI LEDSN=NSK. dsn; NTI L=4

DataDirect Connect Series for oDBC User’s Guide and Reference

31

32 Chapter 3 The NSK SQL/MX Wire Protocol Driver

A DSN-less connection string must provide all necessary
connection information:

DRI VER=Dat aDi rect 5.1 NSK SQL/MX Wre Protocol;
HST=NSK2; PRT=111; CATALOG=MYCATALQOG, SCHEMA=MYSCHENA,;
Ul D=JOHN, PND=XYZZY

Table 3-1. NSK SQL/MX Wire Protocol Connection String Attributes

Attribute

AuthStr (PWD)
(Required)

Description

A case-sensitive password.

DataSourceName (DSN) A string that identifies an NSK SQL/MX data source

HostName (HST)

(Required)

IANAAppCodePage

(IACP)

configuration.

Either the IP address or the host name of the NonStop MXCS
Association server.

See Appendix F "Values for IANAAppCodePage Connection

String Attribute” on page 87 for a list of valid values for this
attribute. You need to set this attribute if your application is
not Unicode-enabled and/or if your database character set is
not Unicode. The value you specify must match the database

character encoding and the system locale. This attribute applies

to UNIX and Linux only.

The Driver Manager checks for the value of IANAAppCodePage

in the following order:

m In the connection string
m In the Data Source section of the system information file
(odbc.ini)

m In the ODBC section of the system information file (odbc.ini)

If no IANAAppCodePage value is found, the driver uses the
default value of 4 (ISO 8859-1 Latin-1).

NskCatalog (CATALOG) The catalog used to qualify NonStop SQL/MX object names.

(Required)

NskDatasource (NDS)

NskDatasource="TDM_Default_DataSource". The name of the

NSK server-side data source.

NskSchema (SCHEMA) The schema used to qualify NonStop SQL/MX object names.

(Required)

DataDirect Connect Series for oDBC User’s Guide and Reference

Data Types

Table 3-1. NSK SQL/MX Wire Protocol Connection String Attributes (cont.)

Attribute

NskTransactionlsolation
Level (NTIL)

NskWindowText (NWT)

PortNumber (PRT)

Description

NskTransactionlsolationLevel={1| 2 | 4 | 8}. Specifies the default
isolation level for concurrent transactions, where:

1 = READ UNCOMMITED

2 = READ COMMITTED

4 = REPEATABLE READ

8 = SERIALIZABLE

The initial default is 2.

Character string of text as displayed in NSM/web.

The initial default is ivnsk.

The port number of the NonStop MXCS Association server.

(Required)

UserID (UID) The logon ID used to connect to your NSK database. This ID is
(Required) case-sensitive.

Data Types

Table 3-2 shows how the NSK SQL/MX data types map to the
standard ODBC data types.

Table 3-2. NSK SQL/MX Data Types

NSK SQL/MX ODBC

Bigint SQL_BIGINT
Bigint signed SQL_BIGINT
Char SQL_CHAR

Date SQL_TYPE_DATE
Decimal SQL_DECIMAL
Decimal signed SQL_DECIMAL

DataDirect Connect Series for oDBC User’s Guide and Reference

33

Chapter 3 The NSK SQL/MX Wire Protocol Driver

Table 3-2. NSK SQL/MX Data Types (cont.)

NSK SQL/MX

Decimal unsigned

Double precision

Float

Integer

Integer signed

Integer unsigned

Interval (p) day to day
Interval (p) day to hour
Interval (p) day to minute
Interval (p) day to second
Interval (p) hour to hour
Interval (p) hour to minute
Interval (p) hour to second
Interval (p) minute to minute
Interval (p) minute to second
Interval (p) month to month
Interval (p) second to second
Interval (p) year to month
Interval (p) year to year
Longvarchar

Numeric

Numeric signed

Numeric unsigned

Real

Smallint

Smallint signed

Smallint unsigned

Time

ODBC

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_INTEGER

SQL_INTEGER

SQL_INTEGER

SQL_INTERVAL_DAY
SQL_INTERVAL_DAY_TO_HOUR
SQL_INTERVAL_DAY_TO_MINUTE
SQL_INTERVAL_DAY_TO_SECOND
SQL_INTERVAL_HOUR
SQL_INTERVAL_HOUR_TO_MINUTE
SQL_INTERVAL_HOUR_TO_SECOND
SQL_INTERVAL_MINUTE
SQL_INTERVAL_MINUTE_TO_SECOND
SQL_INTERVAL_MONTH
SQL_INTERVAL_SECOND
SQL_INTERVAL_YEAR_TO_MONTH
SQL_INTERVAL_YEAR
SQL_LONGVARCHAR
SQL_NUMERIC

SQL_NUMERIC

SQL_NUMERIC

SQL_REAL

SQL_SMALLINT

SQL_SMALLINT

SQL_SMALLINT

SQL_TYPE_TIME

DataDirect Connect Series for oDBC User’s Guide and Reference

Persisting a Result Set as an XML Data File

Table 3-2. NSK SQL/MX Data Types (cont.)

NSK SQL/MX ODBC
Timestamp SQL_TYPE_TIMESTAMP
Varchar SQL_VARCHAR

See “Retrieving Data Type Information” on page 26 for more
information about data types.

Persisting a Result Set as an XML Data File

This driver allows you to persist a result set as an XML data file
with embedded schema. To implement XML persistence, a client
application must do the following:

1 Turn on STATIC cursors. For example:

SQLSetStntAttr (hstmt, SQL_ATTR CURSOR TYPE,
SQL_CURSCR STATIC, SQL_I S_I NTEGER)

NOTE: A result set can be persisted as an XML data file only if
the result set is generated using STATIC cursors. Otherwise,
the following error is returned:

Driver only supports XM persistence when using
driver’'s static cursors.

2 Execute a SQL statement. For example:
SQLExecDirect (hstnt, "SELECT * FROM GTABLE', SQ._NTS)
3 Persist the result set as an XML data file. For example:

SQLSetStntAttr (hstnt, SQL_PERSI ST _AS XM,
"C:\tenp\ GTABLE. XM.", SQL_NTS)

DataDirect Connect Series for oDBC User’s Guide and Reference

35

36 Chapter 3 The NSK SQL/MX Wire Protocol Driver

NOTE: A new statement attribute is available to support XML
persistence, SQL_PERSIST_AS_XML. A client application must
call SQLSetStmtAttr with this new attribute as an argument.
See the following table for the definition of valid arguments
for SQLSetStmtAttr.

Argument Definition

StatementHandle The handle of the statement that
contains the result set to persist as
XML.

Attribute SQL_PERSIST_AS_XML. This new

statement attribute can be found in
the file gesglext.h, which is installed
with the driver.

ValuePtr Pointer to a URL that specifies the full
path name of the XML data file to be
generated. The directory specified in
the path name must exist, and if the
specified file name exists, the file will
be overwritten.

StringLength The length of the string pointed to by
ValuePtr or SQL_NTS if ValuePtr points
to a null terminated string.

A client application can choose to persist the data at any time
that the statement is in an executed or cursor-positioned state. At
any other time, the driver returns the following message:

Function Sequence Error

DataDirect Connect Series for oDBC User’s Guide and Reference

Isolation and Lock Levels Supported

Using the XML Persistence Demo Tool

On UNIX/linux, the product is shipped with an XML persistence
demo tool named demoodbc. This tool is installed in the demo
subdirectory of the installation directory. For information about
how to use this tool, refer to the demoodbc.txt file installed in
the demo directory.

Isolation and Lock Levels Supported

NSK SQL/MX supports isolation levels read uncommitted, read
committed, and serializable. The default is read committed.

NSK SQL/MX supports record-level locking.

See Appendix B “Locking and Isolation Levels” on page 51 for
details.

ODBC Conformance Level

See Appendix A “ODBC APl and Scalar Functions” on page 39 for
a list of the API functions supported by the NSK SQL/MX Wire
Protocol driver.

The NSK SQL/MX Wire Protocol driver also supports the
following functions:

m SQLColumnPrivileges
m SQLForeignKeys
B SQLTablePrivileges

The driver supports the minimum SQL grammar.

DataDirect Connect Series for oDBC User’s Guide and Reference

38 Chapter 3 The NSK SQL/MX Wire Protocol Driver

Number of Connections and Statements
Supported

The NSK SQL/MX Wire Protocol driver supports multiple
connections and one statement per connection to the NonStop
SQL/MX database system.

DataDirect Connect Series for oDBC User’s Guide and Reference

39

A ODBC API and Scalar Functions

This appendix lists the ODBC API functions that the DataDirect
Connect Series for ODBC drivers support and the scalar functions,
which you use in SQL statements. This appendix includes the
following:

B “API Functions” on page 39

B “Scalar Functions” on page 42

API Functions

The DataDirect Connect Series for ODBC drivers support all ODBC
Core and Level 1 functions—they are ODBC Level 1-compliant.
They also support a limited set of Level 2 functions. The drivers
support the functions listed in Table A-1 on page 40 and Table A-
2 on page 41. Any additions to these supported functions or
differences in the support of specific functions are listed in the
"ODBC Conformance Level" section in the individual driver
chapters.

DataDirect Connect Series for obBC User’s Guide and Reference

Appendix A ODBC API and Scalar Functions

Table A-1. Function Conformance for 2.x ODBC Applications

Core Functions
SQLAllocConnect
SQLAIllocEnv
SQLAIllocStmt
SQLBindCol
SQLBindParameter
SQLCancel
SQLColAttributes
SQLConnect
SQLDescribeCol
SQLDisconnect
SQLDrivers
SQLError
SQLExecDirect
SQLExecute
SQLFetch
SQLFreeConnect
SQLFreeEnv
SQLFreeStmt
SQLGetCursorName
SQLNumResultCols
SQLPrepare
SQLRowCount
SQLSetCursorName
SQLTransact

Level 1 Functions
SQLColumns
SQLDriverConnect
SQLGetConnectOption
SQLGetData
SQLGetFunctions
SQLGetInfo
SQLGetStmtOption
SQLGetTypelnfo
SQLParamData
SQLPutData
SQLSetConnectOption
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTables

Level 2 Functions
SQLBrowseConnect
SQLDataSources
SQLExtendedFetch (forward scrolling only)
SQLMoreResults
SQLNativeSql
SQLNumParams
SQLParamOptions
SQLSetScrollOptions

DataDirect Connect Series for oDBC User’s Guide and Reference

API Functions

Table A-2. Function Conformance for 3.x ODBC Applications

SQLAllocHandle
SQLBindCol
SQLBindParameter
SQLBrowseConnect
SQLBulkOperations
SQLCancel
SQLCloseCursor
SQLColAttribute
SQLColumns
SQLConnect
SQLCopyDesc
SQLDataSources
SQLDescribeCol
SQLDisconnect
SQLDriverConnect
SQLDrivers
SQLEndTran
SQLError
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFetchScroll (forward scrolling only)
SQLFreeHandle
SQLFreeStmt
SQLGetConnectAttr
SQLGetCursorName

SQLGetData
SQLGetDescField
SQLGetDescRec
SQLGetDiagField
SQLGetDiagRec
SQLGetEnvAttr
SQLGetFunctions
SQLGetInfo
SQLGetStmtAttr
SQLGetTypelnfo
SQLMoreResults
SQLNativeSql
SQLNumParens
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPutData
SQLRowCount
SQLSetConnectAttr
SQLSetCursorName
SQLSetDescField
SQLSetDescRec
SQLSetEnvAttr
SQLSetStmtAttr
SQLSpecialColumns
SQLStatistics
SQLTables
SQLTransact

DataDirect Connect Series for oDBC User’s Guide and Reference

41

42

Appendix A ODBC API and Scalar Functions

Scalar Functions

This section lists the scalar functions that ODBC supports. Your
database system may not support all of these functions. See the
documentation for your database system to find out which
functions are supported. Also, depending on the driver that you
are using, all of the scalar functions may not be supported. To
check which scalar functions are supported by a driver, use the
SQLGetinfo ODBC function.

You can use these functions in SQL statements using the
following syntax:

{fn scal ar-function}

where scal ar-functi on is one of the functions listed in the
following tables. For example:

SELECT {fn UCASE(NAME)} FROM EMP

String Functions

Table A-3 on page 43 lists the string functions that ODBC
supports.

The string functions listed can take the following arguments:

B string_exp can be the name of a column, a string literal, or
the result of another scalar function, where the underlying
data type is SQL_CHAR, SQL_VARCHAR, or
SQL_LONGVARCHAR.

m start,length, and count can be the result of another scalar
function or a literal numeric value, where the underlying data
type is SQL_TINYINT, SQL_SMALLINT, or SQL_INTEGER.

The string functions are one-based; that is, the first character in
the string is character 1.

DataDirect Connect Series for oDBC User’s Guide and Reference

Scalar Functions

Character string literals must be surrounded in single quotation

marks.

