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Abstract

In this work, we present a novel background subtraction system that uses a deep Convolutional
Neural Network (CNN) to perform the segmentation. With this approach, feature engineering
and parameter tuning become unnecessary since the network parameters can be learned from
data by training a single CNN that can handle various video scenes. Additionally, we propose a
new approach to estimate background model from video. For the training of the CNN, we em-
ployed randomly 5% video frames and their ground truth segmentations taken from the Change
Detection challenge 2014(CDnet 2014). We also utilized spatial-median filtering as the post-
processing of the network outputs. Our method is evaluated with di↵erent data-sets, and the
network outperforms the existing algorithms with respect to the average ranking over di↵erent
evaluation metrics. Furthermore, due to the network architecture, our CNN is capable of real
time processing.

Keywords: Background subtraction, change detection, deep learning

1. Introduction

With the tremendous amount of available video data, it is important to maintain the e�-
ciency of video based applications to process only relevant information. Most video files contain
redundant information such as background scenery, which costs a huge amount of storage and
computing resources. Hence, it is necessary to extract the meaningful information, e.g. vehicles
or pedestrians, to deploy those resources more e�ciently. Background subtraction is a binary
classification task that assigns each pixel in a video sequence with a label, for either belonging
to the background or foreground scene [25, 21, 1].
Background subtraction, which is also called change detection, is applied to many advanced
video applications as a pre-processing step to remove redundant data, for instance in tracking
or automated video surveillance [17]. In addition, for real-time applications, like tracking, the
algorithm should be capable of processing the video frames in real-time.
One simple example of the application of a background subtraction method is the pixel-wise
subtraction of a video frame from its corresponding background image. After being compared
with the di↵erence threshold, pixels with a larger di↵erence than a certain threshold value are
labeled as foreground pixels, otherwise as background pixels. Unfortunately, this strategy will
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yield poor segmentation due to the dynamic nature of the background, that is induced by noise
or illumination changes. For example, due to lighting changes, it is common that even pixels
belonging to the background scene can have intensities very di↵erent from their other pixels in
the background image and they will be falsely classified as foreground pixels as a consequence.
Thus, sophisticated background subtraction algorithms that assure robust background subtraction
under various conditions must be employed.
In the following sections, the di�culties in this area, our proposed solution for background sub-
traction and our contributions will be illustrated.

1.1. Challenges

The main di�culties that complicate the background subtraction process are:

Illumination changes: When scene lighting changes gradually (e.g. moving clouds in the sky)
or instantly (e.g. when the light in a room is switched on), the background model usually has a
illumination di↵erent from the current video frame and therefore yields false classification.

Dynamic background: The background scene is rarely static due to movement in the back-
ground (e.g. waves, swaying tree leaves), especially in outdoor scenes. As a consequence, parts
of the background in the video frame do not overlap with the corresponding parts in the back-
ground image, hence, the pixel-wise correspondence between image and background is no longer
existent.

Camera jitter: In some cases, instead of being static, it is possible that the camera itself is
frequently in movement due to physical influence. Similar to the dynamic background case, the
pixel locations between the video and background frame do not overlap anymore. The di↵erence
in this case is that it also applies to non-moving background regions.

Camouflage: Most background subtraction algorithms work with pixel or color intensities.
When foreground objects and background scene have a similar color, the foreground objects
are more likely to be (falsely) labeled as background.

Night Videos: As most pixels have a similar color in a night scene, recognition of foreground
objects and their contours is di�cult, especially when color information is the only feature in use
for segmentation.

Ghosts/intermittent object motion: Foreground objects that are embedded into the background
scene and start moving after background initialization are the so-called ghosts. The exposed
scene, that was covered by the ghost, should be considered as background. In contrast, fore-
ground objects that stop moving for a certain amount of time, fall into the category of intermit-
tent object motion. Whether the object should be labeled as foreground or background is strongly
application dependent. As an example, in the automated video surveillance case, abandoned ob-
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jects should be labeled as foreground.

Hard shadows: Dark, moving shadows that do not fall under the illumination change cate-
gory should not be labeled as foreground.

In this work, we follow the trend of Deep Learning and apply its concepts to background
subtraction by proposing a CNN to perform this task. We justify this approach with the fact
that background subtraction can be performed without temporal information, given a su�ciently
good background image. With such a background image, the task itself breaks down into a com-
parison of a image-background pair. Hence, the input samples can be independent among each
other, enabling a CNN to perform the task with only spatial information. The CNN is responsible
for extracting the relevant features from a given image-background pair and performs segmenta-
tion by feeding the extracted features into a classifier. In order to get more spatially consistent
segmentation, post-processing of the network output is done by spatial-median filtering and or
a fully connected CRF framework. Due to the use of a CNN, no parameter tuning or descriptor
engineering is needed.

To train the network, a large amount of labeled data is required. Fortunately, due to the pro-
cess of background subtraction, by comparing an image with its background, it is not necessary
to use images of a full scene for training. It is also possible to train the network via subsets of
a scene, i.e. with patches of image-background pairs, since the procedure also holds for image
patches. As a consequence, we can extract enough training samples from a limited amount of
labeled data.

To the best of our knowledge, background subtraction algorithms that use CNN are scene
specific to this day, i.e. a CNN can only perform satisfying background subtraction on a single
scene (that was trained with scene specific data) and also lacks the ability to perform the segmen-
tation in real time. Our proposed approach yields a universal network that can handle various
scenes without having to retrain it every time the scene changes. As a consequence, one can train
the network with data from multiple scenes and hence increase the amount of training data for a
network. Also, by using the proposed network architecture, it is possible to process video frames
in real-time with conventional computing resources. Therefore, our approach can be considered
for real-time applications.

