iz

High Availability for High-End Scientific
Computing

A Dissertation
Submitted In Partial Fulfilment Of
The Requirements For The Degree Of

MASTER OF SCIENCE

In

NETWORK CENTERED COMPUTING,
HIGH PERFORMANCE COMPUTING AND COMMUNICATION

in the
FACULTY OF SCIENCE
THE UNIVERSITY OF READING
by

Kai Uhlemann

14. March 2006

Supervisors:
Prof. V. Alexandrov, University of Reading
Stephen L. Scott, Ph.D., Oak Ridge National Laboratory



Acknowledgment

I would like to thank all of those who have given their time, assistance and patience
to make this dissection possible.

For making this thesis, and my research at the Oak Ridge National Laboratory pos-
sible, I would like to thank my advisor, Stephen L. Scott, and also, Christian Engel-
mann. I appreciate their invitation to do my Master’s thesis work at such a renowned
institution, and for the financial support that allowed me to achieve it.

I am particularly greatful to both Stephen and Christian for their moral support, and
for sharing my excitement in ongoing research.

Thanks to Ronald Baumann, who provided both private support and amazing de-
bugging abilities, and to Cindy Sonewald, who struggled with administration and
bureaucracy to help me survive my stay in the US.



Abstract

With the growing interest in and popularity of high performance cluster computing
and, more importantly, the fast growing size of compute clusters, research in the area
of high availability is essential to meet the needs to sustain the current growth.

This thesis introduces a new approach to high availability which focuses on the head
node of a cluster system. This projects focus is on providing high availability to the
job-scheduler service, which is the most vital part of the traditional Beowulf-style
cluster architecture.

This research seeks to add high availability to the job-scheduler service and resource
management system, typically running on the head node, leading to a significant

increase of availability for cluster computing.

Also, this software project takes advantage of the virtual synchrony paradigm to

achieve Active/Active replication, the highest form of high availability.

A proof-of-concept implementation shows how high availability can be designed in
software and what results can be expected of such a system. The results may be
reused for future or existing projects to further improve and extent the high availabil-

ity of compute clusters.



Contents

Acknowledgment

Abstract

Contents

1.

Introduction

1.1. Projectoverview . . . . . . . . ... ...
1.1.1. The idea of High-end scientific computing . . . ... ... ...
1.1.2. Traditional cluster setup deficiencies . . . . . .. ... ... ...
1.1.3. Highavailability . .. ... ... ... .............
1.1.4. Project problem description . . . . . ... ... ... .. ...

1.2. Previouswork . . . . .. ...
1.2.1. Related research in high availability . . . ... ... ... .. ..
1.2.2.  Group communication for virtual synchrony . . . ... ... ..

1.3. Key problems and specification . . . . ... .. ... ... .. ... .

1.4. Software system requirements and milestones . . . ... .. ... ...

Preliminary system design

2.1. System designapproach . ... ... ... ..... ... ... . ...
2.1.1. Traditional Beowulf cluster system architecture . ... ... ..
2.1.2. HA-OSCAR cluster system architecture . . . . . ... ... ...
2.1.3. Symmetric Active/Active HA for job-scheduler services . . . .
2.1.4. Group communicationsystem . ... ... ... .........
2.1.5. Multi-head node system architecture . . ... ..........
2.1.6. Scalable availability . ... .....................

2.2. System designoverview . . ... ... ... ... oL
22.1. JOSHUA serverdaemon . . . . .. . ... ... ... .......
222, JOSHUA usercommands . . ... ... ..............
2.2.3. JOSHUA clustermutex . ... .. .. .. ... .. ........

Implementation Strategy

3.1. System implementationapproach . . . .. ... .. ... ... ..., ..
3.1.1. JOSHUA sserverdaemon . . . . . . ... .. ... ... ......

iv

=

O 0 NI O B W N P = =

—
(O8]

15
17
17
22
25
26
27
34
36
37
39
39




Contents

3.1.2. JOSHUA usercommands . .. .. ... ... ........... 48

3.1.3. JOSHUA clustermutex . ... ... ... .. ... ........ 51

3.2. Integration of external components . . . . . .. ... ... . L. 52
3.21. Runtimedependencies . . . . ... ... .............. 52

3.2.2. Group communicationsystem . .. ... ... .......... 54

3.2.3. Communication facilities . . .. ... ... ... ......... 55

3.24. Event-driven message operation . . ... ............. 56

3.2.5. Resource management system and job scheduler. . . . . .. .. 57

33. Systemtests . . ... ... ... o o o 58
3.3.1. Stress and performancetest . . . . . ... ... ... ... ..., 60

3.3.2. Memory allocationtest. . . . . ... ... ..... ... .... 63

333. Systemtest. . ... ... ... ... oo 64

4. Detailed Software Design 7
4.1. Jobsubmission . .. ... ... ... ... 71
4.2. Dynamic group reconfiguration . . . . .. ... .. ... ... ... .. 72
4.3. Exchange of external components . . . . . ... ... ... ........ 74

5. Conclusion 76
51. Results . . . . . . . . e 76
52. FutureWork . . . . . . . .. 77
References 79
A. Appendix 85
Al. Manual . . . ... . e 85
A1l Installation. . . . . . ... ... 85

Al2 Usage. . ... ... e 87

A.13. JOSHUA configuration fileexample . . . .. ... ... ... .. 89

A2 Testoutput . ... ... . ... ... ... 90
A.2.1. Memory allocation testoutput . . ... ... ... ........ 90

A22. Systemtests . . . ... ... 92

A3. Sourcescodelistings . . . ... ... ... .. L o L 96
A31. jemd ... 96

A32 jmutex . . ... 111




Contents

A33. joshua . ..... ... . ... ...
A34. libjutils . . . .. ... oo
A35. misc . ... e

List of Figures

List of Tables

vi

119
155
204

206

207




Introduction

1.1 Project overview

1.1.1 The idea of High-end scientific computing

High-end scientific computing (HEC) has become a powerful and important tool for
scientists world-wide to investigate complex research problems like nanotechnology,
nuclear fusion or the human genome project. [ES05]

HEC outlines the element that combines state-of-the-art computational powers of
high performance computing (HPC), the representation of huge amounts of data and

eventually the scientists working in collaboration groups in a global scale.

High
performance
computing

High-end
scientific computing

Visualization e-Science

Figure 1.1.: High-end scientific computing[Rob05]




1.1. Project overview

Figure 1.1 illustrates high performance computing, visualisation and e-Science con-
nect to produce high-end scientific computing. HEC enables scientists to gain new
insights by accessing, analysing and evaluating the massive amounts of data gener-
ated. Via e-Science it is possible to effectively join computation power, infrastructure
and scientists. High-end scientific computing provides high performance computa-

tion in a scientific environment. [Rob05]

Generally speaking, HPC includes any application, which is impossible to run on
a simple workstation due to the amount and complexity of code and algorithms.
Therefore, high performance computation environments are either vector machines,

massively-parallel-processing machines (MPP) or compute clusters. [Wik05b]

A cluster is a group of loosely-coupled computers that work together closely. Individ-
ual computers may be connected through fast local area networks. Typically, clusters
are used to improve both speed and/ or reliability in comparison to a single computer.
The size of clusters can range from a couple of compute nodes up to several thousand.
[Wik05a]

1.1.2 Traditional cluster setup deficiencies

Traditional Beowulf-style Linux clusters are the common setup for high-end scien-
tific computing at research institutes all around the world. The advantages are their

relative low price and easy deployment.

Nevertheless, one of the core design problems with the conventional Beowulf-style
Linux clusters is that they have only a single head node manage and control the con-
nected compute nodes. The very nature of this architecture relies on the head node

as single point of failure and control.

When this particular system component fails, a single point of failure causes a system
wide failure. If the head node fails, none of the healthy compute nodes connected to
it, can be reached. It is also possible to loose job already running or queued. Thus,
improved speed and reliability may be entirely lost due to limited availability.

Another problem is that the huge growth in performance and scale of new HEC sys-




1.1. Project overview

tems emerging on the markets every year pose a considerable challenge to the soft-

ware and applications running on large-scale, high-performance machines. [ES05]

Compared to their predecessors, the reliability and availability of recently deployed
HEC systems has decreased with the significantly increasing number of processors.
This leads to unacceptable low availability; some systems can only provide a mean
time between failures (MTBF) of as low as 40 to 50 hours. [ES05]

For comparison: One of the world’s first computers, the Electronic Numerical Inte-
grator and Computer (ENIAC) from the University of Pennsylvania, had a mean time
between failures greater than 12 hours. [The04b] A modern hard disk has about 1.2
million hours MTBE. [Wes05]

Quite often, the runtime for high-performance computing applications exceeds the
mean time between failure rate of the hardware for the entire cluster system.
[MNS*03]

Therefore, in order to take advantage of the growing computational capabilities of
modern hard- and software efforts to improve the availability of HEC systems are
of vital importance . Research in high availability focused on cluster head nodes is
especially important to increase the overall availability of cluster computing environ-
ments. The clustered system must provide ways to eliminate single points of failure
and control. [MNS™'03]

1.1.3 High availability

In the past, high availability (HA) computing was only thought important and cost-
effective for industry applications such as telecommunication carriers. It has now
become extra important to the very foundation of high-end scientific computing and
its high performance applications. [MNS*03]

Generally speaking, high availability (HA) is a system that can mask certain defined
faults from the user. [Res96]

The transparency is achieved by redundancy strategy. When one of the components

tails, a redundant component takes over. By using high availability approaches the




1.1. Project overview

mean time to recover a system can be decreased, the possible loss of system and
application state can be significantly avoided, and single points of failure and control
can be prevented. [ES05]

The high availability models are distinguished from one another by the degree of
transparency. The levels of high availability depend on those models and their repli-
cation strategy. Table 1.1 gives a brief overview of the different levels of high avail-
ability. [ESO5]

HA models Active/Standby Active/Active

redundant components | single multiple

redundancy Standby Active

examples Active/Cold-Standby Asymmetric Active/Active
Active/Warm-Standby Symmetric Active/Active
Active/Hot-Standby

Table 1.1.: Models and levels of high availability

1.1.4 Project problem description

This dissertation develops a proof-of-concept prototype job-scheduler service, which
provides Active/Active high availability for high-end scientific computing.

One way to achieve this kind of high availability is to use component state replication
with an active system component group with advanced commit protocols, such as
distributed controls, or the virtual synchrony model. This paradigm can provide a job
scheduler or similar essential services, with a service-level symmetric Active/Active
high availability. [ESO5]

The Active/Active approach for high availability is distinguished from other forms
of HA such as Active/Standby solutions, by using multiple active redundant system

components as replication strategy. [ES05]

I introduce a solution to tightly-couple active replicated, redundant service compo-
nents in groups to make them logically indistinguishable and transparent to users.




1.1. Project overview

Thus a user sees the required component behaviour as a single, running service rather

than as a group of job schedulers. [Res96]

The states of all the participating processes in the group are actively and completely
shared and fully replicated. If a group member fails, none of the users experience
an interruption of the provided job-scheduler service. All remaining active system
components of the service group remain uninterrupted and continue to run from
their current global application state, so that running jobs will not be interrupted.
[ES05]

The remaining members of the group still provide the job-scheduler service. The
virtual synchrony model provides a complete masking of faults, and transparency to
the user as well as to services as the job scheduler. [Res96]

Altogether, the virtual synchrony model means that multiple processes provide the
same service by acting as one visible system component. Active replication can be
achieved by using this synchronisation paradigm to share process states between all

the participating processes.

Symmetric active replication refers to the symmetry between the replicated group
processes. All group members process the same group communication messages as
input to achieve synchronisation of the internal process state. This process state is
actively and completely shared among the group components. There are two ways
replication can be done: [Res96]

e internal replication

e external replication

Internal replication allows each process to independently accept an external state
change using group communication messages. Therefore, since that all processes of
the service group receive the incoming state requests in the same order, the require-

ments to achieve virtual synchrony are met.

In order to assure virtual synchrony using external replication, the external state
change requests are ordered globally and then forwarded to all individual service
processes using a separate process group. Since all processes of the service group




1.2. Previous work

receive the incoming state requests in the same order, virtual synchrony is achieved.

Internal replication is the most effective way of providing virtual synchrony, since it
requires the least synchronisation. However, the disadvantage is that existing code
of a job-scheduler service module would need extensive code modification in order
to implement necessary changes to achieve high availability, especially when moving

from a single to multiple head-node architecture.

In contrast, external replication synchronises the service group based on sequential
incoming requests which makes the synchronisation less efficient. On the other hand,
external replication needs little or no code modifications to existing code of service
modules, and is therefore easier to implement. That way, it is easy to reuse existing
software and merely extend it with the virtual synchrony to achieve high availability.

Both internal and external replications must provide a solution for the single-
instance-execution problem. In contrast to a single-headed job scheduler, which re-
ceives a job, schedules it, puts it into execution on a compute node, a multi-headed
scheduler must deal with the fact that, in order to prevent multiple execution of the
same job only one of the head nodes may initiate and finish the execution of a job so

that valuable computation time on the cluster is not wasted.