Table A-3. Scalar String Functions

Function
ASCII(string_exp)

BIT_LENGTH(st ri ng_exp)
[ODBC 3.0 only]

CHAR(code)

CHAR_LENGTH(st ri ng_exp)
[ODBC 3.0 only]

CHARACTER_
LENGTH(string_exp)
[ODBC 3.0 only]

CONCAT(string_expl,
string_exp2)

DIFFERENCE(st ri ng_expl,
string_exp2)

INSERT(string_expl, start,
I ength, string_exp2)

LCASE(st ri ng_exp)

LEFT(st ri ng_exp,count)
LENGTH(st ri ng_exp)

Returns

ASCIl code value of the leftmost character of string_exp
as an integer.

The length in bits of the string expression.

The character with the ASCII code value specified by code.
code should be between 0 and 255; otherwise, the return
value is data-source dependent.

The length in characters of the string expression, if the
string expression is of a character data type; otherwise,
the length in bytes of the string expression (the smallest
integer not less than the number of bits divided by 8).
(This function is the same as the CHARACTER_LENGTH
function.)

The length in characters of the string expression, if the
string expression is of a character data type; otherwise,
the length in bytes of the string expression (the smallest
integer not less than the number of bits divided by 8).
(This function is the same as the CHAR_LENGTH function.)

The string resulting from concatenating stri ng_exp2 and
string_expl. The string is system dependent.

An integer value that indicates the difference between
the values returned by the SOUNDEX function for
string_expl andstring_exp2.

A string where | engt h characters have been deleted from
string_expl beginning atstart and where string_exp2
has been inserted into st ri ng_exp, beginning atstart.

Uppercase characters in st ring_exp converted to
lowercase.

The count of characters of st ri ng_exp.

The number of characters in st ri ng_exp, excluding
trailing blanks and the string termination character.

DataDirect Connect Series for oDBC User’s Guide and Reference

43

44

Appendix A ODBC API and Scalar Functions

Table A-3. Scalar String Functions (cont.)

Function

LOCATE(stri ng_exp1l,
string_exp2[,start])

LTRIM(st ri ng_exp)

OCTET_LENGTH(stri ng_exp)
[ODBC 3.0 only]

POSITION(char act er _exp IN
char act er _exp)
[ODBC 3.0 only]

REPEAT(st ri ng_exp, count)

REPLACE(string_expl,
string_exp2, string_exp3)

RIGHT(st ri ng_exp, count)
RTRIM(st ri ng_exp)

SOUNDEX(st ri ng_exp)

SPACE(count)

SUBSTRING(st ri ng_exp,
start, | ength)

UCASE(st ri ng_exp)

Returns

The starting position of the first occurrence of
string_expl within string_exp2. Ifstart is not
specified, the search begins with the first character
position in string_exp2. If start is specified, the search
begins with the character position indicated by the value
of start . The first character position in string_exp2 is
indicated by the value 1. If string_expl is not found, 0 is
returned.

The characters of st ri ng_exp, with leading blanks
removed.

The length in bytes of the string expression. The result is
the smallest integer not less than the number of bits
divided by 8.

The position of the first character expression in the second
character expression. The result is an exact numeric with
an implementation-defined precision and a scale of 0.

A string composed of st ring_exp repeated count times.

Replaces all occurrences of string_exp2 instring_expl
with string_exp3.

The rightmost count of characters in st ri ng_exp.

The characters of st ri ng_exp with trailing blanks
removed.

A data-source-dependent string representing the sound of
the words in st ri ng_exp.

A string consisting of count spaces.

A string derived from st ring_exp beginning at the
character position st art for | engt h characters.

Lowercase characters in stri ng_exp converted to
uppercase.

DataDirect Connect Series for oDBC User’s Guide and Reference

Scalar Functions

Numeric Functions

Table A-4 lists the numeric functions that ODBC supports.

The numeric functions listed can take the following arguments:

B numeric_exp can be a column name, a numeric literal, or the
result of another scalar function, where the underlying data
type is SQL_NUMERIC, SQL_DECIMAL, SQL_TINYINT,
SQL_SMALLINT, SQL_INTEGER, SQL_BIGINT, SQL_FLOAT,
SQL_REAL, or SQL_DOUBLE.

m float_exp can be a column name, a numeric literal, or the
result of another scalar function, where the underlying data
type is SQL_FLOAT.

B integer_exp can be a column name, a numeric literal, or the
result of another scalar function, where the underlying data
type is SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER, or

SQL_BIGINT.

Table A-4. Scalar Numeric Functions

Function

ABS(numeric_exp)
ACOS(float_exp)
ASIN(float_exp)
ATAN(float_exp)
ATAN2(float_exp]1, float_exp2)

CEILING(numeric_exp)

COS(float_exp)
COT(float_exp)
DEGREES(numeric_exp)

Returns

Absolute value of numeric_exp.

Arccosine of float_exp as an angle in radians.
Arcsine of float_exp as an angle in radians.
Arctangent of float_exp as an angle in radians.

Arctangent of the x and y coordinates, specified by
float_exp1 and float_exp2 as an angle in radians.

Smallest integer greater than or equal to
numeric_exp.

Cosine of float_exp as an angle in radians.
Cotangent of float_exp as an angle in radians.

Number if degrees converted from numeric_exp
radians.

DataDirect Connect Series for oDBC User’s Guide and Reference

45

46

Appendix A ODBC API and Scalar Functions

Table A-4. Scalar Numeric Functions (cont.)

Function

EXP(float_exp)
FLOOR(numeric_exp)
LOG(float_exp)

LOG10(float_exp)
MOD/(integer_exp]1, integer_exp2)

PI()
POWER(numeric_exp, integer_exp)
RADIANS(numeric_exp)

RAND([integer_exp])

ROUND(numeric_exp, integer_exp)

SIGN(numeric_exp)

SIN(float_exp)

SQRT(float_exp)
TAN(float_exp)

TRUNCATE(numeric_exp, integer_exp)

Returns

Exponential value of float_exp.

Largest integer less than or equal to numeric_exp.
Natural log of float_exp.

Base 10 log of float_exp.

Remainder of integer_exp1 divided by
integer_exp2.

Constant value of pi as a floating-point number.
Value of numeric_exp to the power of integer_exp.

Number of radians converted from numeric_exp
degrees.

Random floating-point value using integer_exp as
the optional seed value.

numeric_exp rounded to integer_exp places right of
the decimal (left of the decimal if integer_exp is
negative).

Indicator of the sign of numeric_exp. If
numeric_exp < 0, -1 is returned. If numeric_exp =0,
0 is returned. If numeric_exp > 0, 1 is returned.

Sine of float_exp, where float_exp is an angle in
radians.

Square root of float_exp.

Tangent of float_exp, where float_exp is an angle
in radians.

numeric_exp truncated to integer_exp places right
of the decimal. (If integer_exp is negative,
truncation is to the left of the decimal.)

DataDirect Connect Series for oDBC User’s Guide and Reference

Scalar Functions

Date and Time Functions

Table A-5 lists the date and time functions that ODBC supports.

The date and time functions listed can take the following

arguments:

B date_exp can be a column name, a date or timestamp literal,
or the result of another scalar function, where the
underlying data type can be represented as SQL_CHAR,
SQL_VARCHAR, SQL_DATE, or SQL_TIMESTAMP.

B time_exp can be a column name, a timestamp or timestamp
literal, or the result of another scalar function, where the
underlying data type can be represented as SQL_CHAR,
SQL_VARCHAR, SQL_TIME, or SQL_TIMESTAMP.

B timestamp_exp can be a column name; a time, date, or
timestamp literal; or the result of another scalar function,
where the underlying data type can be represented as
SQL_CHAR, SQL_VARCHAR, SQL_TIME, SQL_DATE, or
SQL_TIMESTAMP.

Table A-5. Scalar Time and Date Functions

Function

CURRENT_DATE()
[ODBC 3.0 only]

CURRENT_TIME[(time-precision))]
[ODBC 3.0 only]

CURRENT_TIMESTAMP[(timestamp-
precision)]
[ODBC 3.0 only]

CURDATE()
CURTIME()

Returns
Current date.

Current local time. The time-precision
argument determines the seconds precision of
the returned value.

Current local date and local time as a
timestamp value. The timestamp-precision
argument determines the seconds precision of
the returned timestamp.

Current date as a date value.
Current local time as a time value.

DataDirect Connect Series for oDBC User’s Guide and Reference

47

48

Appendix A ODBC API and Scalar Functions

Table A-5. Scalar Time and Date Functions (cont.)

Function Returns

DAYNAME(date_exp) Character string containing a data-source-
specific name of the day for the day portion of
date_exp.

DAYOFMONTH(date_exp) Day of the month in date_exp as an integer
value (1-31).

DAYOFWEEK(date_exp) Day of the week in date_exp as an integer value
(1-7).

DAYOFYEAR(date_exp) Day of the year in date_exp as an integer value
(1-366).

HOUR(time_exp) Hour in time_exp as an integer value (0-23).

MINUTE(time_exp) Minute in time_exp as an integer value (0-59).

MONTH(date_exp) Month in date_exp as an integer value (1-12).

MONTHNAME (date_exp) Character string containing the data source-
specific name of the month.

NOW() Current date and time as a timestamp value.

QUARTER(date_exp) Quarter in date_exp as an integer value (1-4).

SECOND(time_exp) Second in date_exp as an integer value (0-59).

TIMESTAMPADD(interval, integer_exp, Timestamp calculated by adding integer_exp

time_exp) intervals of type interval to time_exp. interval
can be:

SQL_TSI_FRAC_SECOND
SQL_TSI_SECOND
SQL_TSI_MINUTE
SQL_TSI_HOUR
SQL_TSI_DAY
SQL_TSI_WEEK
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_YEAR

Fractional seconds are expressed in billionths of
a second.

DataDirect Connect Series for oDBC User’s Guide and Reference

Scalar Functions

Table A-5. Scalar Time and Date Functions (cont.)

Function Returns

TIMESTAMPDIFF(interval, time_exp1, Integer number of intervals of type interval by

time_exp2) which time_exp2 is greater than time_exp1.
interval has the same values as
TIMESTAMPADD. Fractional seconds are
expressed in billionths of a second.

WEEK (date_exp) Week of the year in date_exp as an integer
value (1-53).

YEAR(date_exp) Year in date_exp. The range is data-source
dependent.

System Functions

Table A-6 lists the system functions that ODBC supports.

Table A-6. Scalar System Functions

Function Returns

DATABASE() Name of the database, corresponding to the connection handle (hdbc).
IFNULL(exp,value) value, if exp is null.

USER() Authorization name of the user.

DataDirect Connect Series for oDBC User’s Guide and Reference

49

50 Appendix A ODBC APl and Scalar Functions

DataDirect Connect Series for oDBC User’s Guide and Reference

B Locking and Isolation Levels

This appendix discusses locking and isolation levels and how
their settings can affect the data you retrieve. Different
database systems support different locking and isolation levels.
See the section "lIsolation and Lock Levels Supported” in the
driver chapter. This appendix includes the following:

B “Locking” on page 51
B “lsolation Levels” on page 52

B “Locking Modes and Levels” on page 55

Locking

Locking is a database operation that restricts a user from
accessing a table or record. Locking is used in situations where
more than one user might try to use the same table or record at
the same time. By locking the table or record, the system ensures
that only one user at a time can affect the data.

Locking is critical in multiuser databases, where different users
can try to access or modify the same records concurrently.
Although such concurrent database activity is desirable, it can
create problems. Without locking, for example, if two users try
to modify the same record at the same time, they might
encounter problems ranging from retrieving bad data to
deleting data that the other user needs. If, however, the first
user to access a record can lock that record to temporarily
prevent other users from modifying it, such problems can be
avoided. Locking provides a way to manage concurrent database
access while minimizing the various problems it can cause.

DataDirect Connect Series for obBC User’s Guide and Reference

51

52

Appendix B Locking and Isolation Levels

Isolation Levels

An isolation level represents a particular locking strategy
employed in the database system to improve data consistency.
The higher the isolation level, the more complex the locking
strategy behind it. The isolation level provided by the database
determines whether a transaction will encounter the following
behaviors in data consistency:

Dirty reads

Non-repeatable reads

Phantom reads

User 1 modifies a row. User 2 reads
the same row before User 1 commits.
User 1 performs a rollback. User 2 has
read a row that has never really
existed in the database. User 2 may
base decisions on false data.

User 1 reads a row but does not
commit. User 2 modifies or deletes
the same row and then commits. User
1 rereads the row and finds it has
changed (or has been deleted).

User 1 uses a search condition to read
a set of rows but does not commit.
User 2 inserts one or more rows that
satisfy this search condition, then
commits. User 1 rereads the rows
using the search condition and
discovers rows that were not present
before.

DataDirect Connect Series for oDBC User’s Guide and Reference

Isolation Levels

Isolation levels represent the database system’s ability to prevent
these behaviors. The American National Standards Institute
(ANSI) defines four isolation levels:

B Read uncommitted (0)

m Read committed (1)
B Repeatable read (2)
[]

Serializable (3)

In ascending order (0-3), these isolation levels provide an
increasing amount of data consistency to the transaction. At the
lowest level, all three behaviors can occur. At the highest level,
none can occur. The success of each level in preventing these
behaviors is due to the locking strategies that they employ,

which are as follows:

Read uncommitted (0)

Read committed (1)

Repeatable read (2)

Serializable (3)

Locks are obtained on modifications
to the database and held until end of
transaction (EOT). Reading from the
database does not involve any
locking.