The outline of this paper is as follows: In Section 2, early and recent algorithms for back-
ground subtraction are presented. In Section 3, we explain our proposed approach for background
subtraction. Here, we first describe our proposed approach to estimate background image and
next we illustrate our CNN for background subtraction. In Sections 4, we describe the exper-
imental evaluation of the algorithm including the used datasets, the evaluation metrics and the
obtained results followed by detailed discussion and analysis. Finally, in Section 5, we conclude
our work and provide future work with some ideas.
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2. Backround and Related work

The majority of background subtraction algorithms are composed of several processing mod-
ules which are explained in the following sections (see Figure 1).

Background Model: The background model is essential for the background subtraction algo-
rithm. In general, the background model is used as a reference to compare with the incoming
video frames. Furthermore, the initialization of the background model plays an important role
since video sequences are normally not completely free of foreground objects during the boot-
strapping phase. As a consequence, the model gets corrupted by including foreground objects
into the background model, which leads to false classifications.

Background Model Maintenance: In reality, background is never completely static but changes
over time. There are many strategies to adapt the background model to these changes by using
the latest video frames and/or previous segmentation results. Trade-o↵s must be found in the
adaption rate, which regulates how fast the background model is updated. High adaption rate
leads to noisy segmentation due to the sensitivity to small or temporary changes. Slow adaption
rate, however, yields an outdated background model and therefore false segmentation. Selec-
tive update adapts the background model with pixels that were classified as background. In that
case, deadlock situations can occur by not incorporating misclassified pixels into the background
model, i.e. once a background pixel is falsely classified as foreground, it would never be used
to update the background and would always be considered as a foreground pixel. On the other
hand, by using all pixels as in the blind update strategy, such deadlock situations can be pre-
vented but will also distort the background model since foreground pixels are incorporated into
the background model.

Feature extraction: In order to compare the background image with the video frames, adequate
features that represent relevant information must be selected. Most algorithms use gray scale or
RGB intensities as features. In some cases, pixel intensities along with other hand engineered
features (e.g. [11] or [2]) are combined. Also, the choice of the feature region is important.
One can extract the features over pixels, blocks or patterns. Pixel-wise features often yield noisy
segmentation results since they do not encode local correlation, while block-wise or pattern-wise
features tend to be insensitive to slight changes.

Segmentation: With the help of a background model, the respective video frames can be pro-
cessed. Background segmentation is performed by extracting the features from corresponding
pixels or pixel regions of both frames and using a distance measure, e.g. the Euclidean distance,
to measure the similarity between those pixels. After being compared with the similarity thresh-
old, each pixel is either labeled as background or foreground.

The combination of those building blocks forms an overall background subtraction system. The
robustness of the system is always dependent and limited by the performance of each individual
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Figure 1: Block diagram of basic background subtraction algorithms. The dashed line is optional and not existent in
some algorithms
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Figure 2: Categorization of the outlined background subtraction algorithms

block, i.e. it can not be expected to perform well if one module delivers poor performance.
Background subtraction is a well studied field, therefore there exists a vast number of algo-

rithms for this purpose (see Figure. 2). Since most of the top performing methods at present are
based on the early proposed algorithms, some of which are outlined in the beginning. Subse-
quently a few of the current methods for background subtraction will be introduced.
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2.1. Early Approaches

Stau↵er and Grimson [22] proposed a method that models the background scene with Mixture
of Gaussian (MoG), also called Gaussian Mixture Model (GMM). It is assumed that each pixel in
the background is drawn from a Probability Distribution Function (PDF) which is modeled by a
GMM, also pixels are assumed to be independent from their neighboring pixels. Incoming pixels
from video frames are labeled as background if there exists a Gaussian in the GMM, where the
distance between its mean and the pixel lies within a certain bound. For learning the parameters,
that maximize the likelihood, the authors proposed an online method that approximates the Ex-
pectation Maximization (EM) algorithm [6].
Elgammal et al. [7] introduced a probabilistic non-parametric method to model the background.
Again it is assumed that each background pixel is drawn from a PDF. The PDF for each pixel is
estimated with Kernel Density Estimation (KDE).
In contrast, Barnich et al. [1] propose a sample based method for background modeling. The
background model consists of pixel samples from past video frames. For each pixel location, the
number of past pixel samples is stored as N (e.g. N=20). To perform the background segmen-
tation at each pixel position, the incoming pixel is compared with the N pixel samples from the
background model. If there exist at least K samples in the model with a distance to the incoming
pixel smaller than a global threshold R, the pixel is classified as background pixel, otherwise as
foreground pixel.
Another approach is introduced by Kim et al. [15], where the background model for each pixel
position is modeled by a codebook. During bootstrapping phase, incoming pixels build up code-
words that consist of intensity, color and temporal features. After initialization, those codewords
form a codebook for subsequent segmentation. The intensity and color of incoming pixels are
compared with those of the codewords in the codebook. After calculating the distances between
the pixels and the codewords and comparing them with the threshold value , either a foreground
label (if no match was found) or a background label is assigned. In the latter case, the matching
codeword is updated with the respective background pixel.
Oliver et al. [16] use subspace learning to compress the background, the so called eigenback-
ground. From N images, the mean and the covariance matrix are calculated. After a PCA of
the covariance matrix, a projection matrix is set up with M eigenvectors, corresponding to the M
largest eigenvalues. Incoming images are compared with their projection onto the eigenvectors.
After calculating the distances between the image and the projection and comparing them with
the corresponding threshold value, foreground labels are assigned to pixels with large distances.

