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Abstract — Network coding theory [1] shows that
the multicast rate in a network can be increased if
coding is allowed in the network nodes. Thus the ca-
pacity of a network with network coding is generally
larger than that with routing alone. We quantify this
gain in closed form for a class of networks called com-
bination networks. ;From this result, it can readily be
deduced that network coding gain can be unbounded.

I. INTRODUCTION

We begin with the definition of a combination network'. In
the sequel, a symbol refers to an element in a given finite field.

Definition 1 An (::L) combination network is a 3-layer sin-
gle source node multicast network. The first layer consists of
the source node, where a message consisting of a number of
symbols is generated. The second layer consists of n nodes,
where each of them receives a single incoming edge from the
source node. The third layer consists of (::L) sink nodes, where
each of them receives incoming edges from a unique set of m
out of the n intermediate nodes on the second layer. The ca-
pacity of each edge is equal 1, i.e., one symbol can be trans-
mitted in each edge.

We first explain the notion of network coding gain by means
of a simple example. Assume all the symbols are binary, and
consider the (g) combination network in Fig. 1(a). It is easy
to see that

maxflow(s, ;) = 2

(1)
for [ = 1,2,3, so the maximum number of bits that can be
multicast from the source node to all the sink nodes is at
most 2. This upper bound, called the max-flow bound, can
always be achieved by using network coding [1]-[3]. So we
define the network coding capacity as the max-flow bound. In
Fig. 1(b), we show how to achieve the network coding capacity
by multicasting 2 bits b; and b2 to all the sink nodes. Note
that coding is performed at node 3.

This network is of special interest in practice because it
represents a special case of the diversity coding scheme used
in commercial disk arrays, which are a kind of fault-tolerant
data storage system. Such a system works as follows. Assume
the disk array has three disks represented by nodes 1, 2, and 3
in the network, and the information to be stored are the bits by
and bz. The information is encoded into three pieces, namely
b1, b2 and b; + b2, which are stored on the disks represented
by nodes 1, 2, and 3, respectively. In the system, there are
three decoders, represented by sink nodes ¢1, {2 and t3, such

LA combination network is called a uniform bipartite network in

[5]-
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Figure 1: A (g) combination network.

that each of them has access to a distinct set of two disks. The
idea is that when any one disk is out of order, information can
still be recovered from the remaining two disks. For example,
if the disk represented by node 1 is out of order, then the
information can be recovered by the decoder represented by
the sink node ¢3 which has access to the disks represented by
node 2 and node 3. When all the three disks are functioning,
the information can be recovered by any decoder.

Let us now consider the case when network coding is not al-
lowed, i.e., only routing can be performed within the network.
Let B = {b1,...,bx} be the set of bits to be multicast to all
the sinks. Let the set of bits sent in the edge s; be B;. Since
the number of bits being sent must be smaller than the ca-
pacity of the edge, we have |B;| <1 for i = 1,2,3. At node i,
the received bits are duplicated and sent in the two out-going
edges. Since network coding is not allowed, B = B; U B; for
any 1 <i¢ < j < 3. Then we have

B;U(BiNB:) = (BsUB1)N(B3UBsy) (2)
B. (3)
Therefore
K = |B3 U (B1 n B2)| (4)
< |Bs|+|B1 N By (5)

|Bs| + |B1| + |B2| — |B1 U Bo| (6)



= 3-k, (7)

which implies x < 1.5. In Fig. 1(c), we show how 3 bits b1,
b2, and b3 can be multicast to all the sinks by sending 2 bits
in each edge, i.e., kK = 1.5 is achieved. Therefore, the routing
capacity is equal to 1.5, and

network coding capacity

network coding gain := - - 1
routing capacity

1
3

In this simple example, the network coding gain can eas-
ily be determined. Our main contribution in this paper is
to determine in the closed form the network coding gain for
general combination networks. The rest of the paper is orga-
nized as follows. In Section II, we will generalize the result
discussed above for (nfl) networks. In Section III, we will

further generalize the result for (::L) networks. It can then be
readily deduced that network coding gain can be unbounded
(see also [4]).

II. (,",) NETWORKS

In this section, we determine the routing capacity of (nfl)
combination networks. We will also show that the network
coding gain tends to 2 as n — co. Since only routing can be
performed within the network, without loss of generality, we
assume that all the symbols are binary.

Definition 2 The field F,, generated by sets Bi, Ba, ..., By, is
the collection of sets which can be obtained by any sequence
of usual set operations (union, intersection, complement, and
difference) on Bi,Bs, ..., Bn.

Definition 3 The atoms of F,, are sets of the form N;_,Y;
where Y; is either B; or B;°, the complement of B;.