This problem evolves from a partial asymmetry between the job scheduler group
processes. Some of the tasks cannot be done by all the processes. Only one node
executes the next job in the job queue on the computation nodes.

This project develops a distributed job-scheduler service which removes the single
point of failure and control from single-headed Beowulf-style Linux clusters by in-
troducing a new multi-headed cluster architecture in order to achieve Active/Active
high availability.

1.2 Previous work

Previous and related research in this area includes cluster management systems solu-
tions for Active/Hot-Standby high availability, as well as research about algorithms
providing virtual synchrony including projects to develop frameworks for reliable




1.2. Previous work

group communication. By using these kinds of group communication systems, Ac-

tive/Active high availability can be realised.

1.2.1 Related research in high availability

Modern systems for cluster management provide resources for easy installation and
management of a cluster system. In fact, the availability and serviceability could
be improved because of less downtime necessary for system management. Open
Source Cluster Application Resources (OSCAR) [Ope05] is a well-known example of
such a system, and was developed by the Open Cluster Group, a collaboration of
major research institutions and technology companies led by the Oak Ridge National
Laboratory (ORNL), the National Center for Supercomputing Applications (NCSA),
IBM, Indiana University, Intel and Louisiana Tech University. [LML*05]

There are several ongoing research projects related to high-availability solutions for
cluster systems, such as Lifekeeper [Ste05], Kimberlite [Mis05] and Linux failsafe
[Sil05]. [LML*05]

However, these solutions for high availability do not focus on the Beowulf-style clus-
ter architecture and do not provide improved availability and serviceability support
for scientific computing, such as a highly available job scheduler. [LML*05]

This gap is filled by the HA-OSCAR project [HA-05], a production-quality HA clus-
ter solution from the Computer Science department of Louisiana Tech University.
Its goals include non-stop services for Linux high-performance computing environ-
ments. [LML105]

The project’s main goals focus on Reliability, Availability and Serviceability (RAS) for
the cluster HPC environment. That way, HA-OSCAR provides both high availability
and high performance for Beowulf-based cluster solutions. [LML*05]

HA OSCAR also provides critical failure prediction and analysis capabilities. The
initial model of choice to approach higher availability is an Active/Hot-Standby so-
lution. So, the project only provides a policy based failover operation. [LML*05]

However, plans for HA OSCAR are to extend the initial architecture to support an




1.2. Previous work

Active/Active high availability model after the release of the Active/Hot-Standby
distribution. The Active/Active solution will provide much better resource utilisa-

tion, because both head nodes will be simultaneously active. [MNS*03]

1.2.2 Group communication for virtual synchrony

A certain kind of group communication is necessary in order to implement an Ac-
tive/ Active high availability model solution that realises the state replication between

virtual synchronous processes.

Several past and ongoing research projects focus on such group communication sys-
tem, fault-tolerant process groups, and highly available distributed virtual processes.
[ESI02]

A group communication system in distributed computing relies on the common In-
ternet standard protocols (TCP/IP, UDP/IP). The grade of message consistency may
vary from complete virtual synchrony to accepted inconsistencies. Other models use
the distributed agreement paradigm. There, all members of a process group must

agree to a consistent state, after a time of inconsistency. [ESI02]

Group communication solutions like Isis, Ensemble [The99a] or transis [The99b] al-
ready exist, which provide a configurable framework for a highly-available applica-
tion. [ESI02]

The Isis Toolkit was one of the first group communication systems, capable of pro-
viding at least causal and total order of message delivery. It was developed by Cor-
nell University during the late 1980s. The Isis group communication system was
one of the first systems to introduce the basic techniques for structuring distributed
systems and was originally designed to simplify the development of fault-tolerant
distributed systems, already based on the concepts of process group and virtual syn-
chrony. [Bar98]

Transis [The99b], a group communication toolkit developed at Hebrew University of
Jerusalem, also provides reliable multicast communication and services for the repli-

cation of information. Following the transis system model, a group member may fail




1.3. Key problems and specification

but later recovers. It also supports network partitioning and subsequent remerges.
The advantage of transis as a group communication toolkit is its modularity and ex-
tensibility. [Bar98]

Thus, an existing group communication layer can be used and configured to fit ap-
plication requirements and hardware features. A disadvantage is the complex com-
bination of protocols and the use of deep protocol stacks, which could significantly
reduce the performance. [ESI02]

1.3 Key problems and specification

Research in the area of high availability for cluster systems particularly focused on
the head node, is still an ongoing effort. The Active/Hot-Standby solution from the
HA-OSCAR [HA-05] project is an example of how to handle a failing head node.

A solution as proposed in this dissertation concerning symmetric highly-available
Active/Active job-scheduler service and resource management has not yet been re-
alised. The proposed solution may be of vital importance to the further development
of solutions based on high-availability models using the active replication approach.
Since the outlined service system should provide basic job-scheduler capabilities, a
new service system has either to be designed and implemented from scratch, or an
existing open-source scheduler must be reused and modified in order to provide the
necessary scheduling and resource facilities. The decision for one of these options is
notably influenced of how the replication will be realised.

If replication is done internally, the effort to facilitate an existing open-source job
scheduler with high availability will be extensive and therefore, favours a design
from scratch. On the other hand, by realising the replication externally, existing soft-
ware would only have to be wrapped up in order to augment the service with Ac-
tive/ Active high availability.

The most important element for enabling high availability is to guarantee the shared
global state between the service processes via the group communication facilities. In

order to get global state knowledge, every possible input event to the process group



1.3. Key problems and specification

must be handled properly. To resolve the key problems of seamless recovery and
dynamic service group reconfiguration, the proper reactions to those inputs should

be examined and developed.

Another key problem is the single-instance-execution problem. Since the system de-
sign implies several separate group members which share the exact same process
state, each of the participating job-scheduler processes would attempt to indepen-
dently execute the current job in the queue. Proper facilities should be developed to
prevent the job duplication.

The main goal of the proposed solution is the design, implementation and test of
prototype software, which uses an existing group communication framework to meet

all necessary criteria for virtual synchrony to enable active replication.

This framework must provide built-in awareness of membership state changes to en-
able recovery and fault detection for the group communication. The system is thus
able to provide the needed global knowledge among group members concerning
their membership and communication. The chosen framework must have facilities
that ensure consistency of the messages among the group members to enable the vir-

tual synchrony paradigm.

In order to ensure global knowledge between all participating processes, the process
states must be actively replicated between the distributed processes. This must be
achieved by the communication facilities of the chosen group communication frame-
work, by passing messages among the group members. The framework ensures that
every message sent is received in the same total order by all members of the dis-

tributed scheduler service group.

The novel approach to enable Active/Active high availability via active replication
is of vital importance to this thesis. I intend to improve the existing conventional
Beowulf Linux cluster system architecture and software system, in order to remove
their single points of failure and control. It is then possible to bring forward high-
end scientific computation needs. With the proposed solution speed, reliability and
availability can be better combined to provide an exceptional way for modern cluster
computing. Therefore, the service scheduler to develop provides dynamic reconfig-

uration and recovery from failure, completely transparent to the user. In the end,

10




1.3. Key problems and specification

the intended service system may be used to augment existing cluster systems, like
OSCAR [Ope05], with high-availability scheduler abilities completely invisible to the
users of the system.

General ideas on possible solutions will be investigated and discussed later, but only
one specific scenario will be implemented to show how the concepts of Active/Active

high availability work in practice.

The ultimate solution will include prototype software to proof the concepts set forth
in this dissertation. Using the results and findings, it should be possible to develop a
production-type scheduler service or improve existing high-availability solutions, by
shifting to a higher model of high availability.

Compared to the Active/Standby model, the model of Active/Active high availabil-
ity has the advantage that multiple redundant components of the service processes
will be possible. Therefore, restrictions such as only one standby server in the HA-
OSCAR project [HA-05] will not apply. In fact, if multiple numbers of redundant ac-
tive components are possible, it is feasible to combine as many components as needed

to satisfy the availability needs of the desired service application.

For the job-scheduler service, basic scheduler features must be provided by the pro-
posed software system, including a solution for consequential side effects, such as the

single-instance-execution problem.

The key features of common job-scheduler services, such as the popular Portable
Batch System (PBS) [Alt03] provides, must provided by the proposed system as well.
Thus the most important features for the user are:

e submit a job via command line interface using execution scripts
e get status information of currently running and queued jobs

e remove a job from the queue

But just providing basic scheduler capabilities is not sufficient. The service must also

be highly available.

This Master thesis project is, therefore, about the development and implementation

11




1.3. Key problems and specification

of a proof-of-concept prototype job-scheduler service, which provides Active/Active
high availability with the following overall system design key features:

e seamless failover in case of the failure of a head node

e dynamic reconfiguration and recovery of the service group processes are

masked from the user
e complete transparency to the user in case of a fault

e high transparency of HA capabilities from the user trough command line tool

replacements
e continuous availability of the scheduler service

e any amount of redundant head-node services (1+n) to scale availability

The design and implementation of the proposed job-scheduler service must provide
the following high-availability capabilities, which are distinct from common solu-

tions:

e queue commands done on or to one of the head nodes (e.g. via command line)

no loss of scheduled job

no loss of running job

no restart of running jobs

uninterrupted job-scheduler-service availability

In terms of Active/Active high availability these key features mean that the work
in progress of the job-scheduler service continues by using the remaining redundant
components in case of a fault. The masking of all faults must be complete and trans-
parent to the user. Any client of the system using the job-scheduler-service facilities

remains uninterrupted. [Res96]

Since job schedulers and cluster resource management systems already exist, it is bet-

ter to reuse these implementations, especially since these components are not key

12



1.4. Software system requirements and milestones

parts of the new system design in terms of high availability. Therefore, I investigated
ways to augment an existing software component with the desired availability fea-

tures.

Consequently the following objectives are achieved by this Master thesis project with

descending importance:

e integration of an appropriate group communication framework providing vir-

tual synchrony

e implementation of facilities for internal or external replication to achieve a

global application state

e proof-of-concept development of a basic job-scheduler service, that takes ad-
vantage of group communication facilities to eventually provide Active/Active

high availability
e solution for the single-instance-execution problem

Eventually, this Master thesis project aims to provide a system design and proof-
of-concept implementation of a job-scheduler-service system with basic scheduling
capabilities, providing Active/Active high availability by using an existing group

communication system as basis.

1.4 Software system requirements and milestones

Following the key problems and project description, the software to develop must
meet certain requirements in order to ensure that the outlined goals will be achieved.
Different milestones help to evaluate every step during the development process to-
ward the final proof-of-concept implementation.

Three milestones define the status of project progress:

e Milestone A - minimal criteria and requirements are met

e Milestone B - optimal criteria and requirements are met

13




1.4. Software system requirements and milestones

e Milestone C - all requirements are met, including extra capabilities

The following requirement table formed the base criteria, by which to judge the suc-
cess of later implementation. The system tests in particular will prove, whether all

the requirements are met by the dissertation project.

Required Capability Milestone
user command for job submission by script A
user command for jobs deletion by job identification A
job-scheduler service stays available (submission of A

jobs), as long as one head node is up

job-scheduler service availability without failover A
time
job-scheduler service processes actively replicate in- A

Coming user queue commands

user command for job queue information status query B
user commands and job-scheduler service are config- B
urable by config file

solution for single-instance-execution problem B
new job scheduler processes can dynamically join B
job-scheduler service may crash, without interrupting B

currently running job

if one component of local job-scheduler service fails, B
all components shut down

HA capabilities replcae user commands transparently B
user command for job submission by standard input C
job-scheduler service is interchangeable (if external C
replication)

Table 1.2.: Requirements and milestones overview

14



Preliminary system design

The design and realisation of the proposed project forms the subject of this chapter.
The developed software system will implement a JOb Scheduler for High availability
Using Active replication (JOSHUA).

A precise statement of system concepts will distinguish this project from related
work. As mentioned before, the eventual implementation of the job scheduler must
be highly available trough active replication. The following figure (2.1) shows the life
cycle of a job in case of a head-node failure, using different job-scheduler services.

chkpt failure of head node failure of head node

‘

job submitted job runs ‘

Resubmission without
checkpointing

MTTR ‘

job resubmitted  job runs job done

job resubmitted  job runs

Resubmission with
checkpointing

job resubmitted job runs job done job resubmitted  job runs

HA-OSCAR | |
recovery/failover | |

| jobruns job done job runs

o

job continues  job done job continues

Figure 2.1.: Impact of head-node failure to job lifespan

When a computational job is done using a resource management and job scheduler

15



2. Preliminary system design

system, the job moves through several stages until it is finished:

1. submission
2. queue (waiting for execution)
3. execution

4. completion

Figure 2.1 shows the scenario of a head-node failure on four different job scheduling
systems, while the job is in running state. The first two solutions use resubmission
in case of a head-node failure. In that situation, all information about submitted,

scheduled and running jobs will be lost.