2.2. Recent Approaches

Based on [22], Wang et al. [26] use GMM to model the background scene, in addition,
single Gaussians are employed for foreground modeling. By computing flux tensors [4], which
depict variations of optical flow within a local 3D spatio-temporal volume, blob motion is de-
tected. With the combination of the di↵erent information from blob motion, foreground models
and background models, moving and static foreground objects can be spotted. Also, by applying
edge matching [8], static foreground objects can be classified as ghosts or intermittent motions.
Varadarajan et al. [25] introduce region-based MoG for background subtraction to tackle the
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sensitivity to dynamic background . MoGs are used to model square regions within the frame,
instead of pixel-wise feature modeling, the features are extracted from sub-blocks within the
square regions.
With the same purpose to tackle dynamic background movement, Chen et al. [5] propose a
method that applies MoG in a local region. Models for foreground and background are learned
with pixel-wise MoG. To label a given pixel, a N ⇥ N region around the pixel is searched for a
MoG that shows the highest probability for the center pixel. If a foreground model depicts the
highest probability, the center pixel is labeled as foreground and vice versa.
To cope with sudden illumination changes, Sajid and Cheung [17] create multiple background
models with single Gaussians and employ di↵erent color representations. Input images are pixel-
wise clustered into K groups with the K-means algorithm. For each group and each pixel location
a single Gaussian model is built by calculating the mean and variance for a cluster. For incoming
pixels, the matching models are selected by taking the models among the K models that show
the highest normalized cross-correlation to the pixels. The segmentation is done for each color
channel for RGB and YCbCr color representations, which yields 6 segmentation masks. By
combining all available segmentation masks the background segmentation is then performed.
Hofmann et al. [13] developed an algorithm that improved the method from Barnich et al. [1]
by replacing the global threshold value R with an adaptive threshold R(x), which is dependent
on the pixel location and a metric of the background model. The metric was named ”background
dynamics” by the authors. With the additional information from the background dynamics, the
thresholds R(x) and the model update rate are adapted by a feedback loop. High variance in the
background yields a larger threshold value and vice versa, therefore it can cope with dynamic
background and highly structured scenes. Tiefenbacher et al. [23] improved this method by
controlling the updates of the pixel-wise thresholds with a PID controller instead of a fixed value
that was used before.
St-Charles et al. [21] also improved the method by using Local Binary Similarity Patterns
(LBSP) [2] as additional features to pixel intensities and slight changes in the update heuris-
tic of the thresholds and the background model.
They also proposed another method [20], which is similar [21], but works with codewords, or
background words as they call it in their publication. Pixel intensities, LBSP features and tem-
poral features are combined to a background word. To perform segmentation, incoming pixels’
LBSP features together with their intensities are compared with the corresponding background
words. After a two stage comparison, 1), color and structure threshold, 2), temporal feature
threshold, the pixel is either labeled as foreground or background depending on the threshold
results. All thresholds are dynamically updated in a feedback loop using a background dynamics
measure.
A novel approach for background subtraction with the use of CNN was proposed by Braham
and Droogenbroeck [3]. They used a fixed background model, which was generated from a tem-
poral median operation over N video frames. Afterwards, a scene-specific CNN is trained with
corresponding image patches from the background image, video frames and ground truth pix-
els, or alternatively, segmentation results coming from other background subtraction algorithms.
After extracting a patch around a pixel, feeding the patch through the network and comparing
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Figure 3: Background subtraction system overview: The input frame along with the corresponding background image are
patch-wise processed. After merging the individual patches into a single output frame, the output frame is post-processed
yielding the final output segmentation.

it with the score threshold, the pixel is assigned with either a background or a foreground label.
However, due to the over-fitting that is caused by using highly redundant data for training, the
network is scene-specific, i.e. can only process a certain scenery, and needs to be retrained for
other video scenes (with scene-specific data).

3. Approach

In this section, we introduce our proposed method that consists of 1) a novel algorithm for
background model (image) generation; 2) a novel CNN for background subtraction and 3) post-
processing of the networks output using median filter. The complete system is illustrated in
Figure 3. We use a background image to perform background subtraction from the incoming
frames. Matching pairs of image patches from the background image and the video frames are
extracted and fed into a CNN. After reassembling the patches into the complete output frame, it
is post-processed, yielding the final segmentation of the respective video frame.
In the following sections, we introduce our algorithm to get the background images from the
video frames. Furthermore, we illustrate our CNN architecture and the training procedure. At
last, we discuss our employed post-processing strategies to improve the network output.

3.1. Background Image Generation

We propose a new approach to generate background model which is illustrated in Figure. 5.
Here we combine the segmentation mask from SuBSENSE algorithm [21] and the output of
Flux Tensor algorithm [26], which can dynamically change the parameters used in the back-
ground model based on the motion changes in the video frames. The block diagram of the robust
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Figure 4: Temporal-median filtering over 150 frames of a video sequence. Since each background pixel is visible for at
least 75 frames, the temporal-median filtering yields the background image without foreground objects.

background model algorithm is given in Figure. 5. The details of each block is explained in the
following sections.

Figure 5: Block diagram of Robust Background Model Algorithm

3.1.1. Foreground Segmentation Using SuBSENSE
Perhaps, the simplest way to get background image from a video sequence is to perform

pixel-wise temporal median filtering. However, using this method, the background model will
be quickly corrupted if there are a lot of moving objects in some video frames, and hence, the
pixel values of foreground object will eventually negatively a↵ect the quality of the background
model. This requires us to distinguish the foreground pixels and background pixels, and for the
background model we only use the background pixel values to perform temporal median filter. To
this end, we use the SuBSENSE algorithm. This method relies on spatio-temporal binary features
as well as color information to detect changes. This allows camouflaged foreground objects to
be detected more easily while most illumination variations are ignored. Besides, instead of using
manually-set, frame-wide constants to dictate model sensitivity and adaptation speed, it uses
pixel-level feedback loops to dynamically adjust the method’s internal parameters without user
intervention. The adjustments are based on the continuous monitoring of model fidelity and local
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segmentation noise levels. The output of SuBSENSE algorithm will be a binary image which
contains the classification information of the current video frame. The foreground objects are
marked as white pixel, and black pixels represent the pixels belonging to background model.