Locks are acquired for reading and
modifying the database. Locks are
released after reading but locks on
modified objects are held until EOT.

Locks are obtained for reading and
modifying the database. Locks on all
modified objects are held until EOT.
Locks obtained for reading data are
held until EOT. Locks on non-
modified access structures (such as
indexes and hashing structures) are
released after reading.

All data read or modified is locked
until EOT. All access structures that
are modified are locked until EOT.

Access structures used by the query
are locked until EOT.

DataDirect Connect Series for oDBC User’s Guide and Reference

53

54 Appendix B Locking and Isolation Levels

Table B-1 shows what data consistency behaviors can occur at
each isolation level.

Table B-1. Isolation Levels and Data Consistency

Nonrepeatable = Phantom

Level Dirty Read Read Read
0, Read uncommitted Yes Yes Yes
1, Read committed No Yes Yes
2, Repeatable read No No Yes
3, Serializable No No No

Although higher isolation levels provide better data consistency,
this consistency can be costly in terms of the concurrency
provided to individual users. Concurrency is the ability of multiple
users to access and modify data simultaneously. As isolation levels
increase, so does the chance that the locking strategy used will
create problems in concurrency.

Put another way: The higher the isolation level, the more locking
involved, and the more time users may spend waiting for data to
be freed by another user. Because of this inverse relationship
between isolation levels and concurrency, you must consider how
people use the database before choosing an isolation level. You
must weigh the trade-offs between data consistency and
concurrency, and decide which is more important.

DataDirect Connect Series for oDBC User’s Guide and Reference

Locking Modes and Levels 55

Locking Modes and Levels

Different database systems employ various locking modes, but
they have two basic ones in common: shared and exclusive.
Shared locks can be held on a single object by multiple users. If
one user has a shared lock on a record, then a second user can
also get a shared lock on that same record; however, the second
user cannot get an exclusive lock on that record. Exclusive locks
are exclusive to the user that obtains them. If one user has an
exclusive lock on a record, then a second user cannot get either
type of lock on the same record.

Performance and concurrency can also be affected by the locking
level used in the database system. The locking level determines
the size of an object that is locked in a database. For example,
many database systems let you lock an entire table, as well as
individual records. An intermediate level of locking, page-level
locking, is also common. A page contains one or more records
and is typically the amount of data read from the disk in a single
disk access. The major disadvantage of page-level locking is that
if one user locks a record, a second user may not be able to lock
other records because they are stored on the same page as the
locked record.

DataDirect Connect Series for oDBC User’s Guide and Reference

56 Appendix B Locking and Isolation Levels

DataDirect Connect Series for oDBC User’s Guide and Reference

57

C Threading

The ODBC specification mandates that all drivers must be
thread-safe; that is, drivers must not fail when database requests
are made on separate threads. It is a common misperception that
issuing requests on separate threads will always result in
improved throughput. Because of network transport and
database server limitations, some drivers may serialize threaded
requests to the server to ensure thread safety.

The ODBC 3.0 specification does not provide a method to find
out how a driver will service threaded requests although this
information is quite useful to an application. The DataDirect
Connect Series for ODBC drivers provide this information to the
user via the SQLGetInfo information type 1028.

The result of calling SQLGetInfo with 1028 is a SQL_USMALLINT
flag which denotes the session’s thread model. A return value of
0 denotes that the session is fully thread enabled and that all
requests will fully utilize the threaded model. A return value of 1
denotes that the session is restricted at the connection level.
Sessions of this type are fully thread-enabled when simultaneous
threaded requests are made with statement handles that do not
share the same connection handle. In this model, if multiple
requests are made from the same connection, then the first
request received by the driver is processed immediately and all
subsequent requests are serialized. A return value of 2 denotes
that the session is thread-impaired and all requests are serialized
by the driver.

DataDirect Connect Series for obBC User’s Guide and Reference

58 Appendix C Threading

Consider the following code fragment:

rc = SQGetlnfo (hdbc, 1028, &ThreadMbdel, NULL, NULL);

If (rc == SQ_SUCCESS) {
[l driver is a DataDirect driver which can report
/1 threading information

if (ThreadMbdel == 0)
[l driver is unconditionally thread enabl ed
/1 application can take advantage of threading

el se if (ThreadMvodel == 1)

[l driver is thread enabl ed when thread requests are
[l fromdifferent connections

/'l some applications can take advantage of threading

el se if (ThreadModel == 2)

[l driver is thread inpaired

/1 application should only use threads if it reduces
/'l program conpl exity

}

el se
[l driver is only guaranteed to be thread-safe
/1 use threading at your own risk

Driver Threading Information

The NSK SQL/MX Wire Protocol driver is fully threaded.

DataDirect Connect Series for oDBC User’s Guide and Reference

D Using Indexes

This appendix discusses the ways in which you can improve the
performance of database activity using indexes. It provides
general guidelines that apply to most databases. Consult your
database vendor’s documentation for more detailed
information.

For information regarding how to create and drop indexes, see
your database system documentation.

Introduction

An index is a database structure that you can use to improve the
performance of database activity. A database table can have one
or more indexes associated with it.

An index is defined by a field expression that you specify when
you create the index. Typically, the field expression is a single
field name, like EMP_ID. An index created on the EMP_ID field,
for example, contains a sorted list of the employee ID values in
the table. Each value in the list is accompanied by references to
the records that contain that value.

DataDirect Connect Series for obBC User’s Guide and Reference

60 Appendix D Using Indexes

INDEX TABLE

E00127 Tyler Bennett E10297
E01234 John Rappl E21437
E03033 George Woltman E00127
E04243 Adam Smith E63535
E10001 David McClellanE04242
E10297 Rich Holcomb E01234
E16398 Nathan Adams E41298
E21437 Richard Potter E43128
E27003 David Motsinger E27002
E41298/ Tim Sampair E03033
E43128 Kim Arlich E10001
E63535 Timothy Grove E16398

A database driver can use indexes to find records quickly. An
index on the EMP_ID field, for example, greatly reduces the time
that the driver spends searching for a particular employee ID
value. Consider the following Where clause:

WHERE enp_i d = ' E10001’

Without an index, the driver must search the entire database
table to find those records having an employee ID of E10001. By
using an index on the EMP_ID field, however, the driver can
quickly find those records.

Indexes may improve the performance of SQL statements. You
may not notice this improvement with small tables but it can be
significant for large tables; however, there can be disadvantages
to having too many indexes. Indexes can slow down the
performance of some inserts, updates, and deletes when the
driver has to maintain the indexes as well as the database tables.
Also, indexes take additional disk space.

DataDirect Connect Series for oDBC User’s Guide and Reference

Improving Record Selection Performance

Improving Record Selection Performance

For indexes to improve the performance of selections, the index
expression must match the selection condition exactly. For
example, if you have created an index whose expression is
last_name, the following Select statement uses the index:

SELECT * FROM enp WHERE last_name = 'Smith’
This Select statement, however, does not use the index:
SELECT * FROM enp WHERE UPPER(| ast_name) = ' SM TH

The second statement does not use the index because the Where
clause contains UPPER(LAST_NAME), which does not match the
index expression LAST_NAME. If you plan to use the UPPER
function in all your Select statements and your database
supports indexes on expressions, then you should define an
index using the expression UPPER(LAST_NAME).

Indexing Multiple Fields

If you often use Where clauses that involve more than one field,
you may want to build an index containing multiple fields.
Consider the following Where clause:

WHERE | ast _name = 'Snith’ and first_name = ' Thonas’

For this condition, the optimal index field expression is
LAST_NAME, FIRST_NAME. This creates a concatenated index.

DataDirect Connect Series for oDBC User’s Guide and Reference

62

Appendix D Using Indexes

Concatenated indexes can also be used for Where clauses that
contain only the first of two concatenated fields. The
LAST_NAME, FIRST_NAME index also improves the performance
of the following Where clause (even though no first name value
is specified):

| ast_name = 'Smth’
Consider the following Where clause:

WHERE | ast _name = 'Snith’ and middle_nane = 'Edward’ and
first_nane = 'Thomas’

If your index fields include all the conditions of the Where clause
in that order, the driver can use the entire index. If, however,
your index is on two nonconsecutive fields, say, LAST_NAME and
FIRST_NAMIE, the driver can use only the LAST_NAME field of the
index.

The driver uses only one index when processing Where clauses. If
you have complex Where clauses that involve a number of
conditions for different fields and have indexes on more than
one field, the driver chooses an index to use. The driver attempts
to use indexes on conditions that use the equal sign as the
relational operator rather than conditions using other operators
(such as greater than). Assume you have an index on the EMP_ID
field as well as the LAST_NAME field and the following Where
clause:

WHERE emp_id >= "E10001’ AND | ast_name = ' Smith’

In this case, the driver selects the index on the LAST_NAME field.

If no conditions have the equal sign, the driver first attempts to
use an index on a condition that has a lower and upper bound,
and then attempts to use an index on a condition that has a
lower or upper bound. The driver always attempts to use the
most restrictive index that satisfies the Where clause.

DataDirect Connect Series for oDBC User’s Guide and Reference

Deciding Which Indexes to Create

In most cases, the driver does not use an index if the Where
clause contains an OR comparison operator. For example, the
driver does not use an index for the following Where clause:

WHERE enp_id >= "E10001’ OR last_name = 'Snith’

Deciding Which Indexes to Create

Before you create indexes for a database table, consider how
you will use the table. The two most common operations on a
table are to:

B Insert, update, and delete records
B Retrieve records

If you most often insert, update, and delete records, then the
fewer indexes associated with the table, the better the
performance. This is because the driver must maintain the
indexes as well as the database tables, thus slowing down the
performance of record inserts, updates, and deletes. It may be
more efficient to drop all indexes before modifying a large
number of records, and re-create the indexes after the
modifications.

If you most often retrieve records, you must look further to
define the criteria for retrieving records and create indexes to
improve the performance of these retrievals. Assume you have
an employee database table and you will retrieve records based
on employee name, department, or hire date. You would create
three indexes—one on the DEPT field, one on the HIRE_DATE
field, and one on the LAST_NAME field. Or perhaps, for the
retrievals based on the name field, you would want an index
that concatenates the LAST_NAME and the FIRST_NAME fields
(see "Indexing Multiple Fields” on page 61 for details).

DataDirect Connect Series for oDBC User’s Guide and Reference

63

64 Appendix D Using Indexes

Here are a few rules to help you decide which indexes to create:

If your record retrievals are based on one field at a time (for
example, dept='D101'), create an index on these fields.

If your record retrievals are based on a combination of fields,
look at the combinations.

If the comparison operator for the conditions is AND (for
example, CITY = 'Raleigh' AND STATE = 'NC'), then build a
concatenated index on the CITY and STATE fields. This index is
also useful for retrieving records based on the CITY field.

If the comparison operator is OR (for example, DEPT = 'D101'
OR HIRE_DATE > {01/30/89}), an index does not help
performance. Therefore, you need not create one.

If the retrieval conditions contain both AND and OR
comparison operators, you can use an index if the OR
conditions are grouped. For example:

dept = D101’ AND (hire_date > {01/30/89} OR
exempt = 1)

In this case, an index on the DEPT field improves performance.

If the AND conditions are grouped, an index does not
improve performance. For example:

(dept = 'D101' AND hire_date) > {01/30/89}) OR
exenpt =1

DataDirect Connect Series for oDBC User’s Guide and Reference

Improving Join Performance

Improving Join Performance

When joining database tables, index tables can greatly improve
performance. Unless the proper indexes are available, queries
that use joins can take a long time.

Assume you have the following Select statement:
SELECT * FROM dept, enp WHERE dept.dept _id = enp. dept

In this example, the DEPT and EMP database tables are being
joined using the department ID field. When the driver executes a
query that contains a join, it processes the tables from left to
right and uses an index on the second table’s join field (the DEPT
field of the EMP table).

To improve join performance, you need an index on the join

field of the second table in the From clause. If there is a third
table in the From clause, the driver also uses an index on the
field in the third table that joins it to any previous table. For

example:

SELECT * FROM dept, enp, addr
VWHERE dept. dept _id = enp.dept AND enp.loc = addr.|oc

In this case, you should have an index on the EMP.DEPT field and
the ADDR.LOC field.

DataDirect Connect Series for oDBC User’s Guide and Reference

65

66 Appendix D Using Indexes

DataDirect Connect Series for oDBC User’s Guide and Reference

E Performance Design of ODBC
Applications

Developing performance-oriented ODBC applications is not easy.
Microsoft's ODBC Programmer’s Reference does not provide
information about system performance. In addition, ODBC
drivers and the ODBC driver manager do not return warnings
when applications run inefficiently. This appendix contains some
general guidelines that have been compiled by examining the
ODBC implementations of numerous shipping ODBC
applications. These guidelines include:

B Use catalog functions appropriately

B Retrieve only required data

B Select functions that optimize performance
B Manage connections and updates

Following these general rules will help you solve some common
ODBC performance problems, such as those listed in Table E-1.