After mean time to repair (MTTR), all lost jobs must be resubmitted in order to be ex-
ecuted. Neither of the first two systems provide any higher form of high availability
concerning a head-node crash, although the second solution uses checkpointing to
restart a rescheduled job after repair. That way only the part after the checkpoint has
to be rerun to finish the job.

This kind of behaviour has a huge impact on the failover time needed for the system
until the failed job gets into the running stage again. Both of the first two solutions
need a total failover time of ff = fprTR + fresup- Especially dependent on MTTR,
which can be a matter of days, the time of unavailability is unacceptably high.

The third solution from the HA-OSCAR project [HA-05] is a tremendous improve-
ment in comparison to the first two, since the mean time to repair is not applicable in

this case because of the cluster architecture design.

The HA-OSCAR project [HA-05] provides a Active/Hot-Standby solution, where a
standby head node takes over in case of a failure of the primary head node. This
greatly improves the time for failover to matter of seconds, since this solution needs

only the time to get the redundant server online. A manual failover with HA-OSCAR
only takes t¢ = 3 — 5s. [LSL."03a]

However, I wished to avoid a failover time, and therefore the concept of failover
in general. As figure 2.1 shows, a symmetric Active/Active high-availability job-

16




2.1. System design approach

scheduler service will be a first solution for a fault-tolerant job scheduler. In this
solution no failover is necessary at all, since, by definition, the service is provided by
the remaining service processes within the group in virtual synchrony. The proposed
system design will eventually lead to this kind of fault-tolerant job-scheduler service
availability.

2.1 System design approach

The solution for the design of the proposed system uses concepts directly developed
from the environment of high-end scientific computing and the applications and con-
ventions for high-performance computing already in use. Thus an Active/Active

solution is attractive because it migrates easily from former solutions.

The development of the proposed job-scheduler service takes existing and common
solutions under consideration to come up with an equivalent replacement. As stated
in the project specification, the HA job-scheduling capabilities should be highly trans-
parent to the user and therefore act like already established mainstream job scheduler
and resource manager. In order to accomplish that, common solutions, systems and

related work will be investigated to finally lead to a final project system design.

2.1.1 Traditional Beowulf cluster system architecture

The traditional Beowulf cluster system architecture design consists of two major
parts. First, the head node, which contains all necessary facilities and services to man-
age cluster jobs, and second, the compute nodes, which are used as execution hosts
for distributed jobs such as application using PVM [GBD*94] or MPI [SOHL96].

To take advantage of this system architecture design, a resource and job management
system is used to control computational power. A commonly used environment, is a
PBS (Portable Batch System) based system such as OpenPBS [Alt03], PBS Pro [Alt05]
or PBS TORQUE [Clu05a].

A PBS-based scheduler and resource management system running on Beowulf sys-

tem architecture usually consists of 4 major parts:

17



2.1. System design approach

PBS job server (pbs_server)

PBS job executor (pbs_mom)

Job scheduler

e User command line tools for queue manipulation

o Administrator command line tools

A basic example of a common Beowulf cluster setup is shown in figure 2.2.

Head Node

LAN

W et

~

A\ e W

Compute Nodes
Figure 2.2.: Traditional Beowolf Architecture [LML"05]

Both PBS server and job scheduler are running on the head node as part of the re-
source management service system. Therefore, the head node is the central point of
control of a PBS. Every user and administrator command, as well as any part of the
PBS communication, goes through the server application, usually connected by an IP
network. [Ver00]

18




2.1. System design approach

PBS is responsible for providing basic batch job-scheduler services such as receiv-
ing/creating a job, modifying a job, protecting the job against system crashes (op-
tional e.g. checkpointing), and eventually, running the job and placing it into execu-
tion on the execution nodes. [Ver(00]

The central PBS server on the head node does resource management for submitted
jobs and uses a scheduler to schedule jobs on the dedicated compute nodes. From

there the PBS job executors put the current job(s) into execution.

In fact, the job executor actually places the job into execution. It is also informally
called PBS mom as it is the mother of all executing jobs. PBS mom places a job into
execution when it receives a copy of the job from the PBS server. For the execution
itself, PBS mom creates a new session as identical to the user login session as possible.
If needed, the job executor also provides the capabilities to return the standard output
and standard error output of a job to the user. It is even possible to run a job in an
interactive mode. [Ver(00]

Depending on the scheduling policies and resources needed for a job, the job sched-
uler and PSB server fit the job into an optimal execution slot. When a job is executed,

it is eventually sent from the PBS server to the PBS mom to run on the compute nodes.

Though this would be the most usual setup for a portable batch system, it is some-
times necessary and to run the PBS executors alongside the PBS server on the head
node, especially when the computational power of the head node is needed. This, the
head node also becomes a compute node.

By the design of a portable batch system, it is the job scheduler which is responsi-
ble for controling the scheduling and access policies of a site, to decide which job is
running, and where and it runs on the compute nodes. PBS also allows the use of ex-
ternal schedulers, like the common Maui Cluster Scheduler™. The basic scheduler
pbs_sched is also part of the portable batch system, but only provides a first-in, first-
out (FIFO) scheduling policy, and therefore does not utilises the cluster’s resources
well. [Clu05b]

Usually there are four different kinds of access policies for the compute nodes man-
aged by the Maui Cluster Scheduler™[Clu06]:

19




2.1. System design approach

Policy Description

SHARED Tasks from any combination of jobs may
utilise available resources

SINGLEUSER Tasks from any jobs owned by the same
user may utilise available resources

SINGLEJOB  Tasks from a single job may utilise available
resources

SINGLETASK A single task from a single job may run on
the node

Table 2.1.: Access policy overview for Maui

In order to organise the use of the cluster environment and put site policies into prac-
tice, a job scheduler, as a central point must communicate with the various PBS moms
to gain knowledge about the state of the system resources. In cooperation with the
PBS server, the scheduler learns about the availability of jobs waiting for execution.
[Ver00]

Usually the manipulation of the queue is done by command line tools for job control
from the client side. The administration tools are mostly used directly on the head

node.

Most importantly command tools provide the capabilities to submit, monitor, modify,
and delete jobs. Generally speaking, there are three different kinds of commands:
[Cor00]

e user commands, e.g. gsub,gstat
e operator commands, e.g. genable, grun

e manager or administrator commands, e.g. gmgr, pbsnodes

Figure 2.3 illustrates how the different components of a common implementation of
portable batch system interact with each other.

20



2.1. System design approach

|, scheduling cmd
send jobstatus info

request run

scheduler request job status info® server L
A
job
queue
send resource info  request resource info
send job to run
submit job
|
|

(N U N A . head node;
fffffffffffffffffffff 1 5
| |
\ v bl }
| |

| |
| |
| bl }
} mom <« ) !
| L client }
[ P! |
| |
| | | |
| | | |
| Lo external

| 3 |
| oL (optiona
| .
| ru.nnlng }
} jobs |

|
|

|
|

|
|
|
|

Figure 2.3.: PBS components overview [Cor(00]

Computational jobs managed by PBS often have the following properties and capa-
bilities important for the scheduler to put the policies into practice: [Cor00]

e indicator for batch or interactive job

list of required resources

definition of priority

definition of time of execution

information on whether to send a mail to the user when execution starts, ends

or aborts

21



2.1. System design approach

A list of required resources for the execution can be specified by each job. Depending
on the execution environment and hardware platform used, the number and types of

resource indicators may vary. It is therefore possible to set job-specific policy rules,

such as: [Cor00]

e cput: max CPU time used by all processes in the job
e mem: max amount of physical memory used by the job
e walltime: wall clock time running

e host: name of the host on which job should be run

For quite some time, the portable batch system on a conventional Beowulf cluster ar-
chitecture has been a common solution for computational defiances and tasks in high
performance computing. Unfortunately today’s requirements and demands regard-
ing high service availability of job scheduling and resource management systems are

not sufficient for high-end scientific computing.

2.1.2 HA-OSCAR cluster system architecture

To improve the conventional Beowulf cluster architecture, the HA-OSCAR project

introduced an advanced cluster systems architecture.

The HA-OSCAR project aims particularly for enterprise and mission-critical systems
in need for high-availability features for the Open Source Cluster Application Re-
sources (OSCAR) [Ope05], which is a widely adopted open source Linux PC cluster
system. [LSL*03b]

OSCAR is a toolkit for easy deployment of the best-known methods of building, pro-
gramming and using a high performance cluster. The resource packages consist of a
fully-integrated and easy-to-install software bundle, designed for HPC cluster com-
puting. Everything needed to install, build, maintain, and use such a Linux cluster is
already included in the OSCAR suite. [Ope05]

HA-OSCAR, which includes all software packages of OSCAR, introduces various en-
hancements and additional features to OSCAR. Those are mostly focused to the areas

22



2.1. System design approach

of availability, scalability, and security. The key features of the latest release are head-
node redundancy and self-recovery for hardware, service, and application outages.
[TheO4a]

As figure 2.4 illustrates, the cluster system architecture of HA-OSCAR introduces
head-node redundancy by adding an additional standby head node.

Acive/Standby Head Nodes

Compute Nodes
Figure 2.4.: HA-OSCAR cluster architecture using standby backup
The major system components of HA-OSCAR are [The04a]:
e Primary server
— each server supports up to three NICs

— one is connected to the Internet

— the other two are connected to a private LAN (primary Ethernet LAN and
a standby LAN)

23




2.1. System design approach

e Standby server
— monitors primary server

- takes over the primary server when a failure of the primary server is de-
tected

e Compute nodes

- dedicated nodes for computational purposes

for further network redundancy improvement, as well as external reliable storage,

HA-OSCAR will even support failover for dual private network interfaces. [The04a]

In order to remove the single point of failure and control from the typical Beowulf
and OSCAR cluster system setup, HA-OSCAR provides a second standby for failover
scenarios. [LSLT03b]

A reliable interconnection between the two head nodes, realised with a Heartbeat
[Lin05] mechanism over both an IP and serial network link, works as health detector
for the system status of the primary server. Thereby, the secondary server is able to

observe the working server, and can take over in case of a failure. [LSL*03b]

In that case, the HA-OSCAR system can automatically transfer the service controls
to the failover server, by allowing only a minimal interruption of service availability.
[LSL*03b]

After a failover, all applications continue to run on the standby server while the main
server is being repaired, until the primary server is ready to retake control. The sec-

ondary standby server is always idle while the primary server is in service. [LSL*03b]

HA-OSCAR does failover by cloning the IP Address of the primary head node.
The secondary server takes the alias IP address of the failing head node in order

to take over control, so that the compute nodes can continue to operate seamlessly.
[LSL*03b]

Inspite of the improvements that the HA-OSCAR project is able to provide in terms
of high availability of head nodes and their services, this solution still interrupts ser-

24




2.1. System design approach

vices, though briefly.

2.1.3 Symmetric Active/Active HA for job-scheduler services

In order to avoid an interruption of availability of services on the head nodes, the
approaches to high availability should be improved even further than by the HA-
OSCAR project.

Preventing an interruption is the model of Active/Active high availability, which
introduces multiple active, replicated, redundant components. [ESLH06]

The concept of Active/Active high availability is built on the use of the virtual syn-
chrony paradigm. Further improvement of high availability is accomplished by using
multiple redundant head nodes providing job-scheduler services running in virtual

synchrony.

By using this model, head-node failures do not need a failover to a standby server
and there is no disruption or loss of service at all. As long as one member of the
service group in virtual synchrony is alive, service is provided. [ESLHO06]

The model of symmetric Active/Active high availability illustrated in figure 2.5 al-
lows more than one redundant service to be active, i.e. to accept state changes. If a ser-

vice process fails, the system is able to continue operation using a replica. [ESLHO06]

This solution does not waste system resources by relying on an idle standby. Further-
more, there is no interruption of service and no loss of state, since active services run
in virtual synchrony without the need to failover. Single points of failure and control
are eliminated as well. [ESLHO06]

Active service state replication is realised by using a group communication system to
totally order all state change messages, and maintain reliable delivery to all redun-
dant active services processes. This group communication system must ensure total
message order and reliable message delivery, as well as service group membership
management. [ESLHO6]

In addition, a consistent output is produced by all active services. For example, mes-

25




2.1. System design approach

=
Q| »
% =
2s
. b e ]
Service i1 \Service |=|= Service
Group Group
Send Communication Send Communication Send
/w& ‘ /mx ‘ /U,X
Q™ ' Q@ [CN N}
% = | % = g =
Ak | AR AE
s|3 1 s|3 =|3
Process Process P Process
[OREw] | D | ™ [ORN]
2= : 2= 2| =
s|= s|s b s|s
: Group . Group :
Receive Communication Receive Communication Receive
2 2 o
Node A |g Node B < Node C
,,,,,,,,,,,,,,, @ [ ! e @ e IR
0 (7]
g g
|3 s|g g

Figure 2.5.: Active/Active high availability architecture for services

sages are sent to other parts of the system or return messages of service state changes.
Those messages are routed through a group communication system using it for a dis-
tributed mutual exclusion to ensure that the output is delivered only once. [ESLHO06]

The enhancement of cluster system architecture with symmetric Active/Active high
availability greatly improves the overall availability of such a system. As long as one
active job service process is alive, process states are never lost, state changes can be
performed within the group, and an output is produced according to state changes.
[ESLHO06]

214 Group communication system

A proper group communication must be used in order to achieve the proposed virtual

synchrony needed for symmetric Active/Active high availability.