(a) (b)

Figure 6: (a) Video input frame; (b) segmentation output of SuBSENSE

3.1.2. Background Pixel Library
Based on the foreground mask image from SuBSENSE, we build a background pixel library,BL,
for each pixel location in the frame. The idea is that we only store the pixel values from the
current frame in the background pixel library, when they are classified by SuBSENSE algorithm
as background pixels. An illustration of background pixel library is shown in Figure. 7. Here,

Figure 7: Background pixel library for one pixel location

we only keep the last 90 background pixel values from the video sequences. After the library is
complete, the oldest background pixel value is replaced with the newest one. For this purpose,
we have an indicator, bi, which is a pointer that points to the oldest background pixel value in
the library. Each time, if a pixel value is classified by SuBSENSE as background, then it will be
stored in the background library at the location where bi points to, and then we move bi to the
next position in the library. To generate the background image, we calculate the average value
over a certain memory length of the pixel values in the background pixel library. The memory
length is defined using the variable bm. The background pixel at location (x, y) and at color
channel k is defined by BK(x, y, k), whose value is calculated using following equation

BK(x, y, k) =

biP
i=bi�bm

BL(x, y, i, k)

bm
, k = {R,G, B}. (1)
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But if we use a fixed memory length bm over the entire video sequence, we will get either blurry
or outdated background model if the camera is moving or if there are some intermittent objects
in the video sequence. These two cases are illustrated in Figure. 8. As we can see in the follow-
ing figure, the first row shows the scenario that the camera is constantly rotating, the calculated
background image is shown on the right hand side. In this case, the background image becomes
very blurry if we use a fixed average length bm, or in the second row, the car on the left side stops
at the same location for 80 percent of the frames in the video sequence, so the car will naturally
be classified as background by SuBSENSE. Then if the car starts to move, the calculated back-
ground image using fixed memory length will not be updated because the pixel values of the car
are still stored in the background library.

(a) (a’) (a”) (a”’)

(b) (b’) (b”) (b”’)

Figure 8: Bad Background Image Model When Using Fixed Average Length. On the first row, the first 3 images (a� a00)
are the video input frames (Nr. 80,120,160) from continuousPan sequence of CDnet data-set. The first 3 images on the
second row (b � b00) are the video input frames(Nr. 1800,1950,2100) from winterDriveaway sequence. The left images
on the first (a000) and on the second row (b000) are the default background models from SuBSENSE with fixed memory
length.

3.1.3. Motion Detection Using Flux Tensor
In order to have adaptive memory length based on the motion of the camera and objects in

the video frames, we need to have a motion detector. A commonly used motion detector is the
method using flux tensor. Compared with standard motion detection algorithms, the advantage
of using flux tensor is that the motion information can be directly computed without expensive
eigenvalue decompositions. Flux tensor represents the temporal variation of the optical flow field
within the local 3D spatio-temporal volume [26], where in the expanded matrix form, flux tensor
is written as

JF =

2
666666666664

R
⌦
{ @2I
@x@t }2dy

R
⌦
@2I
@x@t

@2I
@y@t dy

R
⌦
@2I
@x@t

@2I
@t2 dyR

⌦
@2I
@y@t

@2I
@x@t dy

R
⌦
{ @2I
@y@t }2dy

R
⌦
@2I
@y@t

@2I
@t2 dyR

⌦
@2I
@t2
@2I
@x@t dy

R
⌦
@2I
@t2
@2I
@y@t dy

R
⌦
{ @2I
@t2 }2dy

3
777777777775
. (2)

The elements of the flux tensor incorporate information about temporal gradient changes which
leads to e�cient discrimination between stationary and moving image features. The trace of the
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flux tensor matrix which can be compactly written and computed as

trace(JF) =
Z

⌦

k @
@t
5 Ik2dy, (3)

can be directly used to classify moving and non-moving regions without eigenvalue decomposi-
tions. In our approach, the output of Flux Tensor algorithm is a binary image, which contains the
motion information of the video frames. An example is shown in Figure. 9. The white pixel in
the binary image indicates that the pixel at this location is moving either temporally or spatially.

(a) (b)

Figure 9: (a) input video; (b) the output of Flux Tensor

Next, we define a new variable called Fs as:

Fs =
Nw

W ⇥ H
, (4)

where Nw represents the number of white pixels in Flux tensor while W and H represent the
width and height of the image respectively. The variable Fs presents how many percent of the
pixels in the current video frame are moving. Large Fs means either the camera is moving or
there is a large object in the frame which starts to move. In this case, we need to decrease the
memory length bm. If Fs is relative small, then it means the background is steady and we can
use a large memory length to suppress the noise. Using Fs, we dynamically increase or decrease
the value of bm. The relation between bm and Fs is given as follows

bm =

8>>>>>><
>>>>>>:

5 i f Fs � 0.25

5 +
Fs � 0.02

0.25 � 0.02
· 85 i f 0.02 < Fs < 0.25

90 i f Fs  0.02

. (5)

In order to avoid the noise in Fs and resulting noise in bm, there is a low pass filter structure
applied to the value of Fs, the low pass filter is defined as follows

Fs(t) = ↵ · Fs(t) + (1 � ↵) · Fs(t � 1) (6)

where

↵ =

8>><
>>:

0.2 i f Fs(t) < Fs(t � 1)
0.01 i f Fs(t) > Fs(t � 1)

(7)
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Here, Fs(t) means the value of Fs at time t. Note that the di↵erent value of ↵ is based on the
fact whether Fs is increasing or decreasing. The reason for this is that after a dramatic decrease
of Fs we want to increase Fs slower, in order to let B be updated with new background pixel
values.