Table E-1. Common Performance Problems Using ODBC Applications

Problem Solution See guidelines in...
Network communication is Reduce network traffic. “Using Catalog Functions”
slow. on page 68

The process of evaluating Simplify queries. “Using Catalog Functions”
complex SQL queries on the on page 68

database server is slow and “Selecting ODBC Functions”
can reduce concurrency. on page 77

DataDirect Connect Series for obBC User’s Guide and Reference

67

68

Appendix E Performance Design of ODBC Applications

Table E-1. Common Performance Problems Using ODBC Applications (cont.)

Problem Solution See guidelines in...

Excessive calls from the Optimize application-to- “Retrieving Data” on

application to the driver slow driver interaction. page 72

performance. “Selecting ODBC Functions”
on page 77

Disk input/output is slow. Limit disk input/output. “Managing Connections and

Updates” on page 81

Using Catalog Functions

Because catalog functions, such as those listed here, are slow
compared to other ODBC functions, their frequent use can impair
system performance:

B SQLColumns B SQLProcedureColumns
B SQLColumnPrivileges B SQLSpecialColumns

B SQLForeignKeys m SQLStatistics

B SQLGetTypelnfo B SQLTables

B SQLProcedures

SQLGetTypelnfo is included in this list of expensive ODBC
functions because many drivers must query the server to obtain
accurate information about which types are supported (for
example, to find dynamic types such as user defined types).

DataDirect Connect Series for oDBC User’s Guide and Reference

Using Catalog Functions

Minimizing the Use of Catalog
Functions

Compared to other ODBC functions, catalog functions are
relatively slow. By caching information, applications can avoid
multiple executions. Although it is almost impossible to write an
ODBC application without catalog functions, their use should be
minimized.

To return all result column information mandated by the ODBC
specification, a driver may have to perform multiple queries,
joins, subqueries, or unions to return the required result set for a
single call to a catalog function. These particular elements of the
SQL language are performance expensive.

Applications should cache information from catalog functions so
that multiple executions are unnecessary. For example, call
SQLGetTypelnfo once in the application and cache the elements
of the result set that your application depends on. It is unlikely
that any application uses all elements of the result set generated
by a catalog function, so the cached information should not be
difficult to maintain.

Avoiding Search Patterns

Passing null arguments or search patterns to catalog functions
generates time-consuming queries. In addition, network traffic
potentially increases because of unwanted results. Always supply
as many non-null arguments to catalog functions as possible.
Because catalog functions are slow, applications should invoke
them efficiently. Any information that the application can send
the driver when calling catalog functions can result in improved
performance and reliability.

For example, consider a call to SQLTables where the application
requests information about the table "Customers." Often, this

DataDirect Connect Series for oDBC User’s Guide and Reference

69

70

Appendix E Performance Design of ODBC Applications

call is coded as shown, using the fewest non-null arguments
necessary for the function to return success:

rc = SQLTabl es (NULL, NULL, NULL, NULL, "Custoners”,
SQL_NTS, NULL);

A driver processes this SQLTables call into SQL that looks like this:

SELECT ... FROM SysTabl es WHERE Tabl eName = ' Cust oners’
UNI ON ALL

SELECT ... FROM SysVi ews WHERE Vi ewNarme = ' Cust oners’
UNI ON ALL

SELECT ... FROM SysSynonyms WHERE SynName = ' Custoners’
ORDER BY ...

In our example, the application provides scant information about
the object for which information was requested. Suppose three
"Customers" tables were returned in the result set: the first table
owed owned by the user, the second owned by the sales
department, and the third is a view created by management.

It may not be obvious to the end user which table to choose. If
the application had specified the OwnerName argument in the
SQLTables call, only one table would be returned and
performance would improve. Less network traffic would be
required to return only one result row and unwanted rows would
be filtered by the database. In addition, if the TableType
argument was supplied, the SQL sent to the server can be
optimized from a three-query union into a single Select
statement as shown:

SELECT ... FROM SysTabl es WHERE Tabl eNane = ' Custoners' and
Owner = 'Beth'

DataDirect Connect Series for oDBC User’s Guide and Reference

Using Catalog Functions

Using a Dummy Query to Determine
Table Characteristics

Avoid using SQLColumns to determine characteristics about a
table. Instead, use a dummy query with SQLDescribeCol.

Consider an application that allows the user to choose the
columns that will be selected. Should the application use
SQLColumns to return information about the columns to the
user or prepare a dummy query and call SQLDescribeCol?

Case 1: SQLColumns Method

rc = SQLColums (... "UnknownTable" ...);

/I This call to SQ.Colums will generate a query to the
[l systemcatal ogs... possibly a join which nmust be

Il prepared, executed, and produce a result set

rc = SQBindCol (...);

rc = SQLExtendedFetch (...);

[l user nust retrieve Nrows fromthe server

[l N=#result colums of UnknownTabl e

/1 result colum information has now been obt ai ned

Case 2: SQLDescribeCol Method

Il prepare dummy query
rc = SQLPrepare (... "SELECT * from UnknownTabl e
WHERE 1 = 0" ...);
[l query is never executed on the server - only prepared
rc = SQLNunResultCols (...);
for (irow=1; irow <= NunCol umms; irowt+) {
rc = SQ.DescribeCol (...)
Il + optional calls to SQ.Col Attributes
}
Il result colum information has now been obt ai ned
/1 Note we al so know the columnm ordering wthin the table!
/1 This information cannot be
/1 assumed fromthe SQ.Col ums exanpl e.

DataDirect Connect Series for oDBC User’s Guide and Reference

71

72 Appendix E Performance Design of ODBC Applications

In both cases, a query is sent to the server, but in Case 1, the
query must be evaluated and form a result set that must be sent
to the client. Clearly, Case 2 is the better performing model.

To complicate this discussion, let us consider a database server
that does not natively support preparing a SQL statement. The
performance of Case 1 does not change, but the performance of
Case 2 improves slightly because the dummy query is evaluated
before being prepared. Because the Where clause of the query
always evaluates to FALSE, the query generates no result rows
and should execute without accessing table data. Again, for this
situation, Case 2 outperforms Case 1.

Retrieving Data

To retrieve data efficiently, return only the data that you need,
and choose the most efficient method of doing so. The guidelines
in this section will help you optimize system performance when
retrieving data with ODBC applications.

Retrieving Long Data

Unless it is necessary, applications should not request long data
(SQL_LONGVARCHAR and SQL_LONGVARBINARY data) because
retrieving long data across the network is slow and resource-
intensive. Most users do not want to see long data. If the user
does need to see these result items, the application can query the
database again, specifying only long columns in the select list.
This method allows the average user to retrieve the result set
without having to pay a high performance penalty for network
traffic.

Although the best method is to exclude long data from the select
list, some applications do not formulate the select list before

DataDirect Connect Series for oDBC User’s Guide and Reference

Retrieving Data

sending the query to the ODBC driver (that is, some applications
simply SELECT * FROM tabl e_nane ...). If the select list contains
long data, the driver must retrieve that data at fetch time even if
the application does not bind the long data in the result set.
When possible, use a method that does not retrieve all columns
of the table.

Reducing the Size of Data Retrieved

To reduce network traffic and improve performance, you can
reduce the size of data being retrieved to some manageable
limit by calling SQLSetStmtAttr with the
SQL_ATTR_MAX_LENGTH option. This reduces network traffic
and improves performance.

Although eliminating SQL_LONGVARCHAR and
SQL_LONGVARBINARY data from the result set is ideal for
performance optimization, sometimes, long data must be
retrieved. When this is the case, remember that most users do
not want to see 100 KB, or more, of text on the screen. What
techniques, if any, are available to limit the amount of data
retrieved?

Many application developers mistakenly assume that if they call
SQLGetData with a container of size x that the ODBC driver only
retrieves x bytes of information from the server. Because
SQLGetData can be called multiple times for any one column,
most drivers optimize their network use by retrieving long data
in large chunks and then returning it to the user when
requested. For example:

char CaseContai ner[1000];

rc = SQLExecDirect (hstnt, "SELECT CaseH story FROM Cases
WWHERE CaseNo = 71164", SQL_NTS);

rc = SQLFetch (hstnt);

DataDirect Connect Series for oDBC User’s Guide and Reference

73

74 Appendix E Performance Design of ODBC Applications

rc = SQLCetData (hstnt, 1, CaseContai ner, (SWORD)
si zeof (CaseCont ai ner), ...);

At this point, it is more likely that an ODBC driver will retrieve
64 KB of information from the server instead of 1000 bytes. In
terms of network access, one 64-KB retrieval is less expensive
than 64 retrievals of 1000 bytes. Unfortunately, the application
may not call SQLGetData again; therefore, the first and only
retrieval of CaseHistory would be slowed by the fact that 64 KB of
data must be sent across the network.

Many ODBC drivers allow you to limit the amount of data
retrieved across the network by supporting the
SQL_MAX_LENGTH attribute. This attribute allows the driver to
communicate to the database server that only x bytes of data are
relevant to the client. The server responds by sending only the
first x bytes of data for all result columns. This optimization
substantially reduces network traffic and improves client
performance. The previous example returned only one row, but
consider the case where 100 rows are returned in the result set—
the performance improvement would be substantial.

Using Bound Columns

Retrieving data through bound columns (SQLBindCol) instead of
using SQLGetData reduces the ODBC call load and improves
performance.

Consider the following code fragment:

rc = SQLExecDirect (hstnt, "SELECT <20 col utms>
FROM Enpl oyees WHERE Hi reDate >= ?", SQL_NTS);
do {
rc = SQFetch (hstnt);
[l call SQ.GetData 20 times
} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS W TH_INFO));

DataDirect Connect Series for oDBC User’s Guide and Reference

Retrieving Data

Suppose the query returns 90 result rows. In this case, more than
1890 ODBC calls are made (20 calls to SQLGetData x 90 result
rows + 91 calls to SQLFetch).

Consider the same scenario that uses SQLBindCol instead of
SQLGetData:

rc = SQLExecDirect (hstnt, "SELECT <20 col utms>
FROM Enpl oyees WHERE HireDate >= ?", SQL_NTS);

/1 call SQ.BindCol 20 tinmes

do {

rc = SQLFetch (hstnt);

} while ((rc == SQL_SUCCESS) || (rc ==
SQ._SUCCESS WTH_INFO)) ;

The number of ODBC calls made is reduced from more than 1890
to about 110 (20 calls to SQLBindCol + 91 calls to SQLFetch). In
addition to reducing the call load, many drivers optimize how
SQLBindCol is used by binding result information directly from
the database server into the user’s buffer. That is, instead of the
driver retrieving information into a container and then copying
that information to the user’s buffer, the driver simply requests
the information from the server be placed directly into the user’s
buffer.

Using SQLExtendedFetch Instead of
SQLFetch

Use SQLExtendedFetch to retrieve data instead of SQLFetch. The
ODBC call load decreases (resulting in better performance) and
the code is less complex (resulting in more maintainable code).

Most ODBC drivers now support SQLExtendedFetch for forward
only cursors; yet, most ODBC applications use SQLFetch to

DataDirect Connect Series for oDBC User’s Guide and Reference

75

76 Appendix E Performance Design of ODBC Applications

retrieve data. Again, consider the preceding example using
SQLExtendedFetch instead of SQLFetch:

rc = SQLSet Stnt Option (hstnmt, SQ._ROASET_SIZE, 100);
/1 use arrays of 100 el ements
rc = SQLExecDirect (hstmt, "SELECT <20 col ums>
FROM Enpl oyees WHERE HireDate >= ?", SQL_NTS);
/1 call SQBindCol 1 time specifying roww se binding
do {
rc = SQLExt endedFetch (hstnt, SQ. FETCH NEXT, O,
&RowsFet ched, Rowst at us) ;
} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS WTH_INFO));

Notice the improvement from the previous examples. The initial
call load was more than 1890 ODBC calls. By choosing ODBC calls
carefully, the number of ODBC calls made by the application has
now been reduced to 4 (1 SQLSetStmtOption + 1 SQLExecDirect +
1 SQLBindCol + 1 SQLExtendedFetch). In addition to reducing the
call load, many ODBC drivers retrieve data from the server in
arrays, further improving the performance by reducing network
traffic.

For ODBC drivers that do not support SQLExtendedFetch, the
application can enable forward-only cursors using the ODBC
cursor library (call SQLSetConnectOption using
SQL_ODBC_CURSORS or SQL_CUR_USE_IF_NEEDED). Although
using the cursor library does not improve performance, it should
not be detrimental to application response time when using
forward only cursors (no logging is required). Furthermore, using
the cursor library when SQLExtendedFetch is not supported
natively by the driver simplifies the code because the application
can always depend on SQLExtendedFetch being available. The
application does not require two algorithms (one using
SQLExtendedFetch and one using SQLFetch).