The virtual synchrony, first established in the early work on the Isis group commu-
nication system is no longer available. The group communication facilities needed

should also be open source to make necessary adjustments possible.

26




2.1. System design approach

Free projects now available are transis [The99b] and openais [The05].

The openais project is a production quality implementation of the SA Forum [Ser05]
Application Interface Specification. Openais implements current research on virtual
synchrony to provide a 100% correct operation in the case of failure with excellent
performance characteristics. The Availability Management Framework (AMF) API
of openais provides application failover, cluster membership (CLM), checkpointing
(CKPT), event (EVT), messaging (MSG), and distributed locks (DLOCK). [The05]

Unfortunately, openais is still in a rather early development phase, too far from being
used by this dissertation. Fortunately transis can provide all necessary group commu-
nication facilities needed for the implementation of the high available job-scheduler

service system.

The transis group communication framework provides:

e group communication daemon
e library with group communication interfaces
e group membership management

e support for message event-based programming

Distributed locks or even distributed mutual exclusion solutions are not included and

must be implemented.

2.1.5 Multi-head node system architecture

The concept of symmetric Active/Active high availability and the potential use of
multiple actively replicated redundant components introduces a further design im-

provement for cluster architecture.

Instead of only one head node or one head node and one standby server, a multi-head
node cluster system architecture consists of any number of equal head nodes bound

together in virtual synchrony;, as figure 2.6 illustrates.

27




2.1. System design approach

Active/Active Head Nodes

Compute Nodes

Figure 2.6.: Active/Active cluster architecture using multiple head nodes

In difference to the HA-OSCAR project solution, a multi-head node system architec-
ture does not take redundant network into consideration, as well as network parti-

tioning and remerging.

The preliminary system design derives from changing the architecture of a conven-
tional Beowulf cluster to a multi-headed symmetric Active/Active cluster architec-

ture to allow augmentation with a higher model of high availability.

Since the focus of development is on the high-availability capabilities, the replication
of the redundant components will be done externally. That not only gives more time
on the focused issues of that work, but also allows reuse of as much software and
software libraries as possible, which are not directly involved in solving the problem
of implementing the proposed form of high availability.

Reuse of a common PBS-like service for external replication meets the requirement

28




2.1. System design approach

to produce a highly transparent HA replacement for broadly used job scheduler and
resource management systems. The system design of JOSHUA therefore takes ad-
vantage of an existing job-scheduler service system, but is not restricted to the one
described in this dissertation. The underlying resource management system can be
easyly replaced by a similar solution.

In fact, the most important advantage in reusing an existing job scheduler application
in connection with external replication is that modification of the existing code is
unnecessary, because the service processes will be wrapped up by the Active/Active
high availability service architecture. [ESLHO6]

However, Portable Batch Systems are only meant to work in a single-headed cluster
architecture environment. To enable a multi-head node setup as proposed for this
symmetric Active/Active high availability for job-scheduler service, a version of PBS

must be used, which is aware of the special multi-headed environment.

While this dissertation was being written, PBS TORQUE, a next generation PBS sys-
tem by Cluster Resources Inc.[Clu05a], derived from Open PBS, introduced the pos-
sibility of using more than one head node. This applicable feature has been enabled
since version 2.0p1 to make work in the area of high availability even possible.

As figure 2.7 shows, for PBS TORQUE, input for service processes must be inter-
cepted, totally ordered, and reliably delivered to the service group daemon using a
group communication system that mimics the service interface. This is done by the

use of separate event handler routines. [ESLHO06]

For example, the command line tools for queue manipulation of the job and resource
management service system PBS TORQUE are replaced with an interceptor com-
mand that behaves exactly like the original, but will forward all command input to

an interceptor group of service processes.

Once all messages are totally ordered and reliably delivered, each interceptor group
member calls the original command locally to perform the requested operation. Then,
the service group output is rerouted through the interceptor group for a single deliv-
ery. [ESLHO6]

The concept of external replication implies a very coarse-grain synchronisation. An

29




2.1. System design approach

=
Q| »
——————————————— User Interface - - - - - - - - + & = - User Interface - Cemmmmmmm e
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, @ [ o
r &I
1 0| =
o elT ‘
Interceptor i ' Interceptor | = | = | ! Interceptor
W Group
Send Communication Send Communication Send
Q| ® Q| ® Q| »
o= ! o= ! o=
A : BN en ; Sla
fffffffff B-| = Userinterface - - - - - - - - 1B 5 -UserInterface - - - - - - - - + P45 - - 4
. [ 1 ! . [ | ! - OIg
Service |=|= Service |=|= Service |=|=
Process Process | Process
/(,,X i /wx /U,X
E SE E
SIS Usdr intert B[S Usr Inter ofa.
————————— Al Usqr Interf‘ace & s Usqr Imer‘facef Rt &' =Sl
Qig] : Qg ! Qg
=|=) | | |Interceptor|=|= | | | ==
Group 0 Group
Receive Communication
| | 0 | 3
i Node A i Node B ) w Node C
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, g I SR Y f IS
77777777777 - - User Interface - - - - - - - - 1 @+ - -User Interface - - - - - - - - -
— Q N a2}
= == =

Figure 2.7.: Active/Active high availability using external replication

Interleaving state change is impossible, since the interceptor group will force atomic-

ity for all service interface operations. [ESLHO6]

The PBS TORQUE version for the service processes makes it possible for the first
time, running each PBS server on multiple head nodes to communicate with multiple
PBS moms on the compute nodes. In all previous version of PBS TORQUE [Clu05a]
or similar PBS systems, the PBS executor daemon processes allowed only one PBS
server to access the provided resources of the cluster node. In a multi-head node
environment, only one of the PBS servers would have access to the compute nodes.

Multi-server support alone does not enable higher availability, but is necessary to
make the proposed symmetric Active/Active high availability for job-scheduler ser-
vices even possible. All connected PBS servers can now run jobs on the PBS mom:s.

Since this Master thesis project achieves high availability through active replication,
all PBS servers must maintain the same job queues with identical job descriptions in

their local queues.

The PBS TORQUE system does not provide any means to provide replication of job

30




2.1. System design approach

queues, nor does it prevent multiple executions of identical jobs (single-instance-

execution problem).

These missing features and virtual synchrony among the job service processes of the
PBS TORQUE must be provided by the JOSHUA software system as illustrated in
tigure 2.7.

A basic system components overview of the JOSHUA system design is illustrated in
figure 2.8. JOSHUA therefore consists of three major parts:

e JOSHUA server daemon (joshua)
e JOSHUA user commands (jcmd)

e JOSHUA cluster mutex (jmutex)

The central focus of JOSHUA is its server daemon. This component is responsible
for taking all client requests and redirecting them to the local running PBS server.
The server daemon acts as a gateway between the client command tools and the PBS
Server and therefore transparently hides the newly introduced high-availability de-

sign from the user.

The second part of JOSHUA is its user commands bundle (jemd). These are the re-
placements for the PBS user tools. To achieve the transparency to the user, the new

command tools work exactly like the original PBS TORQUE user commands.

The third and last component of JOSHUA is its cluster mutex. Jmutex is a distributed
mutual exclusion facility that solves the single-instance-execution problem of jobs on

the cluster nodes.

The JOSHUA server daemon mimics the service interface of PBS TORQUE and locally
performs all user command requests intercepted by the replacement tools by using
an event-driven interface. Since all server daemons run in virtual synchrony, all user

commands are totally ordered and reliably delivered to the PBS server daemon.

The output interceptor for the PBS TORQUE service system is the cluster mutex. It
ensures, that only one logically output, in this case the execution command for the

31




2.1. System design approach

current job, is intercepted, and delivery occurs just once, to avoid multiple execution

of jobs.

The concurrently running PBS TORQUE servers on each head node are not aware of
each other. There is no communication between the job scheduler and resource man-

agement service processes outside the communication provided by the interceptors.

To simplify the side effects of redundant PBS TORQUE servers for the cluster mutex
implementation, the used Maui Cluster Scheduler™must be set up in a dedicated

mode, where each job gets exclusive access to all the available compute nodes.

Only one job at a time is invoked by each PBS server on the cluster. The jmutex appli-
cation will then ensure that only one of the jobs is actually executed. The PBS servers
are not aware of that mutual exclusion, since it is done by the output interceptors.

From the point of view of each of the PBS service processes, each runs the current job.

32




2.1. System design approach

HA augmented cluster setup Traditional cluster setup | HA augmented cluster setup

xternal (optional) ‘

invoke queue command ‘

‘ virtual virtual
synchronous | | synchronous‘ »
message message
distribution distribution ‘
queue message queue message ‘ queue message
local queue operation local queue operation ‘ local queue operation

v

Headnode Headnode Headnode

job submission and
resource information exchange

jmutex enhanced
jobscript

Clusternodes

Figure 2.8.: JOSHUA components overview

33



2.1. System design approach

2.1.6 Scalable availability

With the symmetric Active/Active high-availability model approach used for the job-
scheduler service, multiple redundant active service components are possible. The
huge advantage of using the proposed architecture for services is to have 1 + n head

nodes with separate service processes on each node.

It is then possible to scale the availability of a target system to the availability needs

of the site and the application to run on a cluster.

Since each head node operates in parallel to any other, system availability can be
greatly improved. When all parts of the components fail and therefore are unable to
provide the service, the virtual group of components is considered as operating in
parallel. [Eve05b]

Such a combined system is operational if any component is available. It therefore
can be concluded that the overall availability A of a symmetric Active/Active high-
availability architecture with n components is 1 — (allpartsareunavailable). The fol-

lowing equation can be stated: [Eve05b]

A=1- (1 - Acomponent>n (2-1)

As equation 2.1 implies, the combined availability of 7 components in parallel is al-
ways much higher that the availability of a single component. [Eve05b]

Now it is easy to combine as many components as necessary to scale the availability
to achieve the needed reliability parameters. The most important parameters for a
high-availability cluster system is the mean time between failure (MTBF) and mean
time to repair (MTTR).

The Mean Time Between Failure is the average time between the failure of hardware
modules. This estimated time is the average time before a failure occurs in a hard-
ware component. Usually the MTBF for hardware modules or whole systems can
be obtained from the vendor for off-the-shelf hardware modules. The Mean Time To

Repair is the time needed to repair a failed hardware component. For an operational

34




2.1. System design approach

system, repair usually means replacement of the failed hardware module. Thus the
MTTR can also be viewed as the mean time to replace a failed hardware component.
[Eve05a]

To demonstrate the new achieved scalable availability for the proposed symmetric
Active/Active high availability job-scheduler service architecture, example availabil-
ity and reliability calculation takes the following system values as basis: All head
nodes are identical, with a MTBF of 5000k and a MTTR of 72h. These values are

taken from the experience of a system administrator for cluster systems.

The availability of a certain system or component can be calculated from the MTBF
and MTTR as follows:

MTBF

Acomponent = MTBE + MTTR (2-2)

The system availability is usually specified in a nines notation. 3-nines availability
for example corresponds to 99.9% availability and a 5-nines availability corresponds
t0 99.999% availability. [Eve05a]

A more intuitive way to understand the availability of a system is to calculate the
downtime per year from the availability percentage.

To calculate the downtime per year in hours, the following equation can be used:

taown = 8760 - (1 — A) (2.3)

From the basic values of the exemplar head-node components, the following avail-
abilities and downtime can be achieved by using different numbers of head nodes

combined in parallel:

No. HN Availability Est. downtime
1 98,580441640% 5d 4h 21min

2 99,979848540%  1h 45min

Table 2.2.: Availability and downtime for different numbers of head nodes

35




2.2. System design overview

...continuation
No. HN Awailability Est. downtime
3 99,999713938%  1min 30s
4 99,999995939%  1s
5 99,999999942%  18ms

Table 2.2.: Availability and downtime for different numbers of head nodes

This example shows that the Active/Active approach for high availability not only
improves the MTBE, but also increases availability and reduces downtime of the sys-
tem configuration enormously. A cluster head-node configuration of multiple node
components can minimise downtime per year, which also translates to a significant

cost saving. [She(2]

2.2 System design overview

The proposed JOSHUA software system design outline proposes the following prin-

ciples:
e use of the virtual synchrony paradigm
e global process state provided by group communication system transis
e external replication used for resource management and job scheduler
e messages are processed as uninterruptible events
e replaceable external components
e introduction and use of symmetric multi-headed cluster architecture

e number of head nodes arbitrary leading to scalable high availability

The following section shows how the proposed JOb Scheduler for High availability
Using Active replication (JOSHUA) system is achieved by this Master thesis project.

36



2.2. System design overview

Beside its general principles, JOSHUA proposes the following design guidelines:
JOSHUA takes advantage of a commonly used variety of the Portable Batch System
(PBS) [Alt03] PBS TORQUE as its basic component to evolve its system architecture
derived from the traditional Beowulf cluster setup. As the use of PBS implies, active
replication will be done externally due to the extraordinary amount of work needed

for internal replication.