3.1.4. Foreground Mask Padding
Due to the low quality of some surveillance cameras, there will be some undesired pixel

values around moving objects in the form of semi-transparency and motion blur, which are il-
lustrated in Figure. 10. In these two cases, the pixels near segmentation mask of SuBSENSE

(a) (b)

Figure 10: Semi-transparency and motion blur around moving objects

will probably be false negatives. This means that even the pixels near the segmentation mask
are classified as background, but they are actually corrupted by foreground moving pixels with
semi-transparency and motion blur. In this case, we should not add this background pixel to the
background library. For this purpose we need to perform a padding around the foreground mask
with the size defined by using variable Pw, which means if a pixel value is classified as back-
ground but the pixels around it within the radius of path size Ps are classified as foreground, then
this background pixel will be disregarded. The Ps should also be dynamically adjusted using the
output of flux tensor. For instance, if Fs is large, then we need to increase Ps, because with more
moving pixels the phenomenon of semi-transparency and motion blur will also increase. Fig-
ure. 11 shows the comparison between the background model from SuBSENSE and the robust
background model obtained by the proposed approach.

3.2. Network Architectures and Training

We train the proposed CNN with background images obtained by the SuBSENSE algorithm
[21]. Both networks are trained with pairs of RGB image patches from video and background
frames and the respective ground truth segmentation patches. Before introducing the network
architecture, we outline the data preparation step for the network training. Afterwards, we will
illustrate our architecture for our CNN and explain the training procedure in detail.

3.2.1. Data preparation
For the training of the CNN, we use random data samples (around 5 percent) from the CDnet

2014 data-set [27], which contains various challenging video scenes and their ground truth seg-
mentation. We prepare one set of background images that is obtained by the proposed algorithm.
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(a) (a’) (a”)

(b) (b’) (b”)

Figure 11: Comparison of background models obtained by SubSENSE and the propose approach. Each row represents
the results of one sample. The first column shows the input video, the second column shows the background model from
SubSENSE, and the theirs column shows the background image from proposed approach.

Since we want the network to learn representative features, we only utilize video scenes that do
not challenge the background model, i.e. the background scene should not change significantly
in a video. Therefore, we exclude all videos from certain categories for training (see Table 1).
We work with RGB images for background and video frames. Before we extract the patches, all
employed frames are resized to the dimension 240 ⇥ 320 and the RGB intensities are rescaled
to [0, 1]. Furthermore, zero padding is applied before patch extraction to avoid boundary e↵ects.
The training data consist of triplets of matching patches from video, ground truth and background
frames of size 37 ⇥ 37 that are extracted with a stride of 10 from the employed training frames.
An example mini-batch of training patches is shown in Figure. 12.
As widely recommended, we perform mean subtraction on the image patches before training,
but we discard the division by the standard deviation, since we are working with RGB data and
therefore each channel has the same scale.

3.2.2. Network Architecture and Optimization
The architecture of the proposed CNN is illustrated in Figure 13. The network contains 3

convolutional layers and a 2-layer Multi Layer Perceptron (MLP). We use the Rectified Linear
Unit (ReLU) as activation function after each convolutional layer and the Sigmoid function after
the last fully connected layer. In addition, we insert batch normalization layers [14] before
each activation layer. A batch normalization layer stores the running average of the mean and
standard deviation from its inputs. The stored mean is subtracted from each input of the layer
and also division by the standard deviation is performed. It has been shown that by applying
batch normalization layers, over-fitting is decreased and also higher learning rates for training

14



CDnet 2014 [27] categories
badWeather X

baseline X
cameraJitter X

dynamicBackground X
intermittentObjectMotion

lowFramerate
nightVideos X

PTZ
shadow X
thermal X

turbulence X

Table 1: Categories of CDnet 2014 [27]: Crosses indicate categories including all their video sequences that were
considered for network training.

are achieved.
We train the networks with mini batches of size 150 via RMSProp [12] and a learning rate of
↵ = 2.5 ⇤ 10�3. For the loss function, we choose the Binary Cross Entropy (BCE), which is
defined as follows:

BCE(x, y) = �(x ⇤ log y + (1 � x) ⇤ log (1 � y)). (8)

The BCE is calculated between the network outputs and the corresponding vectorized ground
truth patches of size 37 ⇤ 37 = 1369. Boundaries of foreground objects and pixels that do not lie
in the region of interest are marked in the ground truth segmentations. These pixels are ignored
in the cost function.

3.3. Post-Processing

The spatial-median filtering, which is a commonly used post-processing method in back-
ground subtraction, returns the median over a neighborhood of given size (the kernel size) for
each pixel in an image. As a consequence, the operation gets rid of outliers in the segmentation
map and also performs blob smoothing (see Figure 14). After applying the spatial-median filter
on the network output, we globally threshold the values for each pixel in order to map each pixel
to {0, 1} . The threshold function is given by

g(z; R) =

8>><
>>:

1 if z > R
0 otherwise

, (9)

where R is the threshold level.

4. Experiments

In order to evaluate our approach, we conducted several experiments on various data-sets.
At first, we introduce the utilized data-sets for performance testing. Afterwards, the evaluation
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(a) (b) (c)

Figure 12: Visualization of a mini batch of size 48: (a) Background patches, generated with temporal-median filtering.
(b) Corresponding input patches from video frames. (c) Ground truth patches, black pixels are background pixels, gray
pixels are foreground pixels and white pixels are not of interest, i.e. those are not incorporated into the loss.

metrics are presented, which measure the quality of the segmentation outputs. The results on the
evaluation data are subsequently reported. Furthermore, we analyze the network behavior during
training. Additionally, we visualize the convolutional filters and generated feature maps at the
end.