DataDirect Connect Series for oDBC User’s Guide and Reference

Selecting ODBC Functions

Choosing the Right Data Type

Advances in processor technology brought significant
improvements to the way that operations such as floating-point
math are handled; however, retrieving and sending certain data
types are still expensive when the active portion of your
application will not fit into on-chip cache. When you are
working with data on a large scale, it is still important to select
the data type that can be processed most efficiently. For
example, integer data is processed faster than floating-point
data. Floating-point data is defined according to internal
database-specific formats, usually in a compressed format. The
data must be decompressed and converted into a different
format so that it can be processed by the wire protocol.

Processing time is shortest for character strings, followed by
integers, which usually require some conversion or byte
ordering. Processing floating-point data and timestamps is at
least twice as slow as processing integers.

Selecting ODBC Functions

The guidelines in this section will help you select which ODBC
functions will give you the best performance.

Using SQLPrepare/SQLExecute and
SQLExecDirect

Using SQLPrepare/SQLExecute is not always as efficient as
SQLExecDirect. Use SQLExecDirect for queries that will be
executed once and SQLPrepare/SQLExecute for queries that will
be executed multiple times.

DataDirect Connect Series for oDBC User’s Guide and Reference

77

78 Appendix E Performance Design of ODBC Applications

ODBC drivers are optimized based on the perceived use of the
functions that are being executed. SQLPrepare/SQLExecute is
optimized for multiple executions of statements that use
parameter markers. SQLExecDirect is optimized for a single
execution of a SQL statement. Unfortunately, more than 75% of
all ODBC applications use SQLPrepare/SQLExecute exclusively.

Consider the case where an ODBC driver implements SQLPrepare
by creating a stored procedure on the server that contains the
prepared statement. Creating stored procedures involve
substantial overhead, but the statement can be executed
multiple times. Although creating stored procedures is
performance-expensive, execution is minimal because the query
is parsed and optimization paths are stored at create procedure
time.

Using SQLPrepare/SQLExecute for a statement that is executed
only once results in unnecessary overhead. Furthermore,
applications that use SQLPrepare/SQLExecute for large single
execution query batches exhibit poor performance. Similarly,
applications that always use SQLExecDirect do not perform as
well as those that use a logical combination of SQLPrepare/
SQLExecute and SQLExecDirect sequences.

Using Arrays of Parameters

Passing arrays of parameter values for bulk insert operations, for
example, with SQLPrepare/SQLExecute and SQLExecDirect can
reduce the ODBC call load and network traffic. To use arrays of
parameters, the application calls SQLSetStmtAttr with the
following attribute arguments:

m SQL_ATTR_PARAMSET_SIZE sets the array size of the
parameter.

m SQL_ATTR_PARAMS_PROCESSED_PRT assigns a variable filled
by SQLExecute, which contains the number of rows that are
actually inserted.

DataDirect Connect Series for oDBC User’s Guide and Reference

Selecting ODBC Functions

m SQL_ATTR_PARAM_STATUS_PTR points to an array in which
status information for each row of parameter values is
returned.

NOTE: With ODBC 3.x, calls to SQLSetStmtAttr with the
SQL_ATTR_PARAMSET_SIZE,
SQL_ATTR_PARAMS_PROCESSED_ARRAY, and
SQL_ATTR_PARAM_STATUS_PRT arguments replace the ODBC 2.x
call to SQLParamOptions.

Before executing the statement, the application sets the value of
each data element in the bound array. When the statement is
executed, the driver tries to process the entire array contents
using one network roundtrip. For example, let us compare the
following examples, Case 1 and Case 2.

Case 1: Executing Prepared Statement Multiple Times

rc = SQLPrepare (hstnt, "INSERT INTO Dail yLedger (...)
VALUES (?,?,...)", SQ_NTS);

[l bind paranmeters

do {

Il read | edger values into bound paraneter buffers

rc = SQLExecute (hstnt);

/!l insert row
} while ! (eof);

Case 2: Using Arrays of Parameters

SQLPrepare (hstnt, " INSERT INTO DailyLedger (...) VALUES
(?,?,...)", SQ_NTS);

SQLSet Sttt Attr (hstmt, SQL_ATTR_PARAMSET SI ZE, (UDWORD) 100,
SQL_I' S U NTEGER) ;

SQLSet Stmt Attr (hstnt, SQ_ATTR_PARAMS_PROCESSED PRT,
& ows_processed, SQ_IS PO NTER);

[l Specify an array in which to return the status of

/1 each set of paraneters.

SQLSet Stmt Attr(hstnt, SQ_ATTR _PARAM STATUS PTR,
Par antt at usArray, SQ._IS PO NTER);

DataDirect Connect Series for oDBC User’s Guide and Reference

79

80 Appendix E Performance Design of ODBC Applications

/1 pass 100 paraneters per execute
[l bind parameters

do {

Il read up to 100 | edger values into
/'l bound parameter buffers

rc = SQLExecute (hstnt);
[l insert a group of 100 rows
} while ! (eof);

In Case 1, if there are 100 rows to insert, 101 network roundtrips
are required to the server, one to prepare the statement with
SQLPrepare and 100 additional roundtrips for each time
SQLExecute is called.

In Case 2, the call load has been reduced from 100 SQLExecute
calls to only 1 SQLExecute call. Furthermore, network traffic is
reduced considerably.

Using the Cursor Library

If the driver provides scrollable cursors, do not use the cursor
library automatically. The cursor library creates local temporary
log files, which are performance-expensive to generate and
provide worse performance than native scrollable cursors.

The cursor library adds support for static cursors, which simplifies
the coding of applications that use scrollable cursors. However,
the cursor library creates temporary log files on the user’s local
disk drive to accomplish the task. Typically, disk input/output is a
slow operation. Although the cursor library is beneficial,
applications should not automatically choose to use the cursor
library when an ODBC driver supports scrollable cursors natively.

Typically, ODBC drivers that support scrollable cursors achieve
high performance by requesting that the database server

DataDirect Connect Series for oDBC User’s Guide and Reference

Managing Connections and Updates

produce a scrollable result set instead of emulating the
capability by creating log files. Many applications use:

rc = SQSet Connect Option (hdbc, SQ._ODBC CURSCRS,
SQL_CUR_USE_ODBC) ;

but should use:

rc = SQSet Connect Option (hdbc, SQ._CDBC_CURSCRS,
SQL_CUR USE | F_NEEDED);

Managing

Connections and Updates

The guidelines in this section will help you to manage
connections and updates to improve system performance for
your ODBC applications.

Managing Connections

Connection management is important to application
performance. Optimize your application by connecting once and
using multiple statement handles, instead of performing
multiple connections. Avoid connecting to a data source after
establishing an initial connection.

Although gathering driver information at connect time is a good
practice, it is often more efficient to gather it in one step rather
than two steps. Some ODBC applications are designed to call
informational gathering routines that have no record of already
attached connection handles. For example, some applications
establish a connection and then call a routine in a separate DLL
or shared library that reattaches and gathers information about
the driver. Applications that are designed as separate entities
should pass the already connected HDBC pointer to the data
collection routine instead of establishing a second connection.

DataDirect Connect Series for oDBC User’s Guide and Reference

81

82 Appendix E Performance Design of ODBC Applications

Another bad practice is to connect and disconnect several times
throughout your application to process SQL statements.
Connection handles can have multiple statement handles
associated with them. Statement handles can provide memory
storage for information about SQL statements. Therefore,
applications do not need to allocate new connection handles to
process SQL statements. Instead, applications should use
statement handles to manage multiple SQL statements.

On Windows, you can significantly improve performance with
connection pooling, especially for applications that connect over
a network or through the World Wide Web. With connection
pooling, closing connections does not close the physical
connection to the database. When an application requests a
connection, an active connection from the connection pool is
reused, avoiding the network input/output needed to create a
new connection.

Connection and statement handling should be addressed before
implementation. Spending time and thoughtfully handling
connection management improves application performance and
maintainability.

Managing Commits in Transactions

Committing data is extremely disk input/output intensive and
slow. If the driver can support transactions, always turn
autocommit off.

What does a commit actually involve? The database server must
flush back to disk every data page that contains updated or new
data. This is not a sequential write but a searched write to replace
existing data in the table. By default, autocommit is on when
connecting to a data source. Autocommit mode usually impairs
system performance because of the significant amount of disk
input/output needed to commit every operation.

DataDirect Connect Series for oDBC User’s Guide and Reference

Managing Connections and Updates

Some database servers do not provide an Autocommit mode. For
this type of server, the ODBC driver must explicitly issue a
COMMIT statement and a BEGIN TRANSACTION for every
operation sent to the server. In addition to the large amount of
disk input/output required to support Autocommit mode, a
performance penalty is paid for up to three network requests for
every statement issued by an application.

Although using transactions can help application performance,
do not take this tip too far. Leaving transactions active can
reduce throughput by holding locks on rows for long times,
preventing other users from accessing the rows. Commit
transactions in intervals that allow maximum concurrency.

Choosing the Right Transaction Model

Many systems support distributed transactions; that is,
transactions that span multiple connections. Distributed
transactions are at least four times slower than normal
transactions due to the logging and network input/output
necessary to communicate between all the components involved
in the distributed transaction. Unless distributed transactions are
required, avoid using them. Instead, use local transactions when
possible.

Using Positional Updates and Deletes

Use positional updates and deletes or SQLSetPos to update data.
Although positional updates do not apply to all types of
applications, developers should use positional updates and
deletes when it makes sense. Positional updates (either through
"update where current of cursor" or through SQLSetPos) allow
the developer to signal the driver to "change the data here" by
positioning the database cursor at the appropriate row to be
changed. The designer is not forced to build a complex SQL
statement but simply supplies the data to be changed.

DataDirect Connect Series for oDBC User’s Guide and Reference

83

84 Appendix E Performance Design of ODBC Applications

In addition to making the application more maintainable,
positional updates usually result in improved performance.
Because the database server is already positioned on the row for
the Select statement in process, performance-expensive
operations to locate the row to be changed are not needed. If
the row must be located, the server typically has an internal
pointer to the row available (for example, ROWID).

Using SQLSpecialColumns

Use SQLSpecialColumns to determine the optimal set of columns
to use in the Where clause for updating data. Often, pseudo-
columns provide the fastest access to the data, and these columns
can only be determined by using SQLSpecialColumns.

Some applications cannot be designed to take advantage of
positional updates and deletes. These applications typically
update data by forming a Where clause consisting of some subset
of the column values returned in the result set. Some applications
may formulate the Where clause by using all searchable result
columns or by calling SQLStatistics to find columns that are part
of a unique index. These methods typically work, but can result in
fairly complex queries.

Consider the following example:

rc = SQLExecDirect (hstnt, "SELECT first_name, |ast_nane,
ssn, address, city, state, zip FROM enp", SQL_NTS);
/| fetchdata

rc = SQLExecDirect (hstnt, "UPDATE EMP SET ADDRESS = ?
WHERE first _name = ? and last_name = ? and ssn = ? and
address = ? and city = ? and state = ? and zip = ?",
SQL_NTS);

[l fairly conplex query

Applications should call SQLSpecialColumns/SQL_BEST_ROWID to
retrieve the optimal set of columns (possibly a pseudo-column)

DataDirect Connect Series for oDBC User’s Guide and Reference

Managing Connections and Updates

that identifies a given record. Many databases support special
columns that are not explicitly defined by the user in the table
definition but are "hidden" columns of every table (for example,
ROWID and TID). These pseudo-columns provide the fastest
access to data because they typically point to the exact location
of the record. Because pseudo-columns are not part of the
explicit table definition, they are not returned from
SQLColumns. To determine if pseudo-columns exist, call
SQLSpecialColumns.

Consider the previous example again:

rc = SQSpeci al Col ums (hstnt, enp’, ...);

rc = SQLExecDirect (hstnt, "SELECT first_name, |ast_nane,
ssn, address, city, state, zip, ROND FROM enp",
SQL_NTS);

/] fetch data and probably "hide" ROND fromthe user

rc = SQ.ExecDirect (hstnt, "UPDATE enp SET address = ?
WHERE RON'D = ?", SQL_NTS);
/1 fastest access to the datal

If your data source does not contain special pseudo-columns, the
result set of SQLSpecialColumns consists of columns of the
optimal unique index on the specified table (if a unique index
exists). Therefore, your application does not need to call
SQLStatistics to find the smallest unique index.

DataDirect Connect Series for oDBC User’s Guide and Reference

85

86 Appendix E Performance Design of ODBC Applications

DataDirect Connect Series for oDBC User’s Guide and Reference

F Values for IANAAppCodePage
Connection String Attribute

Table F-1 lists supported values, along with a description, for the
IANAAppCodePage connection string attribute at the time of
this publication. Support for additional values may have been
added since publication time; therefore, for up-to-date values,
go to:

http://www.datadirect.com/support/troubleshooting/su-fag-iana/
index.ssp

See the appropriate individual driver chapter for information
about this attribute.

To determine the correct numeric value (the MIBenum value) for
the IANAAppCodePage connection string attribute, do the
following:

1 Determine the code page of your database.

2 Determine the MIBenum value that corresponds to your
database code page. To do this, go to:

http://www.iana.org/assignments/character-sets

On this web page, search for the name of your database code
page. This name will be listed as an alias or the name of a
character set and will have a MIBenum value associated with
it.