Taking advantage of the existing robust and broadly-used, productive, stable PBS
reduces the effort needed to implement and introduce a job-scheduler service from
scratch. Both, users and developers benefit from this. Users, especially non system
engineers, will not have to get used to a new cluster software environment. In fact,
the newly introduced system should be as transparent as possible, so that it appears

that a commonly used Portable Batch System is running on the cluster.

The JOSHUA software system extends the existing capabilities of a PBS based system
with high availability by creating a thin wrapper around the Portable Batch System.

The transis group communication system that supports efficient group multicast for
high availability is the group communication system of choice for the implemented
prototype. The system was developed in the high-availability laboratory at the Com-
puter Science Department of the Hebrew University of Jerusalem. [The99b]

2.21 JOSHUA server daemon

The JOSHUA server daemon is the main part of the JOSHUA cluster system. It acts
as a transparent gateway to hide the newly introduced high availability of the under-
lying PBS TORQUE from the user, and is thereby also the input interceptor for the
locally-running resource management and job scheduler processes proposed as the
design of Active/Active high availability using external replication.

The server application uses the transis group communication system to share all pro-
cess states and events among the participating daemons, as figure 2.8 illustrates.

Transis can be seen as a multicast group communication layer that facilitates the de-

velopment of fault-tolerant, distributed applications in the cluster network environ-

37



2.2. System design overview

ment.

As a matter of fact, transis supports reliable group communication for high-
availability applications and is, therefore, the preferred service application of choice
for this software project. It also contains a novel protocol for reliable message delivery

that optimises the performance of existing network hardware. [The99b]

The transis group communication system can cover all possible events that occur
during the membership of an augmented head-node setup with JOSHUA within the
formed group. Every JOSHUA server (joshua) is therefore able to become aware of
every group membership change, from joining of new members, as well as failing or

exiting members.

The provided communication facilities of transis are used by joshua to exchange infor-
mation from and to the client command tools and the mutual exclusion components
running outside the head node. Fortunately joshua does not need to take care of the
distribution of messages, but reacts appropriately to incoming messages.

The JOSHUA server daemon must handle message events like:

e new daemon requests to join the group

e failing or exiting group members

e the failure of an external component of the JOSHUA server
e job is submitted by a client

e job is deleted by a client

e client requests job status information

e requests for job execution

e job is finished

38




2.2. System design overview

2.2.2 JOSHUA user commands

The command line user tools are the facilities JOSHUA offers to allow its users to

perform queue operations, such as:

e job submission
e job status information

e job deletion

All existing PBS commands for these capabilities will be replaced by a JOSHUA alter-
native. Since one goal is to achieve highest transparency to the user, the replacements

act exactly like the originals.

To meet these requirements, the commands use the same input and option switches
as the originals. Since the input of the tools is not processed on the client side, all
program parameters will be seamlessly redirected to the JOSHUA server daemon to

feed the input of the external resource manager and job scheduler.

As figure 2.8 shows, the joshua daemon locally invokes the requested user command
on each head node. There, the server application takes advantage of the original PBS
processing tools. Thus, their output is redirected to the jemd user tools, the proposed
grade transparency can be guaranteed, even if the underlying Portable Batch System
changes.

2.2.3 JOSHUA cluster mutex

The cluster mutual exclusion jmutex is the JOSHUA component that solves the single-
instance-execution problem. Since the participating joshua daemons of the job sched-
uler group on the head nodes run in virtual synchrony, each of the resource managers
holds the same queue and tries to run identical jobs concurrently. Any duplicate ex-
ecution must be prevented by proper counter measures that intercept the output of
each head node as proposed by the design of the Active/Active high availability

model using external replication.

39



2.2. System design overview

By technical programming measures, a concurrently invoked job represents a crit-
ical section of a non-shareable resource between concurrent processes, in this case
job schedulers. A mutual exclusion algorithm (also known as mutex) prevents the
processes from entering that critical section.

Unfortunately, a job might be invoked by a PBS TORQUE server on any PBS mom
on the cluster. JOSHUA solves this problem by using a distributed mutual exclusion
algorithm for single-instance execution.

Fortunately, the virtual synchrony provided by the transis group communication sys-
tem can be used to solve that problem, too. Since all the members of the joshua dae-
mon run in virtual synchrony, all messages are received by all processes in the same
total order.

Jmutex takes advantage of that by releasing a message to the JOSHUA daemon before
invoking the job. Any message by the first executor receives permission to actually
execute the job.

All other executors placing that request will be suspended. As soon as the first execu-
tor has finished the job successfully, a release message is invoked, which wakes up all
pending executors. Since the current job is thereby done, all pending executors will
be ordered to carry on with the next job in the queue.

In order to get this design work, it is necessary that the underlying Portable Batch
System is set up in a dedicated mode, where each job gets exclusive access to all the
available compute nodes.

40




Implementation Strategy

Although this Master thesis project only develops a proof-of-concept software, some
common standards for open source software should be met by the implementation to

improve further development and make reuse of code and results even possible.

The implementation approach follows the following guideline where possible:

e use of POSIX conform libraries and library functions
e abdication of proprietary und non-portable code of libraries
e primary target hardware architecture: x86 32-Bit Intel Architecture (IA32)
e primary target software platform: GNU/Linux
e programming language: C
e complete code and API documentation using doxygen [vHO5]
e make use of GNU Autotools [Fre05] for:
— easy configuration on target system
— resolving necessary software dependencies
— package preparation for installation and deployment
e reuse of common open source libraries

e avoid reinvention of already existing code

41




3. Implementation Strategy

In order to reduce similar code for components of the JOSHUA system, the imple-
mentation will be split into logical parts, which reuse identical modules via an inter-

nal library. The main parts for the implementation are therefore:

e JOSHUA server application (joshua)
e JOSHUA cluster mutex (jmutex)
e JOSHUA client tools (jcmd)

e JOSHUA utility library (jutils)

The utility library integrates the sum of all shared functions and capabilities used by
the main JOSHUA components. The jutils contain facilities for:

e double linked lists

e logging

e message creation and recognition
e input and output

e miscellaneous

Besides the internal utility library, external components like the transis communica-
tion library libtransis and the configuration file parser library libconfuse [Hed05] need
to be integrated for the implementation of JOSHUA as well.

Figure 3.1 outlines the different internal components to implement and the external

library dependencies to integrate.

Other external software components are needed during runtime as well, such as:

e transis group communication daemon
e runtime library of libconfuse

e client tools of resource management system (such as gsub from PBS TORQUE)

42




3.1. System implementation approach

. jemd jmutex
joshua - jsub (submission) s J
(server process) - jstat (status info) ,J.:jnourtzx(r(g:;r;; t:ﬁ{ ex)
- jdel (deletion) !
libjutils

- message and logging facilities
- ilo, lists and misc

libconfuse
- configuration file parser

libtranis
- communication facilities
- event driven programming interface

[ external [ internal

Figure 3.1.: JOSHUA component implementation and integration overview

e resource management server daemon (PSB TORQUE server)

e job scheduler (Maui Cluster Scheduler™)

3.1 System implementation approach

3.1.1 JOSHUA server daemon

Internal data

The JOSHUA server is the most important part of the implementation as it acts as
the local interceptor for all client requests made globally to all redundant running

JOSHUA daemon in the job-scheduler service group.

As the server daemon supports dynamic changes of the group such as a head node
joins or fails, the necessary data for the status snapshot replication must be stored
by internal data structures. In order to eventually share the current process state
with another joining group, the JOSHUA server daemon stores the following relevant

process information needed for a snapshot:

e job submission messages for queued jobs greater that the last finished job

43




3.1. System implementation approach

e job delete messages for job identifiers greater than the last finished job
e information about currently running jobs
¢ information about currently finished jobs

e job identifier of the last successfully submitted job to the local resource manage-

ment system
e job identifier of the last successfully finished job
e generation counter for submitted jobs

e generation counter for finished jobs

As the list of necessary data for the snapshot replication implies, the data is needed
to give the joining JOSHUA server all data concerning the state of the job scheduler

and resource management process to intercept.

The job submission and deletion messages as well as the information about currently
running and finished messages are implemented using a dynamically linked list to
give the server process the flexibility and scalability to manage as much jobs as pos-
sible with the underlying PBS TORQUE.

By using the job queue information from the existing process, the new JOSHUA pro-
cess can locally replicate the exact same state of the service process That way it is
ensured, that the new process is eventually in virtual synchrony with the other inter-

ceptors.

In order to minimise the necessary data to store and replicate for the joining event,
only job submission and deletion messages of yet unfinished jobs will be stored and
used for the queue replay. In order to get the same job numeration on the local job
scheduler and resource management service, the job identifier of the last finished job
is used as start-up value for the PBS TORQUE server. That way it is ensured that all
queues hold the same jobs with identical identifiers within the job scheduler group.

First all submission messages will be locally replayed, followed by the submission
messages in order to ensure that the "gaps" in the queues are replicated, too.

44




3.1. System implementation approach

The data about the job identifier generation is needed to successfully decide by the
cluster mutex, which jobs are allowed to be placed into execution on the cluster. The
used PBS TORQUE has a turns its job identifiers over every 99999999 jobs, given
by the PBS_SEQNUMTOP number. That means after 99999999 submitted jobs, the
next assigned identifier will be smaller than the last one again. In order to prevent
execution rejection, a turnover can be recognised by JOSHUA using the generation

counter for both submitted and finished jobs.

Server events

In order to ensure the virtual synchrony among the replicated JOSHUA server pro-
cesses, the daemon is implemented by using event-driven programming. Since every
message is globally ordered delivered by the transis group communication daemon
and each message will be processed in an uninterruptible event in the delivered or-
der, the virtual synchrony can be easily achieved by the implementation of message
triggered events.

As the central interceptor point for the externally replicated job and resource manage-
ment system, the JOSHUA server daemon has to handle several messages can trigger

events, such as:

e group membership change messages:
- anew daemon request to join the group
— a member fails or leaves the group
e group communication messages:
— job submission messages
— job deletion messages
- queue status information request message
— execution request messages of jobs on the cluster nodes

— execution finishes messages from the cluster nodes

45




3.1. System implementation approach

The facilities for the event-based programming are provided by the transis group

communication library and will be described in further detail in 3.2.4.

Group membership events

As already mentioned in 3.1.1, each JOSHUA server process keeps an internal list of

important data for a joining process in order to replicate the current process state.

In order to achieve an identical state between the joining and the assisting process a
join event takes place for the both of them. Since events cannot be interrupted and
all pending messages will not be processed before the join event is executed properly.
That way the virtual synchrony is ensured, because after a join both existing and
new process are identical and can catch up to other running service members by
processing the remaining messages.

The join event is implemented by using the group communication facilities. Since the
assisting process only needs to replicate its current status to the new one, it basically
dumps all internal data to the joining process and carries on. This asynchrony is
possible, because the new member first processes all snapshot replication messages,
before it becomes an established member of the service group.

The state diagram in figure 3.2 illustrates the join event. After both processes have
finished the event, they have either exchanged all internal stored data and the new
member has successfully joined or the join process fails. In case of any error or failure

during the join event, the new member leaves the group and shuts down.

In contrast to the join event, in case of failure of a member process, the group only
internally updates its member list. Since all remaining service processes share the

same state, they can carry on without any further operation.

Group communication events
Usually messages to process for the JOSHUA server are communication messages

intercepted from the client tools. Most of those messages from the clients invoke a

queue alteration command locally executed by each of the service processes. The

46




3.1. System implementation approach

new process assisting process

start join event

set join message send start
event handler join message
N A N A
processing join data transfer dump internal
messages using messages data
via transis
N A N A
set standard send finished
event handler join message

end join event

Figure 3.2.: State chart diagram join event

implementation approach of the user commands can be found in further details in
section 3.1.2 and figure 3.3.

Each user message is uninterruptible processed within an event, ass well. With ev-
ery message causing an event, the further handling is decided by the information
content. An incoming message triggers an event and the handler decides upon the
header, which input has to be generated for the external job scheduler and resource

management service process by executing a proper command.

The client side of any queue command gathers all necessary information, like the
argument vector, the standard input, the current working directory and environment
to send it packed in a transis message to one of the head nodes. The transis daemon

takes care, that the message reaches all group members.

The program flow chart in figure 3.3 shows, how the JOSHUA users commands in-

teract with the server process, which produces the local input for the external job

47




3.1. System implementation approach

client command
event

execute PBS
command

i

process output

add message to
internal queue

) return output
to client

Figure 3.3.: Flow chart client command event

- n

scheduler and resource management service process. On the server side the incom-
ing message is recognised as an event and the appropriate PBS TORQUE command
is invoked locally using the previously gathered execution environment data from
the client. Standard output and error from the PBS command are collected and send
back to the client application, providing the proposed transparency to the user. Re-
strictions concerning that include that the interactive mode for job submission is not

possible and the message size is limited by the transis communication facilities.