4.1. Data-sets

We employ multiple data-sets to perform our tests. The CDnet 2014 [27], the Wallflower [24]
and the PETS 2009 data-set [9]. The CDnet 2014 and also the Wallflower data-set were specif-
ically designed for the background subtraction task. These data-sets contain video sequences
from di↵erent categories, which correspond to the main challenges in background subtraction
and also hand segmented ground truth images are also provided. The PETS 2009 [9] data-set
was designed for other purposes, such as the evaluation of tracking algorithms, and therefore no
ground truth segmentations are available for its video sequences. The employed data-sets will be
described in the following.

4.1.1. CDnet 2014
The CDnet 2014 [27] that was used for training of our CNNs will also be used for per-

formance evaluation. With additional video sequences under new challenge categories, it is an
extension of the CDnet 2012 [10] data-set, which is the predecessor of the CDnet 2014 [27].
For each video sequence in the data-set, corresponding ground truth segmentation images are
available. For the newly added categories in CDnet 2014 [27] (see Table 2), only half of the
ground truth segmentations were provided to avoid parameter tuning of background subtraction
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Figure 13: Illustration of proposed CNN: The network contains 3 convolutional layers and a 2 layer MLP.

(a) (b)

Figure 14: E↵ect of spatial-median filtering: (a) Raw segmentation result of the GMM algorithm [22]. (b) Spatial-median
filtered output with a 9 ⇥ 9 kernel

algorithms on the benchmark data-set. One has to refer to the online evaluation1 in order to get
the results over all ground truth segmentations.

4.1.2. Wallflower
Another data-set that we employ for evaluation purpose is the Wallflower data-set [24]. For

each category in the data-set, there exists a single video sequence (see Table 3). Also, for each
video sequence, a hand segmented ground truth segmentation image is provided. Hence, when
evaluating background subtraction algorithms on the Wallflower data-set [24], only a single
ground truth segmentation is considered.

4.1.3. PETS 2009
The PETS 2009 data-set [9] is a benchmark for tracking of individual people within a crowd.

It consists of multiple video sequences, recorded from static cameras, and di↵erent crowd activi-
ties. Since the data-set is not designed for background subtraction evaluation, there are no ground

1
http://changedetection.net
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Categories Video Sequences CDnet 2012 [10] CDnet 2014 [27]
badWeather 4 X

baseline 4 X X
cameraJitter 4 X X

dynamicBackground 6 X X
intermittent-

ObjectMotion 6 X X

lowFramerate 4 X
nightVideos 6 X

PTZ 4 X
shadow 6 X X
thermal 5 X X

turbulence 4 X

Table 2: Comparison of CDnet 2012 [10] and CDnet 2014 [27]: Categories that are marked with a cross are contained in
the respective data-set.

Video sequences/categories Number of frames Groundtruth
frame number

Bootstrap 3055 353
Camouflage 294 252

ForegroundAperture 2113 490
LightSwitch 2715 1866

MovedObject 1745 986
TimeOfDay 5890 1850
WavingTrees 287 248

Table 3: Overview of the Wallflower data-set [24]

truth segmentation images for this purpose. Thus, only the qualitative segmentation results will
be evaluated without calculating any evaluation metric. A sample image from each category is
represented in Fig. 15.

4.2. Evaluation Metrics

In order to measure the quality of a background subtraction algorithm, we evaluate the per-
formance by comparing the output segmentations with the groundtruth segmentations to get the
following statistics:

True Positive (TP): Foreground pixels in the output segmentation that are also foreground pixels
in the ground truth segmentation.

False Positive (FP): Foreground pixels in the output segmentation that are not foreground pixels
in the ground truth segmentation.

True Negative (TN): Background pixels in the output segmentation that are also background
18



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 15: Sample images of each video sequence. (a) baseline; (b) bad weather; (c) thermal; (d) camera jitter; (e) night
videos; (f) shadow; (g) dynamic background; (h) Camouflage [24]; (i) WavingTrees [24]; (j) PETS2009 [9]

pixels in the ground truth segmentation.

False Negative (FN): Background pixels in the output segmentation that are not background
pixels in the ground truth segmentation.

Using these statistics, di↵erent evaluation metrics are calculated that are outlined in the fol-
lowing:

• Recall (Re):

Re =
T P

T P + FN
(10)

• Specificity (Sp):

S p =
T N

T N + FP
(11)

• Precision (Pr):

Pr =
T P

T P + FP
(12)

• F Measure (FM):

FM =
2 ⇤ Pr ⇤ Re

Pr + Re
(13)

• False Positive Rate (FPR):

FPR =
FP

FP + T N
(14)

• False Negative Rate (FNR):

FNR =
FN

T P + FN
(15)
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• Percentage of Wrong Classifications (PWC):

PWC = 100 ⇤ FN + FP
T P + FN + FP + T N

(16)

We are especially interested in the FM metric since most state-of-the-art algorithms in back-
ground subtraction typically exhibit higher FM values than worse performing background sub-
traction algorithms. This is due to the combination of multiple evaluation metrics for the calcu-
lation of the FM. Thus, the overall performance of a background subtraction algorithm is highly
coupled with its FM performance.