3 Check the table in this appendix to make sure that the
MIBenum value you looked up on the IANA Web page is
supported by the DataDirect Connect Series for ODBC. If the
value is not listed, contact SupportLink to request that
support for that value be added.

DataDirect Connect Series for oDBC User’s Guide and Reference

http://www.iana.org/assignments/character-sets
http://www.datadirect.com/support/troubleshooting/su-faq-iana/index.ssp

88 Appendix F Values for IANAAppCodePage Connection String Attribute

Table F-1. IANAAppCodePage Values

Value (MIBenum) Description

3 US_ASCII

4 ISO_8859_1

5 ISO_8859_2

6 ISO_8859_3

7 ISO_8859_4
8 ISO_8859_5

9 ISO_8859_6
10 ISO_8859_7
11 ISO_8859_8
12 ISO_8859_9
16 JIS_Encoding
17 Shift_JIS

18 EUC_JP

30 ISO_646_IRV
36 KS_C_5601
37 ISO_2022_KR
38 EUC_KR

39 ISO_2022_JP
40 1SO_2022_JP_2
57 GB_2312_80
104 ISO_2022_CN
105 ISO_2022_CN_EXT
109 ISO_8859_13
110 ISO_8859_14
111 ISO_8859_15
113 GBK

2004 HP_ROMANS8

DataDirect Connect Series for oDBC User’s Guide and Reference

Appendix F Values for IANAAppCodePage Connection String Attribute

Table F-1. IANAAppCodePage Values (cont.)

Value (MIBenum) Description

2009 IBM850
2010 IBM852
2011 IBM437
2013 IBM862
2024 WINDOWS-31J
2025 GB2312
2026 Big5
2027 MACINTOSH
2028 IBM037
2029 IBM038
2030 IBM273
2033 IBM277
2034 IBM278
2035 IBM280
2037 IBM284
2038 IBM285
2039 IBM290
2040 IBM297
2041 IBM420
2043 IBM424
2044 IBM500
2045 IBM851
2046 IBM855
2047 IBM857
2048 IBM860
2049 IBM861
2050 IBM863
2051 IBM864

DataDirect Connect Series for oDBC User’s Guide and Reference

90 Appendix F Values for IANAAppCodePage Connection String Attribute

Table F-1. IANAAppCodePage Values (cont.)

Value (MIBenum) Description

2052 IBM865

2053 IBM868

2054 IBM869

2055 IBM870

2056 IBM871

2062 IBM918

2063 IBM1026

2084 KOI8_R

2085 HZ_GB_2312
2086 IBM866

2087 IBM775

2089 IBMO00858

2091 IBMO01140

2092 IBMO01141

2093 IBMO01142

2094 IBMO01143

2095 IBMO01144

2096 IBMO01145

2097 IBMO1146

2098 IBMO01147

2099 IBMO01148

2100 IBM01149

2102 IBM1047

2250 WINDOWS_1250
2251 WINDOWS_1251
2252 WINDOWS_1252
2253 WINDOWS_1253
2254 WINDOWS_1254

DataDirect Connect Series for oDBC User’s Guide and Reference

Appendix F Values for IANAAppCodePage Connection String Attribute

Table F-1. IANAAppCodePage Values (cont.)

Value (MIBenum) Description

2255 WINDOWS_1255
2256 WINDOWS_1256
2257 WINDOWS_1257
2258 WINDOWS_1258
2259 TIS_620
2000000939’ IBM-939
2000000943" IBM-943_P14A-2000
2000004396’ IBM-4396
2000005026’ IBM-5026
2000005035 IBM-5035

'These values are assigned by DataDirect Technologies and do not
appear in http://www.iana.org/assignments/character-sets.

DataDirect Connect Series for oDBC User’s Guide and Reference

92 Appendix F Values for IANAAppCodePage Connection String Attribute

DataDirect Connect Series for oDBC User’s Guide and Reference

G The UNIX/Linux Environments

This appendix contains specific information about using
DataDirect Connect Series for ODBC in the UNIX and Linux
environments. It discusses the following:

“Environment Variables” on page 93
“The ivtestlib/ddtestlib Tool” on page 96
“Data Source Configuration” on page 97
“demoodbc” on page 99

“example” on page 100

“DSN-less Connections” on page 101
“File Data Sources” on page 102

“UTF-16 Applications on UNIX and Linux” on page 104

See “Environment-Specific Information” on page 19 for
additional platform information.

Environment Variables

The drivers require several environment variables to be set
before using the driver. The following procedures require that
you have the appropriate permissions to modify your
environment and to read, write and execute various files. You
should log in as a user with full r/w/x permissions recursively on
the entire DataDirect Connect Series for ODBC installation
directory.

DataDirect Connect Series for obBC User’s Guide and Reference

93

94 Appendix G The UNIX/Linux Environments

Required Environment Variables

Most of the variables can be set by executing the appropriate
shell script located in the ODBC home directory.

For example, C shell (and related shell) users should execute the
following command before attempting to use ODBC-enabled
applications:

% source ./odbc. csh

Bourne shell (and related shell) users should initialize their
environment as follows:

$. ./odbc. sh

Executing these scripts will set the appropriate library search path
environment variable: LD_LIBRARY_PATH on Solaris and Linux,
SHLIB_PATH on HP/UX, or LIBPATH on AIX for the 32-bit drivers;
and LD_LIBRARY_PATH on Solaris, Linux, and HP-UX, or LIBPATH
on AIX for the 54-bit drivers.

The library search path environment variables are required to be
set so that the ODBC core components and drivers can be located
at the time of execution.

Some of the drivers must have environment variables set as
required by the database client components used by the drivers.
Consult the driver requirements in each of the individual driver
sections for additional information pertaining to individual driver
requirements.

ODBCINI

UNIX and Linux permit the use of a centralized system
information file that a system administrator can control. This file
contains data source definitions. Setup installs a default version
of this file, called odbc.ini (see “Data Source Configuration” on
page 97 for details). The system administrator can choose to use

DataDirect Connect Series for oDBC User’s Guide and Reference

Environment Variables

this file name or to rename the file. In either case, the
environment variable ODBCINI, recognized by the DataDirect
Connect Series for ODBC driver, must be set to point to the fully
qualified path name of the system information file.

For example, to point to the default location of the file odbc.ini
in the Cshell, you would set this variable as follows:

setenv ODBCI NI /opt/odbc32v51/ odbc. i ni

or

setenv ODBCINI /opt/odbc64v50/ odbc. i ni

In the Bourne or Korn shell, you would set it as:
CDBCI NI =/ opt / odbc32v51/ odbc. i ni ; export ODBC NI
or

ODBCI NI =/ opt / odbc64v50/ odbc. i ni ; export ODBCI NI

As an alternative, you can choose to make the system
information file a hidden file and not set the ODBCINI variable.
In this case, you would need to rename the file to .odbc.ini (to
make it a hidden file) and move it to the user’'s $HOME directory.

The driver searches for the system information file in the
following order:

1 Check ODBCINI
2 Check $HOME for .odbc.ini

The system administrator must use one of the preceding two
steps to indicate the location of the system information file or
the driver will return an error.

The next step is to test load the driver.

DataDirect Connect Series for oDBC User’s Guide and Reference

95

96

Appendix G The UNIX/Linux Environments

The ivtestlib/ddtestlib Tool

The second step in preparing to use a driver is to test load it. The
ivtestlib (ddtestlib for the 64-bit drivers) tool is provided to help
diagnose configuration problems in the UNIX and Linux
environments (such as environment variables not correctly set or
missing database client components). This tool is installed in the
bin subdirectory in the product installation directory. It attempts
to load a specified ODBC driver and prints out all available error
information if the load fails.

for example, if the driver is installed in /opt/odbd/lib, the
command:

ivtestlib /opt/odbc/lib/ivnsk2l.so
or
ddtestlib /opt/odbc/lib/ddnsk21. so

attempts to load the NSK SQL/MX Wire Protocol driver. If the
driver cannot be loaded, the tool returns an error message
explaining why.

NOTE: On Solaris, AlX, and Linux, the full path to the driver does
not have to be specified for the tool. The HP-UX version of the
tool, however, requires the full path.

Also, you can use ivtestlib to check the version strings of the
ODBC driver on UNIX and Linux. See “Version String Information”
on page 25 for details.

The next step is to configure a data source through the system
information file.

DataDirect Connect Series for oDBC User’s Guide and Reference

Data Source Configuration

Data Source Configuration

In the UNIX and Linux environments, there is no ODBC
Administrator, but a centralized system information file can be
used to store data sources. To configure a data source, you must
create a data source definition by editing the system
information file. Setup installs a default version of this file,
called odbc.ini, in the installation directory (see “ODBCINI” on
page 94 for details about relocating and renaming this file). This
a plain text file that can be modified using any text editor to
create data source definitions. Modify the default attributes in
this file as necessary based on your system (for example, your
server name and port number). Consult the Table 3-1 of the
driver chapter for specific attribute values.

IMPORTANT: The "Connection String Attributes" table of each
driver chapter lists both the long and short name of the
attribute. When entering attribute names into odbc.ini, you
must use the long name of the attribute. The short name is not
valid in the odbc.ini file.

There must be an [ODBC] section in the system information file
that includes the InstallDir keyword. The value of this keyword
must be the path to the installation directory under which the
/lib and /messages directories are contained. The installation
process automatically writes your installation directory to the
default odbc.ini.

For example, if you choose the default installation directory,
then the following line is written to the [ODB(] section of the
default odbc.ini:

Instal | Di r=/opt/odbc32v51
or

Instal | Dir=/opt/odbc64v51l

DataDirect Connect Series for oDBC User’s Guide and Reference

97

98

Appendix G The UNIX/Linux Environments

See “Sample System Information File” on page 98 for an
example.

Translators

DataDirect provides a sample translator named "OEM to ANSI"
that provides a framework for coding a translation library.

To perform a translation, you must include the keyword
TranslationSharedLibrary in the data source sections of the
system information file (see “Sample System Information File” on
page 98). Adding the TranslationOption keyword is optional.

Keyword Definition
TranslationSharedLibrary Full path of translation library

TranslationOption ASCll representation of the 32-bit
integer translation option

For example, with the 32-bit driver:

[NSK Wre Protocol]

Dri ver =COBCHOME/ | i b/ i vnsk21. so
Description=DataDirect 5.1 NSK SQ./MX Wre Protocol
Transl ati onShar edLi br ar y=0DBCHOVE/ | i b/ i vtrn2l. so

See the readme.trn file in the /src/trn directory beneath the
product installation directory.

Sample System Information File

The following is a sample 32-bit odbc.ini file on Linux that Setup
installs in the installation directory. The only difference for a 64-
bit file is the file name: ddnsk21.so. All occurrences of
ODBCHOME are replaced with your installation directory path
during installation of the file. Values that you must supply are
enclosed by angle brackets (< >). If you are using the supplied

DataDirect Connect Series for oDBC User’s Guide and Reference

demoodbc

odbc.ini file, you must supply these values and remove the angle
brackets before that data source section will operate properly.

[COBC Data Sources]
NSK Wre Protocol =DataDirect 5.1 NSK SQL/ MX Wre Protocol

[NSK Wre Protocol]

Dri ver =CDBCHOVE/ | i b/ i vnsk21. so
Description=DatabDirect 5.1 NSK SQ./MX Wre Protocol
Host Nane=<NSK server _address>

NskCat al og=nycat| og

NskDat asour ce="TDM Def aul t _Dat aSour ce"
NSKSchema=nyschena

NskTransactionl sol ati onLevel =2

NskW ndowText =i vnsk

Por t Number =<NSK_ser ver_port>

[GDBC]

| ANAAppCodePage=4

I nstal | Di r =CDBCHOMVE

Trace=0

TraceD | =ODBCHOME/ | i b/ odbctrac. so
TraceFi | e=odbct race. out

UseCur sor Li b=0

The final step is to verify that the driver connects and passes SQL.

demoodbc

DataDirect ships an application, called demoodbc, which is
installed in the demo subdirectory beneath the product
installation directory. Once you have set up your environment
and data source, you can use the demoodbc application to test
your connection. The syntax to run the application is:

demoodbc -uid user_nane -pwd password data_source_nane

DataDirect Connect Series for oDBC User’s Guide and Reference

99

100 Appendix G The UNIX/Linux Environments

For example:
demoodbc -ui d johndoe -pwd secret DataSource3

The demoodbc application is coded to execute a Select statement
from a table named EMP. If you have an EMP table in your
database, the results are returned. If you do not have an EMP
table, you receive the message, The specified table (enp) is
not in the database. This message should be viewed as a
successful connection to the database.

See the readme in the demo directory for an explanation of how
to build and use this application. See “demoodbc Application” on
page 107 for additional information.

example

DataDirect ships an application, called example, which is installed
in the example subdirectory in the product installation directory.
Once you have configured your environment and data source,
you can use the example application to test passing SQL
statements. To run the application, enter exanpl e and follow the
prompts to enter your data source name, user name, and
password.