3.1.2 JOSHUA user commands

As shown in section 3.1.1, the JOSHUA user commands are used to generate the local
input for the PBS TORQUE by distributing a request through transis to all JOSHUA

48




3.1. System implementation approach

servers in virtual synchrony.

On the client side the following PBS commands are replaced by their appropriate
JOSHUA pendants:

o gsub — jsub
o gdel — jdel
o gstat — jstat

mnsn

The new "j" commands can be transparently installed on the client side using alias,

symlinks or simple renaming on a common UNIX system.

All messages from the clients follow certain encapsulation rules in order to be recog-
nised correctly by JOSHUA. Since the effective user command is executed on the
server side, only the environment values of the execution are used to mask the local

invocation.

In order to transparently shift the execution to the server side the standard input, the
argument vector and the environment are captured and encapsulated into a transis
message and send to the JOSHUA server as illustrated in figure 3.4.

The command output is generated from the response message of one of the remote

JOSHUA server applications, as shown in section 3.1.1.

49




3.1. System implementation approach

client command
excution

process input

convert stdin y
to string

I n
encapsulate
stdin

) convert argument
vector to string

v

convert env
vector to string

v

encapsulate
argv & env

Y

send message
to JOSHUA srv

Y

return response
as stdout/stderr

Figure 3.4.: Flow chart client command execution

50



3.1. System implementation approach

3.1.3 JOSHUA cluster mutex

The cluster mutex implementation of JOSHUA (jmutex) represents the output inter-
ceptor from the distributed external job scheduler and resource management service
processes. Since all of these service processes try to execute the current job, the cluster

mutex ensures that the output, in this case the execution only takes place once.

The implementation of the mutex has to take advantage of the anyway used group
communication service. Only that way it is possible to make a mutual exclusion
distributed. Since all messages to the JOSHUA servers are virtual synchronous and
therefore globally ordered, the request to execute a job can be recognised by all service
processes equally.

The used TORQUE version provides the ability to run prologue and epilogue scripts
before and/or after each job is executed. With such a script, usually a site can prepare
systems to perform node health checks and similar things. [Clu05b]

For the implementation of jmutex, the prologue and epilogue scripts are used to ex-
ecute transis communication stubs. By design of the scripts both prologue and epi-
logue have access to the job id of the current job to execute and can send it to the

JOSHUA server for verification.

The prologue script only allows the first execution request to actually invoke the job,
by getting a positive response message to return from the prologue script by the
JOSHUA server and from there carry on with the execution. All other job execu-
tion requests with the same job identifier are put to halt by being locked in the stub
until released by the service group that the job is already done.

When the execution of the current job is finished, the epilogue script is invoked,
which produces a "job finished" message, to let the JOSHUA server daemons release
the pending job execution requests, so that next job can be placed in execution even-
tually.

51




3.2. Integration of external components

3.2 Integration of external components

3.2.1 Runtime dependencies

Since the JOSHUA service system uses external replication, its proper operation de-
pends on external processes. Therefore the JOSHUA server daemon forms a special

group with its external processes. This group consists of:

e JOSHUA server application (joshua)
e job scheduler (for example Maui Cluster Scheduler)
e resource management server daemon (e.g. PSB TORQUE server)

e transis group communication daemon

Only if all these processes are running, the system can work as proposed. In order to
ensure the safe operation of the process group a mechanism has been implemented

to observe the status of each process group member.

If one of the process group members fails, all remaining parts must be shutdown.
Therefore tow dedicated processes start-up and observe the participating processes.
This start-up sequence is realised by jinit, as shown in figure 3.5 and also takes care

of the correct initialisation of each participating process during the start-up.

That way the jinit process cannot only recognise a failure of one of the processes, but

also starts the processes in a required order as shown in 3.5.

The startup sequence is implemented by using a configuration file parsed by the run-
time library of libconfuse. The processes to start are ordered and named as follows:

1. group_com = "transis”
2. scheduler = "maui”
3. joshua = "joshua”

4. job_server = "pbs_server”

52




3.2. Integration of external components

Besides the process names, for each process the path for the executable and the con-
tiguration file is given, to get the processes started properly by jinit. An example of a

complete configuration file can be found in the Appendix in A.1.3.

Usually the first process to start is the group communication service, since it is vi-
tal part of all communication. Fortunately the implement ion uses the transis group
communication daemon, which status is permanently checked by joshua itself in con-
nection with transis communication library libtransis. Without transis, the JOSHUA
server application immediately fails and would not even start up. Therefore the con-
tiguration file includes the group_com entry just for portability issues (see refport for
further details).

Next to start is the maui scheduler, followed by the joshua. The jinit process waits to
start the resource management server daemon of PSB TORQUE until joshua can join
the head-node group to obtain the job identifier for the first PBS job during the first
stages of the join process (see 3.1.1).

When the job identifier has been set by joshua in the PBS server database, it signals
jinit to continue to start the pbs_server. The implementation uses the signals SIGUSR1
and SIGUSR?2 for process notification. As soon, as the resource manager is up and
running, the join process of joshua can continue and jobs can be submitted and repli-

cated to the queue as needed.

In order to observe the status of each process, jinit forks and executes all the members
of the process list for the start-up. Since jinit is the father process of each forked
process, it will be signalled by the SIGCHLD by the operating system, when on of its
children gets killed of fails.

Since jinit started all child processes, it also knows their process ids (PID). Thus, if
one of children stops working, jinit can send a SIGKILL to ensure to all its remain-
ing children, which ensures that remaining parts of the JOSHUA components can
interfere with other JOSHUA service processes, since the proper operation can not be

guaranteed, when parts fail.

In order to ensure the detection of a failure of jinit it creates a clone of itself, which
observes the original jinit using a pipe. When the first jinit fails or gets killed, the

53




3.2. Integration of external components

SIGCHLD | | SIGPIPE

th it

(4)

Figure 3.5.: Start order and signals for cooperation with external components

pipe breaks and a the clone gets a SIGPIPE. In this case the clone is responsible to
shut down all remaining processes of the group. “ In fact, this implementation of a
self-observing process group relies on the support of signals by the operating system.
This is supported by the primary target software platform is GNU/Linux, although
signals are also supported by most Unix-like systems.

3.2.2 Group communication system

The transis group communication system supports process group communication us-
ing a communication library to implement own application using the communication
facilities.

Those groups are conveniently identified by a name that can be chosen by the user.
That way messages can be addressed to an entire group only by specifying the name
of the group. [Mal94]

Using this group abstraction, the communication subsystem relieves the user from

identifying the targets of messages explicitly, and from finding the network routes to

54




3.2. Integration of external components

them. In addition, it guarantees all-or-none delivery semantics, and handles message

losses and transient network failures transparently to the application. [Mal94]

The transis group communication system supports the following forms of group mul-
ticast operations:

e FIFO ordered
e causally ordered
e totally ordered

e safely ordered

In order to achieve the necessary virtual synchrony for the intended operation of

JOSHUA, only the safely ordered communication operation is used.

The safe mode guarantees the delivery of message after all participating group mem-
bers in the network have received a copy of that message. This mode not only assures

total order, but also that all members receive the exact same message. [Mal94]

3.2.3 Communication facilities

The group communication facilities provided by the transis group communication
system are relatively easy to use and implement in customised application, which
want to take advantage of the communication capabilities of a communication sub-

system.

In order to use any transis communication facility the application developer just has
to include the group communication header file zzz_layer.h and link the program to
the transis communication library (libtransis.a). [Mal94]

All communication capabilities of transis rely on the transis group communication

daemon. Each client using the communication facilities must connect to that daemon.

The connection can by established either be locally to a local running transis daemon

or remotely to a transis daemon running on another machine with in the network.

55




11

3.2. Integration of external components

Either way, for communication a message box has to be created, in order to receive

any message.

By using the join function it is possible to join a certain group, such as each joshua is

member of the head-node group.

All messages addressed to that group or directly to the client will be delivered to
the previously created message box. All messages will be stored on the message box
until explicitly fetch by the receive function. The usual receive is implemented as
a blocking function, which only return, when a message could be fetched from the

message box. [Mal94]

The provided send functions by transis can set the used group multicast operation
mode and the addressed communication group explicitly for each send operation.
[Mal94]

All messages within the group communication system are restricted to a length of
MAX_MSG_SIZE (64kByte). A full API reference can be found at ftp://ftp.cs.
huji.ac.il/users/transis/tutorial.ps.gz [Mal94]

The following basic example shows how to create a message box, join a group
(HEADNODEGROUP) and send and receive a message:

/* open transis conection */
msgbox = zzz_Connect(coname, stack, flag);

/* join the headnode group =/
zzz_Join (msgbox, HEADNODEGROUP) ;

/* send a message the headnode group =/
amount = zzz_VaSend (msgbox, SAFE, 0, strlen (send_buf)+1 , send_buf, HEADNODEGROUP, NULL);

/% receive a message */
amount = zzz_Receive (msgbox, recv_buf, MAX MSG_SIZE, &recv_type, &gview);

3.2.4 Event-driven message operation

As recommended by the transis group communication user tutorial, the very nature
of the system design of the JOSHUA server daemon requires a special programming
technique in order to handle all group communication as desired. The most efficient

way to handle such a message driven system, is by using event-driven programming.

56



ftp://ftp.cs.huji.ac.il/users/transis/tutorial.ps.gz
ftp://ftp.cs.huji.ac.il/users/transis/tutorial.ps.gz

3.2. Integration of external components

Fortunately the transis communication library already provides event facilities. In
general a message triggered event system works similar to signal handling under
UNIX. In this case the communication application runs in an endless loop waiting
for pending messages to trigger events. These events will eventually handles using
previously registered event handlers. [Mal94]

The advantage of the provided event-driven message operation families are a bet-
ter program structure of the resulting code and that each of the events is non-
interruptible. That way all incoming messages will be handled sequentially as in-
tended by the operation in virtual synchrony.

When for example a new member invokes a join event, this event cannot be inter-
rupted by any other event. That way the handling of such an event will always end
in a previously defined way, such as either the new member joined successfully or

not.

After an event is handled, other pending messages can be processed. Due to the
virtual synchrony all events occur on all participating group members in the same
total order. [Mal94]

The following snippet shows, how an event handler for incoming messages can be
registered, before the program control is given to the transis library by invoking
E_main_loop():

/* add event handler for incoming messages x/
zzz_Add_Upcall (msgbox, eventhandler, USER_PRIORITY, (void x) 1);

/x start event handler */
E_main_loop () ;

All JOSHUA server applications operate in this message triggered loop to react ap-

propriately to incoming group communication and membership event messages (see
3.1.1 for details).

3.2.5 Resource management system and job scheduler

The supported resource management system by JOSUA is PSB TORQUE since ver-
sion 2.0p1. In order to work properly with the jinit startup routine and process obser-

57




3.3. System tests

vation, the default behaviour of the PBS server has to be changed.

By default a starting PBS TORQUE daemon forks itself on start-up and its process
status can therefore cannot be observed by jinit. The fork can be disabled by running
the PBS server process in a light debug mode, which does not significantly influence
the daemons operation.

In order to built a compatible version of PSB TORQUE for the JOSHUA system, it
must be compiled and configures with the —multi-server option, which enables the
support of multiple PBS server and moms (see 2.1.5).

The same forking problem also occurs with the Maui Cluster Scheduler™and can
also be solved by running in debug mode.

The job scheduler has to be configured in a certain way to work with the JOSHUA
system design. By setting the value NODEACCESSPOLICY to SINGLETASK in the
Maui configuration file, the job scheduler will give each running job exclusive access
to all cluster nodes. This behaviour is needed in conjunction to the implementation
of the JOSHUA cluster mutex.

3.3 System tests

The process of software tests is needed to identify the correctness, completeness and
quality of the developed software implantation. Testing is nothing more but criticism

and comparison toward comparing the actual values of program with expected ones.
[Wik06b]

These expectations directly derive from the software system requirements and mile-
stones. The completeness of the implementation can be measured by how good the
final version meets the requirements. The tests include, as well as the requirements,
definition of certain capabilities and responses behaviour by the software system.

This behaviour in reaction to the probing of the tester will be evaluated.

The quality of the tested software can vary widely from system to system. Therefore
some of the common test techniques include reliability, stability, portability, main-

58




3.3. System tests

tainability and usability issues as well, besides the meeting the software development
requirements. [Wik06b]

In general, software faults and software failures are distinguished. In that case, a
failure means that the software does not do what the user expects of the requirements
dictate. In case of a fault, a programming error may or may not manifest as a failure
(e.g. memory allocation error, which do not directly lead to a segmentation fault).
That way, a fault is an indicator for the correctness of the semantic of a computer
program. [Wik06b]

Nevertheless, regardless of the uses techniques, the desired result of testing is a level
of confidence in the software system. That way, a developer is confident that the
software has an acceptable defect rate. The acceptance of that defect rate depends on
the nature of the software. [Wik06b]

Since this Master Thesis projects developed a software system to increase high avail-
ability, special code correctness of the implementation is of vital importance. Since the
core component of the symmetric Active/ Active job-scheduler service is the JOSHUA
server daemon, especially the memory tests for memory leaks and segmentation

faults are of major concern.