4.3. Evaluation Process
In Section 3, we have introduced our background subtraction system, consisting of a CNN,

a background image retrieval and a post-processing module. For the background image retrieval
and the post-processing technique, respectively two methods were proposed. The novel back-
ground image generation based on the SuBSENSE [21] and Flux tensor was proposed and for
the post-processing, spatial-median filtering is considered. In order to get the best performing
setup, we calculate the evaluation metrics, presented in Section 4.2, over the CDnet 2014 [27], for
each setup of our background subtraction system. Also, we compare the category-wise FM and
the overall FM for those data-sets with the FMs from other background subtraction algorithms.
Afterward, we will select the best performing setup for further comparison. For the Wallflower
data-set [24], we calculate the FM for the best setup and again, compare the values with those
from other algorithms. Due to the missing ground truth images for the videos in the PETS 2009
data-set [9], we can not derive the numeric values for the FM and therefore only evaluate the seg-
mentation outputs. In order to compare our approach with other algorithms on multiple data-sets,
we need to be able to generate the corresponding segmentation, using di↵erent algorithms. For
the CDnet 2014 [27], all algorithms that are listed in the online ranking2, their evaluation metrics
and segmentation results are available. For the other data-sets, namely the PETS 2009 [9] and
the Wallflower data-set [24], we need to explicitly generate the segmentation images for those
video sequences. For this purpose, we employed the BGSLibrary [19] as for the background
image generation. As a consequence, we compare our method with certain algorithms that were
online evaluated for the CDnet 2014 [27], as well as implemented in the BGSLibary [19].

4.3.1. Network Training
As already mentioned in Section 3, we train the network with mini-batches of size 150, a

learning rate ↵ = 2.5 ⇤ 10�3 over 10 epochs. The training data comprises of 150 images per
video sequence in the categories listed in Table 1. The validation data contains 20 frames per
video sequence. We train the network with RMSprop [12] using the BCE for the loss function. In
Figure 16, the training plot is illustrated. Both networks yield a similar behavior and performance
during training, mainly due to the identical network architecture and training setup.

2
http://changedetection.net
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Figure 16: Training and validation loss of the network using background images generated using the proposed back-
ground model.

4.4. Results

In order to measure the quality of our background subtraction algorithm, we compute the dif-
ferent evaluation metrics for our background subtraction system. The metrics are reported for the
CDnet 2014 [27]. Also, we compare our FMs with the FMs from other background subtraction
algorithms over the complete evaluation data. For this purpose, we compare our algorithm with
the GMM [22], PBAS [13] and the SuBSENSE [21] algorithm. In addition, for both CDnet data-
sets, we employ further background subtraction algorithms for the FM comparison. Also, we
compare the segmenation outputs among the algorithms. For the comparison, we select further
video sequences from the PETS 2009 data-set [9].

4.4.1. CDnet 2014
In the following, for each setup of our background subtraction system, the evaluation metrics

for the CDnet 2014 are listed in Tables 4. The outputs are post-processed with a median filter
with a size of 9 ⇥ 9. The outputs of the CNN are compared with the threshold at R = 0.3. As we
can see in Table 4, the CNN yields very good results. In addition, the CNN yields the highest
FM among the other algorithms in 6 out of 11 categories (see Table 5 and Table 6 ).

4.4.2. Wallflower Evaluation
For the the Wallflower data-set [24], we compare the FMs among the considered algorithms.

For each video in the data-set, only a single groundtruth image is given, therefore, the FM is
calculated only for this ground truth image.
The di↵erent FMs are reported in Table 7. Please note that we do not consider the ”MovedOb-
ject” video for comparison since the corresponding ground truth image contains no foreground
pixels and therefore, the FM can not be calculated.
From the results we can see that the CNN yields the best overall FM among the considered back-
ground subtraction algorithms.
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Category Re Sp FPR FNR PWC FM Pr
Baseline 0.9517 0.9991 0.0013 0.0483 0.2424 0.9580 0.9660
Camera jitter 0.8788 0.9957 0.0043 0.1212 0.8994 0.8990 0.9313
Dynamic Background 0.8543 0.9988 0.0012 0.1457 0.2067 0.8761 0.9083
Intermittent Object Motion 0.5735 0.9949 0.0051 0.4265 4.1292 0.6098 0.8251
Shadow 0.9584 0.9942 0.0058 0.0416 0.7403 0.9304 0.4844
Thermal 0.6637 0.9956 0.0044 0.3363 3.5773 0.7583 0.9257
Bad Weather 0.7517 0.9996 0.0004 0.2483 0.3784 0.8301 0.9494
Low Framerate 0.5924 0.9975 0.0025 0.4076 1.3564 0.6002 0.9677
Night Videos 0.5315 0.9959 0.0041 0.4685 2.5754 0.5835 0.8366
PTZ 0.7549 0.9248 0.0752 0.2541 7.7228 0.3133 0.2855
Turbulence 0.7979 0.9998 0.0002 0.2021 0.0838 0.8455 0.9082
Overall 0.7545 0.9905 0.0095 0.2455 1.9920 0.7548 0.8332

Table 4: Evaluation of CNN on the CDnet 2014

Method FMBSL FMDBG FMCJT FMIOM FMSHD FMTHM

CNN 0.9580 0.8761 0.8990 0.6098 0.9304 0.7583
PBAS [13] 0.9242 0.6829 0.7220 0.5745 0.8143 0.7556
PAWCS [20] 0.9397 0.8938 0.8137 0.7764 0.8913 0.8324
SuBSENSE [21] 0.9503 0.8177 0.8152 0.6569 0.8986 0.8171
MBS [17] 0.9287 0.7915 0.8367 0.7568 0.8262 0.8194
GMM [22] 0.8245 0.6330 0.5969 0.5207 0.7156 0.6621
RMoG [25] 0.7848 0.7352 0.7010 0.5431 0.7212 0.4788
Spectral-360 [18] 0.9330 0.7872 0.7156 0.5656 0.8843 0.7764

Table 5: FM metric comparison of di↵erent background subtraction algorithms over the 6 categories of the CDnet2014,
namely 1) Baseline (BSL), Dynamic background (DBG), Camera jitter (CJT), Intermittet objectmotion (IOM), Shadow
(SHD), Thermal (THM).

