
ROUTER

5 APPLICAT'N

4 TRANSPORT

3 INTERNET

2 LINK LAYER

data, root hash

packets, hash tree

datagrams

LINK

TRANSPORT

INTERNET

LINK

INTERNET

LINK

APPLICATION

TRANSPORT

INTERNET

LINK

SENDER SWITCH CACHE RECEIVER

1 k 1 k1 k

Figure 1: Swift protocol stack: application-dependent
queries are translated into requests to the transport layer
for particular data — identified with hashes. Transport
deals with data streams, their verification and storage.

for information-centric networks [9, 7]. The naming layer is
out of scope, thus we make no specific assumptions.

3. DESIGN OVERVIEW
In our design, content is identified by a single crypto-

graphic hash that is the root hash in a Merkle hash tree,
calculated recursively from the content (see details in the
Merkle hash extension document [8]). The ability to verify
data against its name allows for storage in the network and
retrieval of data from an arbitrary location. Second, as a
(packet) network may need to check data integrity piece by
piece, possible options boil down to either per-packet sig-
natures, as in CCN, or Merkle hash trees. Differently from
signatures, Merkle hash trees provide strict permanent iden-
tifiers of static data pieces, so we chose them as the foun-
dation, later extending the approach to dynamic data (see
Section 4).

The hashing scheme enables the entire information-
centric stack, illustrated in Figure 1, in two ways. First,
it allows for a perfect application-to-transport handover.
Semantically-rich and application-dependent queries are even-
tually converted into requests to the transport layer for par-
ticular data pieces, precisely identified with hashes. Sec-
ond, hashing enables information-centric internetworking,
i.e. identification and relay of data pieces, data verifica-
tion, and storage in the network.

As depicted in Figure 1, Swift embeds a layer separation
scheme very much reminiscent of TCP/IP. Namely, there is
a relay internetworking layer that only deals with separate
datagrams. On top of it, there is a somewhat more intel-
ligent transport layer that deals with entire data streams,
performing verification, caching, and storage.

Any peer running Swift may cache content. Technically,
there is no difference between a peer and a cache — they run
the same protocol; the conceptual difference lies in the inten-
tion: a cache“stores” content to further disseminate it but is
not particularly interested in the given content. The caches
may be regular peers or peers put in place by ISPs — who
are interested in replicating “popular” content within their
administrative domains and thus avoid transit traffic and
costs to external domains. If operated by ISPs, such caches
(interchangeably, peers) may manage the content they offer
according to some basic rules, such as LRU or demand.

Discovering peers or caches may be done centrally through
trackers or ISP-based trackers, or in a decentralized fashion
through PEX or DHTs. We explain how discovering new

peers can be done with Peer Exchange in Section 6 or with
Mainline DHT in Section 7.

In Swift, data storage and data verification are highly
interdependent and important in terms of security. For ex-
ample, if a caching peer does not verify data integrity, it
makes cache poisoning possible. While a final recipient does
not accept (drops) incorrect data, an erroneous cache may
form a clot in the network, preventing the correct data from
passing through. Similarly, data verification requires storage
in peers to some degree, as Merkle hash trees need accom-
panying uncle hash chains to be available in order to verify
data pieces.

In a sense, hashes replace IP addresses as end-point
identifiers. A receiver uses a root hash to “open” the con-
nection to the network and retrieve the data. The receiver
requests specific pieces of data using a novel method called
bin numbers (see details in the RFC document [14]) which
allows the addressing of a binary interval of data using a sin-
gle integer. This numbering mechanism reduces the amount
of state that needs to be stored in each peer and minimizes
the space required to denote intervals on the wire. Because
the receiver directly addresses the data instead of a single
end-point at a particular IP location, it has no control over
which peer (replica) will respond; the receiver controls the
reception of pieces based on local parameters.

4. THE HASHING SCHEME
We modified Merkle hash trees and focused on smooth

operation of both vertical (application to transport) and hor-
izontal (internetworking) handovers to ensure that no peer
requires third parties to verify bindings between keys and
names (as in CCN [17]) or to retrieve additional metadata
to perform their function. We ensure their operation is as
simple and formalized, as possible. In Sec. 4.3, we extend
our basic technique to the cases of live data streams and
versioned data.

4.1 64-bit Merkle Trees
We developed a variant of the Merkle hash tree scheme [21]

to satisfy three key requirements: (a) per-packet data in-
tegrity checks, (b) no additional metadata and (c) suitabil-
ity for live/mutable data. The general concept is to start
with the root hash only, then incrementally acquire data
and hashes, while verifying every single step.

First, content is divided into 1KiB chunks named pack-
ets, except for the tail packet, which may have less than
1KiB of data. A cryptographic hash, such as SHA1, is then
calculated on every packet. Second, a hash tree is defined
over the complete [0, 263) byte range, which we consider to
be a good approximation of infinity in relation to content
size. The tree consists of aligned binary intervals called bins,
i.e. [i2k, (i+ 1)2k). Bins are nested, forming a strict binary
tree (see Figure 2). Each tree contains 264 bins of different
sizes, including one void and one root bin; the base — the
lowest level — of the tree is composed of 210 byte long bins.

The base of the tree (the leaves) accommodates all the
data chunks, starting from the left-most leaf. Normally, the
base of the tree is wider than the number of chunks, thus
the remaining empty leaves in the tree are assigned hash
values of zero. In higher levels of the tree (above base), bins
contain hashes which are calculated as a SHA1 hash of a
concatenation of two — left and right — child (lower-level)
hashes. This hashing process iterates until a hash value for