Disregarding the common practice of software testing usually performed by an inde-
pendent testing group, the tests for the JOSHUA application components are done by
the developer. [Wik06b]

This is acceptable, because the developed software is only proof-of-concept. Besides,
a separate testing group would only lay to project delays, which cannot be afforded

by a Master thesis.

Hence, software testing begins when the project starts, that way it progresses as a
continuous process until the project finishes. This both ensures the final version more
likely to meet all requirements and also helps to keep the software project in sched-
ule. It also ensures that defects can be found earlier and therefore are easier to fix.
[WikO6b]

The software, tools, samples of data input and output, and configurations are all
referred to collectively as a test harness. [Wik06b]

59




3.3. System tests

There are many approaches and techniques for testing software. In order to assure
the quality of the JOSHUA software system the following test techniques will be used
to evaluate the implementation:

e stress and performance test
e memory allocation test

e system test

All test are performed in a dedicated cluster environment setup for the development
and tests of the JOSHUA software system. Each cluster and head node has the fol-
lowing properties:

e Hardware
CPU Dual Intel Pentium III (Katmai) with 450MHz
network Fast Ethernet 100MBit/s full duplex

e Software
operating system Debian GNU/Linux 3.1 (sarge)
C compiler gcc version 3.3.5 (Debian 1:3.3.5-13)
transis daemon and library version 1.03
libconfuse library version 2.5-1
resource manager PBS TORQUE version 2.0p5

job scheduler Maui Cluster Scheduler™version 3.2.6p13

3.3.1 Stress and performance test
Stress tests are used to determine the stability of a developed software system. This

kind of test may push the application beyond the capacity of normal operation, some-
times up to a breaking point, in order to see how the program behaves. [Wik06b]

60



3.3. System tests

In general that kind of testing refers to a practice of modelling the expected use of a
software program by simulating multiple users accessing the program services con-
currently. Therefore this testing technique is more relevant for a multi-user system,
like a client/server model, such as web servers. [Wik06a]

The JOSHUA software system can be tested that way as well. For example, by forcing
the program to process an unusual huge amount of input data, such a heavy job
submission request by pushing it to the limits of input handling.

When such a test is placed on the system beyond normal use patterns, the responsive-
ness and performance of the system at unusually high or peak loads can be tested and
evaluated. The load is that usually great that some error conditions are part of the ex-
pected results. [Wik06a]

The specific goals of the designed stress and performance test applied to JOSHUA
are to evaluate the reliability and behaviour of the proof-of-concept software system
especially in connection to the group communication subsystem.

The performance evaluation should demonstrate that the JOSHUA system meets per-
formance criteria. This particular means that the tradeoffs for using an underlying
group communication system to achieve new high-availability capabilities for a job-

scheduler service is within a reasonable scale.

The stress and performance test used, stresses the JOSHUA system by constantly
submitting several amounts of jobs to the cluster management system. The test will

show how the system performs under the heavy load.

The same test is also applied to a traditional single-headed PBS TORQUE cluster
setup in order to evaluate the tradeoffs and performance differences, when using
the proposed JOSHUA cluster framework.

Under stress, the JOSHUA system sometimes suffers from deficiencies caused by the
transis group communication system. Obviously this system was not built to sustain
that heavy load from user input.

For performance tests, several system setups have been tested, from the common
single-headed PBS TORQUIE cluster to up to quad-headed JOSHUA setups. The total

61




3.3. System tests

submission time for jobs did not make much of a difference between a single-headed
and multiple-headed JOSHUA.

As expected the times for the job submission where greater when using JOSHUA
in comparison to the common PBS TORQUE architecture due to the communication

overhead created by the group communication system.

With the stress and performance test is possible to examine, how the underlying new
HA capabilities effect the user. The submission performance test shows, how the
communication overhead caused by the group communication subsystem impacts

the time for job submission.

As the test results in table 3.1 show, the tradeoffs for high availability is indeed up to
three times the amount of time of a common PBS TOQRUE setup for the average sub-
mission, but not unreasonable. Though, the average submission time of one message
with PBS is increased from 0.098s to a maximum of 0.349 for four head nodes, the

user impact is minimal in practice, since those times are only fractions of a second.

System Head nodes 10jobs 50jobs 100 jobs Average perjob
PBS TORQUE 1 0.93s 4.95s 10.18s 0.098s
JOSHUA 1 1.32s 6.48s 14.08s 0.134s
JOSHUA 2 2.68s 13.09s  26.37s 0.265s
JOSHUA 3 2.93s 1591s  30.03s 0.304s
JOSHUA 4 3.62s 17.65s  33.32s 0.349s

Table 3.1.: Job submission performance test results

More importantly as the graph 3.6 shows, the submission times always increase linear
with the number of submitted jobs. Though, the increase of almost 25s in submission
time for 100 jobs in a four head-node setup seems high but it is not of practical rele-

vance on a cluster system.

The graph also shows that the submission time depends from the number of running

head nodes. The communication overhead increases for more than one head node

62




3.3. System tests

observably, because even when the JOSHUA components run on the same node, the
submission is always done using the communication facilities provided by the transis

group communication system.

35

4 JOSHUA head nodes —+— ' ' ' ' '

3 JOSHUA head nodes
2 JOSHUA head node ---%-- 7
1 JOSHUA head node B /

30 | PBS head node /

time [s]

0 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
number of jobs

Figure 3.6.: Job submission performance tests

3.3.2 Memory allocation test

A memory allocation test is applied to the JOSHUA server daemon in order to assure
a memory safe programming. As the daemon usually would have to run for a long
amount of time with in a high-availability environment, the test should prove, that
the server application will not malfunction under normal system load due to memory

allocation errors, leading to buffer overflows, memory leaks or segmentation faults.

The allocation test is done by using the memory debugger valgrind [Val06]. Valgrind
is famous suite of tools for debugging and profiling of Linux programs. By using
those tools that come with Valgrind, one can detect many memory management bugs

automatically. It eventually helps to avoid hours of bug tracing, makes programs

63



3.3. System tests

more stable and helps to speed up and reduce memory use of an application. [Val06]

As the output in appendix A.2.1 shows, the only possible memory leaks are caused
by the tranis group communication library interface. For the memory allocation test,

the joshua server had to safely receive and execute about 100 job submissions.

3.3.3 System test

According to the IEEE Standard, a system test is conducted on a complete, inte-
grated system to evaluate the compliance of the system with previously specified
requirements. In general Alpha and Beta testing of the applicable milestones are sub-
categories of system tests. [Wik06b]

System testing takes all of the software components that have successfully been de-
veloped and integrated to evaluate if the whole system works as expected. Those
tests include the software system itself integrated with the applicable hardware sys-
tem. [Wik06b]

In general, for a system test, the entire complex system can be tested as an integrated
whole against the requirement specifications for the first time. [WikO6c]

System testing tends to be more of an investigatory testing phase, where the focus is
not only the design, but also the behaviour and even the believed expectations toward
the eventual developed solution. That way, you can see the system test as the final
testing phase before acceptance testing. [Wik06c]

The following examples are different types of testing, within System testing, that
should be considered before System testing begins: [Wik06c]

e functional testing

user interface testing

error exit testing

performance testing

sanity testing

64




3.3. System tests

e reliability testing

e recovery testing

The following specific system capabilities have been tested on the integrated
JOSHUA software system:

65



99

capability expected behavior command output verification pass
job submission

submit job with valid job- return job identi- jsubscript.sh ~ 0.hl.mycluster.org
script fier
submit job with invalid redirect error jsubinvalid.sh qsub: script file:: No such file
jobscript message from PBS or directory

TORQUE
submit job via STDIN return job identi- echo  "host- 1.hl.mycluster.org

fier name” | jsub
submit job without transis return error mes- jsubscript.sh  Error: RemoteConnect to host
running sage h2.mycluster.org connection failed.
submit job without joshua return error mes- jsubscript.sh  Error: Operation timed out.
running sage
submit job with illegal return error mes- jsub -h  Error: Option not supported.
switch sage script.sh

job deletion

delete job by valid job return nothing jdel 1 n/a
identifier
delete multiple jobs with return error mes- jdel123 Error: Multiple job deletion or
valid job identifier sage option not supported.
delete job with invalid job redirect error jdel 5 qdel: Unknown Job Id
identifier message from PBS 5.h1.mycluster.org

TORQUE

Table 3.2.: System test JOSHUA command line tools

3593 WIdISAG €€



L9

...continuation

capability expected behavior command output verification pass
delete job without transis return error mes- jdel 1 Error: RemoteConnect to host
running sage h2.mycluster.org connection failed.
delete job without joshua return error mes- jdel 1 Error: Operation timed out.
running sage
delete job with illegal return error mes- jdel-W 101 Error: Multiple job deletion or
switch sage option not supported.
job queue status

get queue status when redirect out- jstat Job id Name User Time Use S Queue
queue filled put from PBS 000 e e o -

TORQUE --- 1.h1 test.sh kai 0 R batch
get queue status when redirect out- jstat n/a
queue not filled put from PBS

TORQUE (empty)
get queue status without return error mes- jstat Error: RemoteConnect to host
transis running sage h2.mycluster.org connection failed.
get queue status without return error mes- jstat Error: Operation timed out.

joshua running

sage

initiate server command

Table 3.2.: System test JOSHUA command line tools

3593 WIdISAG €€



89

command

...continuation

capability expected behavior output verification pass
startup server with valid startup joshua jinit -c config ~ jinit started... Attemting to
config file and external start JOSHUA components... job
components scheduler............. done
joshua................. ... done
resource manager.......... done
jobserver................. done
see logfile in Appendix A.2.2
startup server without startup joshua jinit -c config ~ jinit started... Attemting to
transis and external start JOSHUA components... job
components scheduler............. done
joshua.................... failed.
Check logs for further information.
startup server without return error mes- jinit Error: Missing config file. [...]
config file sage
startup server with invalid return error mes- jinit -c /tm- Error: /tmp/joshua.conf:1: mno such
config file sage p/joshua.conf  option ’headnoodes’
Table 3.2.: System test JOSHUA command line tools
capability expected behavior output verification (shortened) pass

job submission message
received

submit job locally and redirect see logfile in Appendix A.2.2

output to client

Table 3.3.: System test JOSHUA server

3593 WIdISAG €€



69

capability

expected behavior

output verification (shortened)

...continuation
pass

job deletion message re-
ceived

get queue status message
received

start job message received

job finished message re-
ceived

new JOSHUA server joins
group

JOSHUA server fails

delete job locally and redirect
output to client

execute gstat locally and redirect
output to client

test if job start request is valid,
if so allow first executor to start
the job, suspend all executors for
same job

release all pending executors

one of the group members
dumps the current process state,
new member replicates status, if
something fails join is aborted
else new member is joined

the failing server ends locally
running PBS TORQUE and
maui, remaining reconfigure
new group, all running jobs stay
uninterrupted, all user com-
mand still work with remaining

group

see logfile in Appendix A.2.2
see logfile in Appendix A.2.2

see logfile in Appendix A.2.2

see logfile in Appendix A.2.2

see logfile in Appendix A.2.2

see logfile in Appendix A.2.2

Table 3.3.: System test JOSHUA server

3593 WIdISAG €€



02

capability

...continuation

expected behavior output verification (shortened) pass
external JOSHUA compo- remaining external component see logfile in Appendix A.2.2
nent fails processes get locally killed,

JOSHUA server leaves group

Table 3.3.: System test JOSHUA server

capability expected behavior output verification (shortened) pass
JOSHUA mutex sends job started mes- Prologue Args: Job ID: 1.hl.mycluster.org

sage, first executor is al- User ID: kai Group ID: kai Starte jutex

lowed to enter job (exit Exiting...0 done.

0), remaining executors

get suspended (exit 1 af-

ter job finished)
JOSHUA cluster job done  sends job finished mes- Epilogue Args: Job ID: 1.h2.mycluster.org

sage

User ID: kai Group ID: kai JOB name :
test.sh

Table 3.4.: System test JOSHUA cluster mutex

3593 WIdISAG €€



Detailed Software Design

4.1 Job submission

The design of the symmetric Active/Active high availability solution for job-
scheduler services provided by JOSHUA, though transparently applied has some im-

pacts to the user.

Since the design of the joshua daemon takes advantage of the virtual paradigm and
message oriented state replication processed trough an event-driven programming
solution, there are limitation issues to the server application in terms of accessibility

and scalability for the user commands.

The stress and performance tests already indicate that when under heavy load, a
multi threaded server application possibly would handle the incoming requests bet-
ter. But as dictated by the virtual synchrony paradigm a multi threaded solution is
not compatible, since each message must be processed in the total incoming order, in
order to preserve the states between each of the high available job scheduler nodes.

But impacts cannot only be observed, when joshua is under heavy under heavy load.
As the performance tests showed, the HA capabilities have some cost as tradeoffs
for the advanced high availability in comparison to a traditional single-headed PBS

system.