If successful, a SQL> prompt appears and you can type in SQL
Statements such as SELECT * FROM t abl e_name. If example is
unable to connect, an appropriate error message appears.

See the readme in the example directory for an explanation of
how to build and use this application. See “example Application”
on page 108 for additional information.

DataDirect Connect Series for oDBC User’s Guide and Reference

DSN-less Connections 101

DSN-less Connections

Connections to a data source can be made via a connection
string without referring to a data source name (DSN-less
connections). This is accomplished by specifying the "DRIVER="
instead of the "DSN=" keyword in a connection string, as
outlined in the ODBC specification. For this to work on UNIX and
Linux, a file called odbcinst.ini must exist when the driver
encounters DRIVER= in a connection string.

By default, Setup installs a sample odbcinst.ini file in the same
location as the sample odbc.ini file, which is in the product
installation directory. See “Data Source Configuration” on

page 97 for an explanation of the odbc.ini file. The environment
variable ODBCINST, recognized by the DataDirect Connect Series
for ODBC driver, must be set to point to the fully qualified path
name of the odbcinst.ini file.

For example, to point to the default location of the file in the C
shell, you would set this variable as follows:

set env ODBCI NST /opt/ odbc32v51/ odbci nst . i ni

or

set env ODBCI NST /opt/ odbc64v51/ odbci nst. i ni

In the Bourne or Korn shell, you would set it as:

CDBCI NST=/ opt / odbc32v51/ odbci nst . i ni ; export ODBCI NST
or

CDBCI NST=/ opt / odbc64v51/ odbci nst . i ni ; export CDBCI NST

If the ODBCINST variable is not set, the driver looks in the user’s
home directory for a file named odbcinst.ini. If the driver does
not find the file, it returns the message:

HYO00 - "CDBCINST.INI is not available in the directory
pointed to by the ODBCI NST environment variable (or the

DataDirect Connect Series for oDBC User’s Guide and Reference

102 Appendix G The UNIX/Linux Environments

current user’'s HOME directory) and therefore DSN Less
connections cannot be nade."

The following is a sample 32-bit odbcinst.ini file on Linux that
Setup installs in the installation directory. The only difference for
a 64-bit file is the file name: ddnsk21.so. All occurrences of
ODBCHOME are replaced with your installation directory path
during installation of the file.

[ODBC Drivers]
DataDirect 5.1 NSK SQL/ MX Wre Protocol =Install ed

[DataDirect 5.1 NSK SQL/MX Wre Protocol]
Driver =CDBCHOVE/ | i b/ i vnsk21. so

APl Level =1

Connect Functi ons=YYY

Dri ver CDBCVer =3. 52

Fi | eUsage=0

SQLevel =1

[ODBC Transl at ors]
CEMto ANSI =Install ed

[CDBC Cor €]

File Data Sources

The Driver Manager on UNIX and Linux supports file data sources.
The advantage of a file data source is that it can be stored on a
server and accessed by other machines, either Windows, UNIX, or
Linux, with the same type of driver. See Chapter 1 “Quick Start
Connect” on page 13 for a general description of ODBC data
sources.

A file data source is simply a text file that contains connection
information. It can be created with a text editor. The file normally
has an extension of .dsn.

DataDirect Connect Series for oDBC User’s Guide and Reference

File Data Sources 103

For example, a file data source for the NSK SQL/MX Wire
Protocol driver would be similar to the following:

[GOBC]

DRI VER=Dat aDi rect 5.1 NSK SQL/ MX Wre Protocol
Host Nane=NSK2

NskCat al 0g=<NSK_dat abase_cat al og_nanme>
NSKSchema<=NSK_dat abase_schema_nanme>

User | D=JCHN

Por t Nunber =111

It must contain all basic connection information plus any
optional attributes. Because it uses the "DRIVER=" keyword, an
odbcinst.ini file containing the driver location must exist (see
“DSN-less Connections” on page 101).

The file data source is accessed by specifying the "FILEDSN="
instead of the "DSN=" keyword in a connection string, as
outlined in the ODBC specification. The complete path to the file
data source must be specified in the syntax that is normal for the
machine on which the file is located. For example:

FI LEDSN=/ horre/ user s/ john/fil edsn/ NSKFi | e. dsn

As with any connection string, attributes can be specified to
override the default values in the data source:

FI LEDSN=/ hone/ user s/ j ohn/fil edsn/ NSKFi | e. dsn; Ul D=j anes; PWD=t est 01

If no path is specified for the file data source, the Driver
Manager uses the installation directory setting in the odbc.ini
file. The Driver Manager does not support the SAVEFILE keyword
or the SQLReadFileDSN and SQLWriteFileDSN functions.

DataDirect Connect Series for oDBC User’s Guide and Reference

104 Appendix G The UNIX/Linux Environments

UTF-16 Applications on UNIX and Linux

Because the DataDirect Driver Manager allows applications to use
either UTF-8 or UTF-16 Unicode encoding, applications written in
UTF-16 for Windows platforms can also be used on UNIX and
Linux platforms.

The Driver Manager assumes a default of UTF-8 applications;
therefore, two things must occur for it to determine that the
application is UTF-16:

B The definition of SQLWCHAR in the ODBC header files must
be switched from "char *" to "short *." To do this, the
application uses #define SQLWCHARSHORT.

B The application must set the ODBC environment attribute
SQL_ATTR_APP_UNICODE_TYPE to a value of
SQL_DD_CP_UTF16, for example:

rc = SQSet EnvAttr(*henv, SQ._ATTR_APP_UN CODE_TYPE,
(SQLPO NTER) SQL_DD_CP_UTF16, SQL_I S I NTEGER);

DataDirect Connect Series for oDBC User’s Guide and Reference

105

H Diagnostic Tools, Error
Messages, and Troubleshooting

This appendix discusses the diagnostic tools that are available to
configure and troubleshoot your ODBC environment, explains
the error messages that can be returned from the DataDirect
Connect Series for ODBC, and provides a troubleshooting section
that discusses some common types of issues that you may
experience when using ODBC applications. This appendix
includes the following:

m “Diagnostic Tools” on page 105
B “Error Messages” on page 108

m “Troubleshooting” on page 110

Diagnostic Tools

This section discusses the diagnostic tools that are available to
you when you are configuring and troubleshooting your ODBC
environment.

ODBC Trace

ODBC tracing allows you to trace calls to ODBC drivers and
create a log of the traces. Creating a trace log is particularly
useful when you are troubleshooting an issue.

DataDirect Connect Series for obBC User’s Guide and Reference

106 Appendix H Diagnostic Tools, Error Messages, and Troubleshooting

To create a trace log, turn on tracing, start the ODBC application,
reproduce the issue, stop the application, and turn off tracing.
Then, open the log file in a text editor and review the output to
help you debug the problem. Be sure to turn off tracing when
you are finished reproducing the issue because tracing decreases
the performance of your ODBC application.

For a more thorough explanation of tracing, see the following
DataDirect Knowledgebase document:

http://knowledgebase.datadirect.com/kbase.nsf/
SupportLink+Online/2549739SL

Enabling Tracing

On UNIX and Linux, the [ODBC] section in the system information
file must include the keywords Trace and TraceFile. For example:

Trace=1
TraceFi | e=odbct race. out

In this example, tracing is enabled and trace information is
logged in a file named odbctrace.out. To disable tracing, set the
Trace value to 0.

ivtestlib/ddtestlib Tool

The ivtestlib (ddtestlib for the 64-bit drivers) tool is provided to
help diagnose configuration problems in the UNIX and Linux
environments (such as environment variables not correctly set or
missing database client components). This tool is installed in the
bin subdirectory in the product installation directory. It attempts
to load a specified ODBC driver and prints out all available error
information if the load fails.

DataDirect Connect Series for oDBC User’s Guide and Reference

http://knowledgebase.datadirect.com/kbase.nsf/SupportLink+Online/2549739SL

Diagnostic Tools

for example, if the driver is installed in /opt/odbc/lib, the
command:

ivtestlib /opt/odbc/lib/ivnsk2l.so
or
ddtestlib /opt/odbc/lib/ddnsk21. so

attempts to load the NSK SQL/MX Wire Protocol driver. If the
driver cannot be loaded, the tool returns an error message
explaining why.

NOTE: On Solaris, AlX, and Linux, the full path to the driver does
not have to be specified for the tool. The HP-UX version of the
tool, however, requires the full path.

Also, you can use ivtestlib to check the version strings of the
ODBC driver on UNIX and Linux. See “Version String
Information” on page 25 for details.

demoodbc Application

The product is shipped with a small C application, demoodbc, on
UNIX and Linux that is useful for:

B Executing SELECT * FROM enp, where EMP is a database table
(one for each supported database) that is provided with the
product. The scripts for building the EMP database tables are
in the demo subdirectory in the product installation
directory.

B Testing database connections.
m Creating reproducibles.

m Persisting data to an XML data file.

Demoodbc is installed in the demo subdirectory in the product
installation directory. See the readme in the demo directory for
an explanation of how to build and use this application.

DataDirect Connect Series for oDBC User’s Guide and Reference

107

108 Appendix H Diagnostic Tools, Error Messages, and Troubleshooting

example Application

The product is shipped with a small C application, named
example, on Windows and UNIX and Linux that is useful for:

m Executing any type of SQL statement
B Testing database connections

B Testing SQL statements

m Verifying your database environment

Example is installed in the example subdirectory in the product
installation directory. See the readme in the example directory
for an explanation of how to build and use this application.

Translators

DataDirect provides a sample translator named "OEM to ANSI"
that provides a framework for coding a translation library.

On UNIX and Linux, see the readme.trn file in the /src/trn
subdirectory in the product installation directory.

Error Messages

Error messages can come from:

m An ODBCdriver
B The database system
m The ODBC driver manager

An error reported on an ODBC driver has the following format:

[vendor] [ODBC conponent] nessage

DataDirect Connect Series for oDBC User’s Guide and Reference

Error Messages

CDBC _conponent is the component in which the error occurred.
For example, an error message from the NSK SQL/MX Wire
Protocol driver would look like this:

[DataDirect] [ODBC NSK SQL/MX driver] Invalid precision
speci fi ed.

If you receive this type of error, check the last ODBC call made by
your application for possible problems or contact your ODBC
application vendor.

An error that occurs in the data source includes the data store
name, in the following format:

[vendor] [ODBC conponent] [data store] message

With this type of message, CDBC _conponent is the component that
received the error from the data store indicated. For example,
you may receive the following message from an NSK data store:

[DataDirect] [CODBC NSK SQ./MX driver] [NSK] specified
length too | ong

This type of error is generated by the database system. Check
your database system documentation for more information or
consult your database administrator. In this example, you would
check your NSK documentation.

On UNIX and Linux, the Driver Manager is provided by
DataDirect. For example, an error from the DataDirect Driver
Manager might look like this:

[DataDirect][CDBC lib] String data code page conversion
failed.

UNIX and Linux error handling follows the X/Open XPG3
messaging catalog system. Localized error messages are stored in
the subdirectory

I ocal e/l ocalized territory_directory/LC_MESSAGES

DataDirect Connect Series for oDBC User’s Guide and Reference

109

110 Appendix H Diagnostic Tools, Error Messages, and Troubleshooting

where | ocal i zed_territory_directory depends on your
language.

For instance, German localization files are stored in | ocal e/ de/
LC MESSAGES, where de is the locale for German.

If localized error messages are not available for your locale, then
they will contain message numbers instead of text. For example:

[DataDirect] [ODBC 20101 driver] 30040

Troubleshooting

When you are having an issue while using the DataDirect
Connect Series for ODBC, the first thing to do is determine the type
of issue that you are seeing:

B Setup/connection

B Interoperability (ODBC application, ODBC driver, ODBC Driver
Manager, and/or data source)

B Performance

This section describes these three types of issues, provides some
typical causes of the issues, lists some diagnostic tools that are
useful to troubleshoot the issues, and, in some cases, explains
possible actions you can take to resolve the issues.

Setup/Connection Issues

You are experiencing a setup/connection issue if you are
encountering an error or hang while you are trying to make a
database connection with the ODBC driver or are trying to
configure the ODBC driver.

DataDirect Connect Series for oDBC User’s Guide and Reference

Troubleshooting

Some common errors that are returned by the ODBC driver if
you are experiencing a setup/connection issue are:

B Specified driver could not be | oaded

Data source nanme not found and no default driver specified
Cannot open share library: libodbc. sl

ORA-12203: Unabl e to connect to destination

ORA-01017: invalid usernane/ password; |ogon denied

Troubleshooting the Issue

Some common reasons that setup/connection issues occur are:

B The library path environment variable is not set correctly for
the ODBC driver: LD_LIBRARY_PATH.

B The ODBCINI environment variable is not set correctly.

B The ODBC driver’s connection attributes are not set correctly
in the system information file (odbc.ini in most cases). For
example, the host name or port number are not correctly
configured. See each individual driver chapter for a list of
connection string attributes that are required for each driver
to connect properly to the underlying database.

