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presented here. These computational results are consistent with the theoretically known fact that standard
PCA is optimal for one single Gaussian distribution. Interestingly, however, the results in Table 1 indicate
that ℓ1 MCDA performs quite well—albeit sub-optimally—for one single Gaussian distribution. Thus,
there is no major disadvantage in using ℓ1 MCDA as a default PCA (instead of standard PCA), since it
performs well both for the cases when standard PCA is known to be optimal and, as we have seen, for
the many other cases when standard PCA and robust PCAs perform less well, poorly or not at all.

5. Conclusions and Future Work

The assumptions underlying ℓ1 MCDA are less restrictive and more practical than those underlying
standard PCA and currently available robust PCAs. The 2D ℓ1 MCDA that we have developed differs
from standard PCA and all previously proposed robust PCAs in that it (1) allows use of a wide variety
of distance functions in the data space (while noting the advantages of using the ℓ1 norm to define
the distance function); (2) replaces all (not just some) of the ℓ2-based procedures and concepts in
standard PCA with ℓ1-based procedures and concepts; (3) has a theoretical foundation in heavy-tailed
statistics but works well for data from both heavy-tailed and light-tailed distributions; (4) is applicable
for data that need not have (but can have) mutually orthogonal main directions, can have multiple
spokes and can contain patterned artificial outliers (clutter) and (5) does not require assumption of
sparsity of the principal components or of the error. Most of the robust PCAs (with the exception
of Ke and Kanade’s) that have previously been proposed in the literature involve use of the ℓ1 norm
not at all or only to a limited extent and continue to rely on ℓ2-based items including singular values,
inner products, orthogonal projection, averaging and second moments (variances, covariances). The ℓ1

MCDA that we propose comes exclusively from a unified theoretical framework based on the ℓ1 norm.
The computational results presented in Section 4 show that the ℓ1 MCDA proposed here significantly
outperforms not only the standard PCA but also two robust PCAs in terms of accuracy.

This ℓ1 MCDA is a foundation for a new, robust procedure that can be used for identification
of dimensionality, identification of structure (including nonconventional spoke structure) and data
compression in Rn, n ≥ 3, a topic on which the authors of this paper are currently working. In
designing ℓ1 MCDA for higher dimensions, the guiding principles will continue to be direct connection
with heavy-tailed statistics and exclusive reliance on ℓ1 operations. The higher-dimensional versions of
Steps 1 and 2 of ℓ1 MCDA are feasible as long as appropriate higher-dimensional angular coordinates
can be defined. The reader may question whether the “ℓ1 polar coordinates” that are used in 2D can be
extended to n dimensions. Indeed they can in the following manner. In direct analogy to the definition
of the polar coordinate θm in (8) in two dimensions, one defines angular coordinates one defines n − 1
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passing we note that these higher-dimensional ℓ1 angular coordinates are computationally cheaper than
standard ℓ2 hyperspherical angular coordinates, which require calculation of square roots of sums of
squares.

For samples of M vectors in Rn, M > n, the cost of classical PCA is O(Mn2). The costs of
Croux and Ruiz-Gazen’s method and of Ke and Kanade’s method are not specified in the literature but