There are 2" atoms and 22" sets in F,. Evidently, all the
atoms in F;, are disjoint, and each set in F), can be expressed
uniquely as the union of a subset of the atoms of F,,. We
assume that the sets Bi, Bo, ..., B, intersect with each other
generically, i.e., all the atoms of F}, are nonempty, unless oth-
erwise specified.

Let A be the set of all atoms, i.e.,

A= {ﬂ?:1K|K = B; or Bic}. (8)
Let

Ai = {(NjexBj) N (Nieq1,2,....n & Bi°)l (9)
K C{1,..,n}, |K| = i}.

In words, A; is the set of all atoms of F,, which lie in exactly
i out of the n sets in {B1, Bs, ..., By }.

Let X; be the random variable representing the bits in B;.
We assume that the bits b1, b, ..., b, are raw bits?, so that
H(X;) = |Bi|. To simplify notation, we will use X, where G
is any set, to denote (X;,¢ € G). Note that

H(Xs) >0,

VS € A. (10)

2Raw bits refer to identical, independent bits, each distributing
uniformly on {0,1}.

Lemma 1 E::l H(XBU"WXkauXBkJrU -~-,XBn |XBk)
n—1 .
:Eizl (n—1) EsigAi H(Xs;)}

Proof: Let C be any atom in A;. In other words,

3K C {1,2,...,n} and |K| =i such that

Cz(ﬂBJ)ﬂ N

jEK FE{L,2, . n\K

B;* (11)

For 1 <k <m,let

Dy =B1U..Bp_; UBkJ,_lU...UBnﬂBkC (12)
Note that for S € A, (i.e., S=BiNB2N...NBy),
S¢ Dp, V1<k<n. (13)
Also note that,
CNnD =0, VieK (14)
and
CccD, Vi¢K. (15)
Therefore,
Z H(XBl7 - XBy_1, XBk+1 sy X By |XBk)
k=1
= D {H(Xs,u.05,) - H(X5,)} (16)
k=1
= D {H(X5,0.. 08,008, (17)
k=1
+H(Xy,u...uB0)nBy,]) — H(XB,)}
= Z{H(X(Bl U..UB)NBge) + H(XB,,) (18)
k=1
_H(XBk)}
= ZH(X(BlmBkC)U...U(BkﬂBkC)u...U(BnﬁBkC)) (19)
k=1
= ZH(X(Blu...Bk_luBk_Hu...uBn)anc) (20)
k=1
= DD H(Xs) 21)
k=1 S€EA
SCDy
n n-—1
= 2.2 D HEXS) 22)
k=1 i=1 S€A;
SCDy
n—1 n
- Ty e e
i=1 k=1 S€A;
SCDy
n—1
= Y (n—i) Y H(Xs), (24)
i=1 SeA;

where (17) follows from the assumption that the bits within
B; are raw bits, (22) follows from (13), and (24) follows from
(14) and (15) because if S € A;, then S is a subset of D;, for
precisely (n — i) k's.



Lemma 2 For an (nfl) combination network, if k is an

achievable rate, then

n
RS (25)
Proof: Let
H(XB,,XBy,...,XB,) = K. (26)
Since |Bx| < 1 and hence H(Xp, ) < 1, we have
H(XBys 0y X8y_1y XBprys oo X5, | X5,
= H(XB,,XBs,.,XB,) — H(XB,) (27)
> H(Xp,,Xpy, ., Xp,) — 1 (28)
= k-1 (29)
Thus
n
H(XBy, o X5y 1y XBy i1y X8, | XB,)
k=1
> n(k—1) (30)
= nk-—n. (31)

Since the message can be recovered by accessing any of the
n — 1 intermediate nodes, for all 1 < k < n, we have

H(XBk|XB1:-~-aXBk717XBk+1a~-~:XBn) (32)
H(XB,nB1cn...nBy_1°NByy1N...0By<) (33)
_— (34)

or equivalently,

H(Xs) =0, VSeA (35)
(cf. (9)). This implies
(n - Z)H(XB“XBZ,...,XB")
= (n—2) ZH(Xs) (36)
SeA
> (n-2)) > H(Xs) (37)
i=2 S€A;
= > (n-2) Y H(Xs) (38)
i=2 S€EA;
> Y (n—i) Yy H(Xs) (39)
i=2 S€EA;
= > (n—i) Yy H(Xs) (40)
i=1 SEA;

n

= Z H(XBla s XBy_y, XBk+17 oy XBy, |XBk)7 (41)
k=1

where (37) and (39) follow from the non-negativity of entropy,
(40) follows from (35), and (41) follows from Lemma 1. There-
fore,

(n—2)k>nk—n (42)

so that

k< 3, (43)

0|3

proving the lemma.