Method FMBDW FMLFR FMNVD FMPTZ FMTBL

CNN 0.8301 0.6002 0.5835 0.3133 0.8455
PBAS [13] 0.7673 0.5914 0.4387 0.1063 0.6349
PAWCS [20] 0.8152 0.6588 0.4152 0.4615 0.6450
SuBSENSE [21] 0.8619 0.6445 0.5599 0.3476 0.7792
MBS [17] 0.7730 0.6279 0.5158 0.5118 0.5698
GMM [22] 0.7380 0.5373 0.4097 0.1522 0.4663
RMoG [25] 0.6826 0.5312 0.4265 0.2400 0.4578
Spectral-360 [18] 0.7569 0.6437 0.4832 0.3653 0.5429

Table 6: FM metric comparison of di↵erent background subtraction algorithms over the 5 categories of the CDnet2014,
namely Bad weather (BDW), Low framerate (LFM), Night videos (NVD), PTZ (PTZ), Turbulence (TBL)
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FMVideo CNN SuBSENSE [21] PBAS [13] GMM [22]
FMBootstrap 0.7479 0.4192 0.2857 0.5306
FMCamouflage 0.9857 0.9535 0.8922 0.8307
FMForegroundAperture 0.6583 0.6635 0.6459 0.5778
FMLightSwitch 0.6114 0.3201 0.2212 0.2296
FMTimeOfDay 0.5494 0.7107 0.4875 0.7203
FMWavingTrees 0.9546 0.9597 0.8421 0.9767
Overall 0.7512 0.6711 0.5624 0.6443

Table 7: F-Measures for the Wallflower dataset [24]

4.5. Discussion

The output segmentations are already precise and not very prone to outliers (e.g. through
dynamic background regions), the main problems are the camouflage regions within foreground
objects. In the first 6 categories of CDnet 2014, where mainly the feature extraction and segmen-
tation are challenging, the CNN gives the best results, compared with other algorithms, in 6 out
of 11 categories. For categories such as the ”PTZ (Pan Tilt Zoom)” or ”low framerate” category,
the CNN yields poor results since the background images provided by the proposed algorithm
are insu�cient for performing good background subtraction. Therefore, our method gives poor
segmentation for these categories and as a consequence, the average FM drops significantly.
However, for Wallflower data-set [24], where in most cases the background model is not chal-
lenged, our algorithm outperforms all other algorithms in terms of segmentation quality and
overall FM.
To sum up, our system outperforms the existing algorithms when the challenge does not lie in
the background modeling/maintenance, but on the other hand, due to the corruption of the back-
ground images, our method performs poorly once there are large changes in the background
scenery.

4.5.1. Network Analysis
For further understanding and intuition, we visualize the convolutional filters and the feature

maps when an image pair is fed into the network. In order to replace feature engineering, filters
are employed which are learned during training. Since the learning is performed with ground
truth data, highly application specific features will be extracted. Our network contains 3 con-
volutional layers which perform the feature extraction, especially the convolutional filters, the
so-called kernels, are responsible for that task. Some of those will be illustrated in the following.
All convolutional filters in our network are of size 5 ⇥ 5. The filters that are directly applied to
the RGB image pair of input and background image are illustrated in Figure 19.
Due to the large number of filters, we only show the filter-sets that output the first feature map of
the respective convolutional layer. Those filter-sets from the remaining convolutional layers are
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shown in Figure 20. By applying the filters onto the input images or feature maps, the convolu-
tional layer scans the input for certain patterns, that are defined by the filters, that again generate
new feature maps which capture task-specific characteristics.

4.5.2. Feature Analysis
By applying the learned filters to the network input, passing the intermediate values through

the activation and subsampling functions, feature maps are generated. Those are again the input
of the subsequent convolutional layer or classifier. In order to analyze the generated feature maps,
we first need to feed an input into the network. An example input pair consisting of background
and input frame is shown along with the CNN output in Figure 18. The output feature maps
from all convolutional layers in our network are illustrated in Figures. 19 and 20. At the end,
the vectorized feature maps of the last convolutional layer in our CNN are fed into a MLP that
performs the pixel-wise classification.

5. Conclusion

We have proposed a novel approach based on deep learning for background subtraction task.
The proposed approach includes three processing steps, namely background model generation,
CNN for feature learning and post-processing. It turned out that the CNN yielded the best per-
formance among all other algorithms for background subtraction. In addition, we analyzed our
network during training and visualized the convolutional filters and generated feature maps. Due
to the fact that our method works only with RGB data, the potential of Deep Learning approaches
and the available data, one could think of modeling the background with Deep Learning tech-
niques, for example with RNN. Furthermore, as we use a global threshold for our network outputs
at the moment, one could use adaptive pixel-wise thresholds, as in the PBAS algorithm, employ-
ing a kind of ”background dynamics” measure for the feedback loop. With this adaption, one
could increase the sensitivity in static background areas and decrease it for areas with dynamic
background. At last, when combining our method with an existing background subtraction algo-
rithm, in our case with the SuBSENSE algorithm, one could use the information of both output
segmentations and combine them to get a refined output and employ this output for improving
the updates of the background model.

24



Figure 17: Comparison of the segmentation outputs: The first column is the input image, the second column is its ground
truth image, the third column represents the output of the CNN. The fourth column is the output of the SuBSENSE
[21], the fifth column represents the output of the PBAS [13] and the last column shows the output of the GMM [22]
segmentation. Gray pixels in the ground truth segmentation indicate pixels which are not of interest
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(a) (b) (c)

Figure 18: Network input and output: (a) Background image of the input pair. (b) Input frame. (c) Network output.

(a) (b)

Figure 19: Visualization of the kernels in the first convolutional layer: (a) Kernels for processing the input image. (b)
Kernels that process the background image.

(a) (b)

Figure 20: Kernels of the second and third convolutional layer: (a) 24 kernels to generate the first output feature map in
the second convolutional layer. (b) 48 kernels that output the first feature map in the third convolutional layer.
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