B The database and/or listener are not started.

See "Environment Variables” on page 93 for more information.
See also “ivtestlib Tool” on page 106 for information about a
helpful diagnostic tool.

Interoperability Issues

Interoperability issues occur when you have a working ODBC
application in place. In these cases, the issue occurs in one or
more of the following components of ODBC—the ODBC
application, ODBC driver, ODBC Driver Manager, and/or data
source. See “What Is ODBC?” on page 17 for an explanation of
the components of ODBC.

DataDirect Connect Series for oDBC User’s Guide and Reference

111

112 Appendix H Diagnostic Tools, Error Messages, and Troubleshooting

Some common examples of what you might experience if you
have an interoperability issue are:

B SQL statements fail to execute
B Data is returned/updated/deleted/inserted incorrectly

B A hang or core dump

Troubleshooting the Issue

When you experience an interoperability issue, you must isolate
in which component the issue is occurring. Is it an ODBC
application, an ODBC driver, an ODBC Driver Manager, or a data
source issue?

The first step

First, test to see if your ODBC application is the source of the
problem. To do this, replace your ODBC application with a
smaller, simpler application. If you can reproduce the issue using
a simpler ODBC application, then you know your ODBC
application is not the cause of the issue.

On UNIX and Linux, you can use the example application that is
shipped with the DataDirect Connect Series for ODBC. See
“example Application” on page 108 for details.

The second step

Second, test to see if the data source is the source of the problem.
To do this, use the native database tools that are provided by
your database vendor.

DataDirect Connect Series for oDBC User’s Guide and Reference

Troubleshooting

The third step

If you find that neither the ODBC application nor the data
source is the source of your problem, you then can troubleshoot
the ODBC driver and the ODBC Driver Manager.

In this case, we recommend that you create an ODBC trace log so
that you can provide this to DataDirect technical support. See
“Diagnostic Tools” on page 105 for details.

Performance Issues

Developing performance-oriented ODBC applications is not an
easy task. You must be willing to change your application and do
some testing to see if your changes helped performance.
Microsoft's ODBC Programmer’s Reference does not provide
information about system performance. In addition, ODBC
drivers and the ODBC Driver Manager do not return warnings
when applications run inefficiently.

Some general guidelines for developing performance-oriented
ODBC applications include:

Use catalog functions appropriately
Retrieve only required data

Select functions that optimize performance
Manage connections and updates

See Appendix E “Performance Design of ODBC Applications” on
page 67 for complete information.

DataDirect Connect Series for oDBC User’s Guide and Reference

113

114 Appendix H Diagnostic Tools, Error Messages, and Troubleshooting

DataDirect Connect Series for oDBC User’s Guide and Reference

115

Glossary

application

conformance

connection string

data source

driver

An application, as it relates to the ODBC standard, performs
tasks such as: requesting a connection to a data source; sending
SQL requests to a data source; processing errors; and terminating
the connection to a data source. It may also perform functions
outside the scope of the ODBC interface.

There are two types of conformance levels for ODBC drivers—
ODBC APl and ODBC SQL grammar (see SQL Grammar). Knowing
the conformance levels helps you determine the range of
functionality available through the driver, even if a particular
database does not support all of the functionality of a particular
level.

For ODBC API conformance, most quality ODBC drivers support
Core, Level 1, and a defined set of Level 2 functions, depending
on the database being accessed.

A string passed in code that specifies connection information
directly to the Driver Manager and driver.

A data source includes both the source of data itself, such as
relational database, a flat-file database, or even a text file, and
the connection information necessary for accessing the data.
Connection information may include such things as server
location, database name, logon ID, and other driver options.
Data source information is usually stored in a DSN (see Data
Source Name).

An ODBC driver communicates with the application through the
Driver Manager and performs tasks such as: establishing a
connection to a data source; submitting requests to the data
source; translating data to and from other formats; returning
results to the application; and formatting errors into a standard
code and returning them to the application.

DataDirect Connect Series for obBC User’s Guide and Reference

116 Glossary

Driver Manager

DSN (Data Source
Name)

index

isolation level

locking level

SQL Grammar

The main purpose of the Driver Manager is to load drivers for the
application. The Driver Manager also processes ODBC
initialization calls and maps data sources to a specific driver.

A DSN stores the data source information (see Data Source)
necessary for the Driver Manager to connect to the database. This
can be configured either through the ODBC Administrator or in a
DSN file. On Windows, the information is called a system or user
DSN and is stored in the Registry. Data source information can
also be stored in text configuration files, as is the case on UNIX.
Applications deployed in the global assembly cache must have a
strong name to handle name and version conflicts.

A database structure used to improve the performance of
database activity. A database table can have one or more indexes
associated with it.

An isolation level represents a particular locking strategy
employed in the database system to improve data
consistency.The higher the isolation level number, the more
complex the locking strategy behind it. The isolation level
provided by the database determines how a transaction handles
data consistency.

The American National Standards Institute (ANSI) defines four
isolation levels:

B Read uncommitted (0)
Read committed (1)

[|
B Repeatable read (2)
B Serializable (3)

Locking is a database operation that restricts a user from
accessing a table or record. Locking is used in situations where
more than one user might try to use the same table at the same
time. By locking the table or record, the system insures that only
one user at a time can affect the data.

ODBC defines a core grammar that roughly corresponds to the
X/Open and SQL Access Group SQL CAE specification (1992).
ODBC also defines a minimum grammar, to meet a basic level of
ODBC conformance, and an extended grammar, to provide for

DataDirect Connect Series for oDBC User’s Guide and Reference

Unicode

Glossary

common DBMS extensions to SQL. The following list summarizes
the grammar included in each conformance level:

Minimum SQL Grammar:

Data Definition Language (DDL): CREATE TABLE and
DROP TABLE.

Data Manipulation Language (DML): simple SELECT,
INSERT, UPDATE SEARCHED, and DELETE SEARCHED.
Expressions: simple (such as A > B + Q).

Data types: CHAR, VARCHAR, or LONG VARCHAR.

Core SQL Grammar:

Minimum SQL grammar and data types.

DDL: ALTER TABLE, CREATE INDEX, DROP INDEX, CREATE
VIEW, DROP VIEW, GRANT, and REVOKE.

DML: full SELECT.

Expressions: subquery, set functions such as SUM and
MIN.

Data types: DECIMAL, NUMERIC, SMALLINT, INTEGER,
REAL, FLOAT, DOUBLE PRECISION.

Extended SQL Grammar:

Minimum and Core SQL grammar and data types.

DML: outer joins, positioned UPDATE, positioned DELETE,
SELECT FOR UPDATE, and unions.

Expressions: scalar functions such as SUBSTRING and ABS,
date, time, and timestamp literals.

Data types: BIT, TINYINT, BIGINT, BINARY, VARBINARY,
LONG VARBINARY, DATE, TIME, TIMESTAMP

Batch SQL statements.

Procedure calls.

Unicode, developed by the Unicode Consortium, is a standard
that attempts to provide unique coding for all international
language characters. The current number of supported
characters is over 95,000.

DataDirect Connect Series for oDBC User’s Guide and Reference

117

118 Glossary

DataDirect Connect Series for oDBC User’s Guide and Reference

Index

A

AuthStr 32

B

binding dynamic parameters 24
binding SQL statements 24

C

catalog functions, using 68
client code page
See code pages
code pages, IANAAppCodePage attribute 87
connection string attributes 32
connections supported 38
conventions, typographical 11

D

data source
configuration on UNIX and Linux 97
configuring, NSK SQL/MX Wire Protocol 29
connecting via connection string, NSK SQL/

MX Wire Protocol 30

data types, NSK SQL/MX Wire Protocol 33

DataSourceName 32

date and time functions 47

ddtestlib tool 96

debugging 110

DataDirect Connect Series for obBC User’s Guide and Reference

demo tool, XML persistence 35
demoodbc application 99
documentation, about 12

driver requirements 29

driver, version string information 25
dynamic parameters, binding 24

E

environment-specific information 19
error messages

general 108

UNIX and Linux 109
example application 108

F

file data sources 102
File DSN 102

G

glossary 115

H

HostName 32

119

120 Index

| data source

configuring 29

connecting via connection string 30
data types 33

driver requirements 29
database performance 59 isolation levels 37

index performance 59 locking levels 37

join performance 65 ODBC conformance 37

ODBC application performance 67, 113 persisting result set as XML 35
record selection performance 61 SQL grammar supported 37

IANAAppCodePage 32
improving

mdexgs_) statements supported 38
deciding which to create 63 NskCatalog 32
improving performance 59 NskDatasource 32

indexing multiple fields 61 NskSchema 32

isolation levels and data consistency NskTransactionlsolationLevel 33
compared 54 NskWindowText 33

dirty reads 52
non-repeatable reads 52
phantom reads 52
isolation levels, about 52
isolation levels 37 (@)
isolation levels, specific
read committed 53
read uncommitted 53
repeatable read 53
serializable 53
ivtestlib tool 96, 106

numeric functions 45

ODBC
API functions 39
designing for performance 67, 113
scalar functions 42

ODBC conformance 37

ODBC Trace 105

OEM to ANSI translation 108

L

locking levels, NSK SQL/MX Wire Protocol 37 P
locking modes and levels 55

performance, improving
database 59
N index 59
join 65
] . record selection 61
NSK SQL/MX Wire Protocol driver persisting a result set as XML 35
connection string attributes 32 PortNumber 33
connections supported 38

DataDirect Connect Series for oDBC User’s Guide and Reference

S

scalar functions, ODBC 42
statements supported 38

string functions 42

system functions 49

system information file (.odbc.ini) 97

T

threading, overview 57

time functions 47

trace log 105

tracing 105

translator, in the UNIX environment 108
troubleshooting 110

typographical conventions 11

U

UNIX and Linux
code pages, IANAAppCodePage
attribute 87
data source configuration 97
driver, NSK SQL/MX Wire Protocol 29
environment
ddtestlib tool 96
introduction 93
ivtestlib tool 96
system information file (.odbc.ini) 97
translators 98, 108
variables 93
error messages 109
system requirements 20
UserID 33

Vv

version string information, driver 25

Index 121

DataDirect Connect Series for obBC User’s Guide and Reference

	Table of Contents
	List of Tables
	Preface
	Using this Book
	Conventions Used in this Book
	Typographical Conventions

	About the Product Documentation

	1 Quick Start Connect
	Configuring and Connecting on UNIX and Linux
	Environment Setup
	Test Loading the Driver
	Configuring a Data Source in the System Information File
	Testing the Connection

	2 Using The Product
	What Is ODBC?
	How Does It Work?
	Why Do Application Developers Need ODBC?

	Environment-Specific Information
	For UNIX and Linux Users

	Binding Parameter Markers
	Version String Information
	getFileVersionString Function

	Retrieving Data Type Information

	3 The NSK SQL/MX Wire Protocol Driver
	Driver Requirements
	Configuring Data Sources
	Connecting to a Data Source Using a Connection String
	Data Types
	Persisting a Result Set as an XML Data File
	Using the XML Persistence Demo Tool

	Isolation and Lock Levels Supported
	ODBC Conformance Level
	Number of Connections and Statements Supported

	A ODBC API and Scalar Functions
	API Functions
	Scalar Functions
	String Functions
	Numeric Functions
	Date and Time Functions
	System Functions

	B Locking and Isolation Levels
	Locking
	Isolation Levels
	Locking Modes and Levels

	C Threading
	Driver Threading Information

	D Using Indexes
	Introduction
	Improving Record Selection Performance
	Indexing Multiple Fields
	Deciding Which Indexes to Create
	Improving Join Performance

	E Performance Design of ODBC Applications
	Using Catalog Functions
	Minimizing the Use of Catalog Functions
	Avoiding Search Patterns
	Using a Dummy Query to Determine Table Characteristics

	Retrieving Data
	Retrieving Long Data
	Reducing the Size of Data Retrieved
	Using Bound Columns
	Using SQLExtendedFetch Instead of SQLFetch
	Choosing the Right Data Type

	Selecting ODBC Functions
	Using SQLPrepare/SQLExecute and SQLExecDirect
	Using Arrays of Parameters
	Using the Cursor Library

	Managing Connections and Updates
	Managing Connections
	Managing Commits in Transactions
	Choosing the Right Transaction Model
	Using Positional Updates and Deletes
	Using SQLSpecialColumns

	F Values for IANAAppCodePage Connection String Attribute
	G The UNIX/Linux Environments
	Environment Variables
	Required Environment Variables
	ODBCINI

	The ivtestlib/ddtestlib Tool
	Data Source Configuration
	Translators
	Sample System Information File

	demoodbc
	example
	DSN-less Connections
	File Data Sources
	UTF-16 Applications on UNIX and Linux

	H Diagnostic Tools, Error Messages, and Troubleshooting
	Diagnostic Tools
	ODBC Trace
	ivtestlib/ddtestlib Tool
	demoodbc Application
	example Application
	Translators

	Error Messages
	Troubleshooting
	Setup/Connection Issues
	Interoperability Issues
	Performance Issues

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	N
	O
	P
	S
	T
	U
	V