Next, we will prove the achievability of the upper bound in
Lemma 2.

Lemma 3 For an (n:) combination network, if

K<, (44)
2
then k s an achievable rate.
Proof: We divide the scheme into 2 rounds. During the

first round, n independent bits are sent in the n outgoing
edges of the source node. During the second round, the n
independent bits are shifted to left by one (modulo n) and
then sent in the n outgoing edges. For example, during the
first round, by, ba, ..., by, are sent and during the second round,
b2, ..., by, b1 are sent. With this scheme, by accessing any n—1
intermediate nodes, any sink node can receive n different bits
in 2 time units. The upper bound can then be achieved, and
the lemma is proved.

By combining the above two lemmas, we obtain

Theorem 1 For an (n’il) combination network, Kk is an
achievable rate if and only if

k<= (45)

0|3

Corollary 1 For an (nl’l) combination network, the net-
work coding gain tends to 2 as n — oo.

Proof: By Theorem 1, the routing capacity of an (nrjl)

network is equal to § while the network coding capacity (max-

flow bound) is equal to (n — 1). Therefore,

D _2-1 _,

(46)
as n — 00.

III. (') NETWORKS
In this section, we further generalize the results in the last
section for (::L) networks. We will also show that by choosing
n and m appropriately, the network coding gain can become
unbounded.

Lemma 4 For an (::L) combination network, if Kk is an
achievable rate, then
n

S Tl (47)



Proof: Since the message is received by every sink, VK C
{1,...,n} and |K| > m,

n}\K|XBK) =0 (48)

or H (X(U'e{1,2 ..... n}\KBi)ﬁ(ﬁjeKBjc)) =0 (49)

or H(Xs)=0 VSe A, 1<i<n—m, (50)

where (50) follows from (9). This implies
(m —1)H(Xp,, Xp,, ..., X8,)
= (n—(n-m+1)) > H(Xs)

SeA

(n—(m-m+1) > Y H(Xs)

i=n—m+1 S;EA;

A%

n—1

= Y -m-m+1) Y H(Xs)

S;€EA;

(53)
i=n—m-+1
n—1

Y (i) Y H(Xs,)

i=n—m-+1 S;€EA;

A%

(54)

n—1

= > (n—i) Y H(Xs)
i=1 S;€EA;

= ZH(XBI)"~7XBk—17XBk+1’"'7XB"|XB’0)’ (56)
k=1

(55)

where (52) and (54) follow from the non-negativity of entropy,
(55) follows from (50), and (56) follows from Lemma 1. There-
fore,

(m — 1)k > nk —n, (57)
or n
< -
A (58)

proving the lemma.

Next, we will prove the achievability of the upper bound in
Lemma 4.

n

Lemma 5 For an (m) combination network, if

n
k< —m8
“n—-m+1’

then k is an achievable rate.

Proof: Consider an (::L) network. Divide the scheme into
n — m + 1 rounds. During the first round, n independent
bits are sent on the n outgoing channels of the source node.
Then the n bits are shifted to left by one (modulo n) and then
sent on the outgoing channels. This step is repeated for the
remaining n — m — 1 rounds. Since the bit sequence received
by every sink node is a shifted version of each other and each
of them is of length n — m + 1, they are different from each
other. Let By be the collection of bits sent in the kth edge
from the source node during the n —m + 1 rounds. Since the
By’s are distinct,

J#k

>1, V1i<k<n.

Hence, for any 1 <i; < iz < ... < im < n,

n > U Bij (60)
j=1
m j—1
= |Byl+)_ |Bin (ﬂ B;)‘ (61)
=2 1=1
> |Byl+) B”r1<f]ég>‘ (62)
j=2 I#]
> (n—-m+1)+(m-1) (63)
= n (64)
This implies,
B, |=n (65)
j=1

Therefore, we conclude that each sink node receives all the n
bits in n — m + 1 rounds. The theorem is proved.

By combining the above two lemmas, we obtain

Theorem 2 For an (::L) combination network, Kk is an
achievable rate if and only if

k< n

e (66)

Corollary 2 For an (:;) combination network, the network

coding gain tends to m as n — 0.

Proof: Consider

m _ m(n—m+1) (67)
ey n

- m(L—%+%), (68)

(69)

which tends to m as n — co.

As m can be arbitrarily large, we come to the conclusion
that network coding gain can be unbounded. The same con-
clusion has previously been drawn in [4], where they consid-

ered the network coding gain of (n72) combination networks.
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