Figure 4.1 illustrates in details how and where the JOSHUA job submission command

differs from the normal PBS job submission.

Since the effective PBS command is executed on the head node itself, the input infor-

71




4.2. Dynamic group reconfiguration

job handling using ‘ ‘ ‘

PBS TORQUE ‘ ‘ ‘ ‘
job st1bmitted job queued job runs job‘done

\ \

\ \

job handling using JOSHUA ‘ ‘ ‘ ‘ ‘

and PBS TORQUE ‘ L ‘ ‘

job submitted  job locally job queued job runs job'done

subqnitted |

\ \

communication job life span defined by PBS TORQUE

overhead
for distribution

Figure 4.1.: User impacts on job submission

mation has to be transferred from the client to joshua daemon for further processing.
The job submission is therefore prolonged because of the distribution of the client in-
put data to all running daemons plus the time to redirect the command output from
the server application back to the client.

4.2 Dynamic group reconfiguration

The members within the head-node group of joshua working in virtual synchrony
must reconfigure their group dynamically in case of the join event and when a head

node fails or leaves the group.

The failure model is rather simple, since all remaining members share the same pro-

cess state and can therefore continue to operate without complex reconfiguration.

The remaining joshua daemons only need to update the member list array in order to
know, who left and who remains within the group. This is even done internally by
the transis group communication library. The member list is only used by joshua to
ensure, that all members know, which process assists a new joining member in the

join process.

In case of a join event, the algorithm splits into the task for one elected existing mem-

72




4.2. Dynamic group reconfiguration

ber to dump its current state to the new joining process.

Since the communication between the existing and new process can also take advan-
tage of the communication facilities of transis and its event-driven message process-

ing, the algorithm for the join event can be rather simple as well.

The advantage of using the group communication facilities for the join data exchange
is that no failure intolerant client/server socket interconnection has to be used. By
using the message facilities, the already existing member dumps all its internal data
to the joining process, which stays in an event-driven loop until the join process is
tinished.

The information exchange from the established member starts with a start join mes-
sage followed by all join and delete messages stored internally by each process locally,
followed by a finish join message.

The join and delete message are not a complete rollback of all messages ever received
by the head-node group. The design of the internal data for joshua seeks as much
memory saving as possible, since the server application is designed to run for a long

time.

Only messages back to current queued jobs will be replicated to the joining member.
That way the number of messages can be reduced to the necessary needed and the
time spent in the join event for the existing member will be minimised as well. After
all the messages are dumped via the group communication message system, the as-
sisting process carries in with normal work. All messages will be stored by the transis
daemon until the joining process fetches and process them.

The joining process loops within an event handler waiting for all necessary join mes-
sages before it will enter the final head-node group communication message handler.
All pending messages for the head-node group will be delayed until the new process
has processed all join messages to keep up to the current state of the assisting process,
when it dumped its state.

After the join event is done, the new process will carry on and finally catch up with
the rest of the virtual synchronous group to same level.

73




4.3. Exchange of external components

Before that the messages will be processed to gain the last process state of the assisting
process by first setting all internal job data, followed by submitting all jobs to local
queue, ending with deleting all deleted jobs to replicate also the holes in the job queue

in order to eventually have the exact same local queue as every other member has.

After the last of these queues messages have been processed, the event handler for the
join process will be left to enter the normal event handler to process the actual head-
node group relevant messages with in the group. By catching up on these messages,
the new process finally becomes a full member of the group.

If something goes wrong during the join process, the new joining process shuts down
itself and all external components with it to ensure that no process member is online,
which does not share the exact same global process state knowledge and local job

queue in order to sustain the virtual synchrony:.

4.3 Exchange of external components

As the design of JOSHUA intends every external runtime dependency can be re-
placed quite easy. As mentioned in the 3.2.1 every external component used by the

JOSHUA software system is defined in a configuration file parsed by libconfuse.

This kind of dynamic configuration design makes it possible to replace the each ex-
ternal component when needed. If for example another job scheduler than Maui is

needed on a certain site, only the configuration file has to be changed.

A replacement for Maui Cluster Scheduler™is rather easy to make, since JOSHUA
does not directly interact with the job scheduler but indirect via the resource man-
agement system. In order to replace Maui with any other scheduler, the replacement
has to be compatible with the resource manager but must support the in section 2.1.5
mentioned dedicated mode to not compromise the JOSHUA system design.

To replace the used resource management service system of PBS TORQUE more com-
patibility issues must be met in order to work properly. The replacement has to pro-
vide tools for job submission, deletion and status information. The queue manager

also has to support a setup of multiple setups in order to enable the capabilities of the

74




4.3. Exchange of external components

proposed Active/Active high-availability architecture for services. Besides, in order

to let jmutex operate as intended pre and post job scripts must be supported as well.

A possible replacement can be the Bamboo [Sca06] resource and queue manager as
part of the Scalable Systems Software by Scalable Computing Laboratory [Ame06b]
at Ames Laboratory [Ame06a].

So far Bamboo provides the basic features of a resource manager: [Sca06]

e PBS compatible syntax

e job submission

e job monitoring

e job signalling (send user signals to the users running jobs)
e job deletion

e job start-up (privileged command to start jobs)

e management of running jobs (administrative scripts, output delivery)

Since this is the first release of Bamboo, it has to be considered as an alpha release and
thus there have to be expected bugs and incomplete features. [Sca06]

75



Conclusion

5.1 Results

This Master thesis project introduced a novel approach for high availability concern-
ing the head node of a computational cluster. The proposed system design provides
high availability to the job-scheduler service, as the most vital part of a cluster system

setup.

The addition of high availability to the job-scheduler service and resource manage-
ment system is achieved by using an existing group communication framework to
manage virtual synchrony among multiple head nodes. The shared global state is,
therefore, used to introduce a system providing Active/Active high availability lead-

ing to a significant increase of availability for cluster computing.

This dissertation proposed a new JOb Scheduler for High availability Using Active
replication (JOSHUA). It takes advantage of existing software components commonly
used in a cluster environment, such as the Portable Batch System. Thus, it transpar-
ently augments the job-scheduler service and resource management system with high

availability.

All general system design tasks have been finished as final result of this Master thesis.
As shown in the previous sections an overall system design to solve the key problems

of the dissertation has been created.

A working environment has been build and setup for proper development and test-

ing. The development was done on a small dedicated cluster with one to three head

76




5.2. Future Work

nodes and a compute node. All nodes were homogeneous and identical in hardware
and software setup.

To show how the proposed system design and its new form of symmetric Active/Ac-
tive high availability can be accomplished in practice, a proof-of-concept implemen-
tation of JOSHUA has been developed. The results of this dissertation may be used

for further improvement of high availability for cluster computation.

As part of the JOSHUA implementation, a utility library has been created, containing
important capabilities for the JOSHUA components to work, including functions to
handle signals and events, log, pack and unpack messages, and create linked lists for

data storage.

The implemented solution for the problem of high availability for high-end scientific
computing includes all components necessary to build a multi-head node cluster with
symmetric Active/Active high availability. The components include a server daemon
working on each head node, a bundle of user command line tools and a cluster node

mutual exclusion application.

The capabilities of JOSHUA are limited to job submission, deletion and status infor-
mation only, but proofs the intend proposition of the Active/Active high availability
model design. The final solution is a first step toward non-stop computation by in-
troducing a fault-tolerant job scheduler.

5.2 Future Work

The results and finding of this Master thesis are intended to enlighten the possibilities

of higher forms of high availability even further.

A solution as proposed can possibly be used by the HA-OSCAR project to further
improve their Active/Hot-Standby high availability solution.

There are several possibilities for improvements and research of the implemented
design. To lift JOSHUA from a proof-of-concept application to a productive stable

high availability solution the missing user features, such as holding and releasing

77




5.2. Future Work

jobs must be added to the current design.

Some of the external components are not feasible enough to work in an industrial
scale environment. The transis group communication framework has to be replaced

by a more scalable and reliable communication subsystem such as openais [The05].

Since the used PBS TORQE version is just in the beginning of supporting multi-
headed high availability environments, there are further improvements and demands
to an external resource manager as well.

The benefits for a high-availability solution for high-end scientific computing would
be greatly improved, when the so far only client/server model based Portable Batch
System is more aware of the service level model used by the Active/Active high avail-
ability architecture for services.

78




[Alt03]

[AltO5]

[Ame06a]

[Ame06b]

[Bar98]

[Clu05a]

[Clu05b]

[Clu06]

[Cor00]

[ES05]

References

Altair Grid technologies. Portable batch system. http://www.openpbs.
org/, 2003. [Online; accessed 21-September-2005].

Altair Engineering, Inc. Altair pbs professional 7.0. http://www.altair.
com/software/pbspro.htm, 2005. [Online; accessed 21-September-2005].

Ames Laboratory. Ames laboratory homepage. http://www.ameslab.
gov/, 2006. [Online; accessed 21-January-2006].

Ames Laboratory. Scalable computing laboratory (scl). http://www.scl.
ameslab.gov/, 2006. [Online; accessed 21-January-2006].

Jesis M. Gonzélez Barahona. A Communication Arquitecture for Process
Groups. PhD thesis, Universidad Politecnica de Madrid, February 1998.
[Online; accessed 18-January-2006].

Cluster Resources Inc.  Torque resource manager.  http://www.

clusterresources.com/pages/products/torque-resource-manager.

php, 2005. [Online; accessed 21-September-2005].

Cluster Resources Inc. Torque v2.0 admin manual. http://www.

clusterresources.com/products/torque/docs20/torqueadmin. shtml,

2005. [Online; accessed 25-November-2005].

Cluster Resources Inc. Documentation maui cluster scheduler™. http:

//www.clusterresources.com/pages/resources/documentation. php,

2006. [Online; accessed 24-January-2006].

M. Corbatto. An introduction to portable batch system (pbs). http://hpc.
sissa.it/pbs/pbs.html, 2000. [Online; accessed 06-November-2005].

C. Engelmann and Stephen L. Scott. Concepts for high availabil-
ity in scientific high-end computing. In Proceedings of High Availabil-
ity and Performance Computing Workshop (HAPCW), Santa Fe, NM, USA,
October 2005. http://www.csm.ornl.gov/ engelman/publications/

engelmannOb5concepts.pdf.

79



http://www.openpbs.org/
http://www.openpbs.org/
http://www.altair.com/software/pbspro.htm
http://www.altair.com/software/pbspro.htm
http://www.ameslab.gov/
http://www.ameslab.gov/
http://www.scl.ameslab.gov/
http://www.scl.ameslab.gov/
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/products/torque/docs20/torqueadmin.shtml
http://www.clusterresources.com/products/torque/docs20/torqueadmin.shtml
http://www.clusterresources.com/pages/resources/documentation.php
http://www.clusterresources.com/pages/resources/documentation.php
http://hpc.sissa.it/pbs/pbs.html
http://hpc.sissa.it/pbs/pbs.html
http://www.csm.ornl.gov/~engelman/publications/engelmann05concepts.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann05concepts.pdf

References

[ESIO2]

[ESLHO6]

[Eve05a]

[Eve05b]

[Fre05]

[GBD194]

[HA-05]

[Hed05]

[Lin05]

C. Engelmann, Stephen L. Scott, and G. A. Geist II.  Distributed
peer-to-peer control in harness. In International Conference on Computa-
tional Science (2), pages 720728, 2002. http://citeseer.ist.psu.edu/
engelmannO2distributed.html.

Christian Engelmann, Stephen L. Scott, Chokchai Leangsuksun, and
X. He. Active/active replication for highly available hpc system services.
In To appear in Proceedings of International Symposium on Frontiers in Avail-
ability, Reliability and Security (FARES), Vienna, Austria, April 2006.

EventHelix.com Inc. Reliability and availability basics. http:
//www.eventhelix.com/RealtimeMantra/FaultHandling/reliability_
availability_basics.htm, 2005. [Online; accessed 16-December-2005].

EventHelix.com Inc. System reliability and availability. http:
//www.eventhelix.com/RealtimeMantra/FaultHandling/system_
reliability_availability.htm, 2005. [Online; accessed 16-December-
2005].

Free Software Foundation. Autoconf - gnu project - free software foun-
dation (fsf). http://www.gnu.org/software/autoconf/, 2005. [Online;
accessed 12-September-2005].

Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert
Manchek, and Vaidy Sunderam. PVM: Parallel Virtual Machine A User’s
Guide and Tutorial for Networked Parallel Computing. MIT Press, Cambridge,
MA, USA, 1994.

HA-OSCAR Group. High availability open source cluster application re-
sources. http://xcr.cenit.latech.edu/ha-oscar/, 2005. [Online; ac-
cessed 29-September-2005].

Martin Hedenfalk. libconfuse. http://www.nongnu.org/confuse/, 2005.
[Online; accessed 08-September-2005].

Linux-HA project. Heartbeat. http://linux-ha.org/HeartbeatProgram,
2005. [Online; accessed 24-January-2006].

80



http://citeseer.ist.psu.edu/engelmann02distributed.html
http://citeseer.ist.psu.edu/engelmann02distributed.html
http://www.eventhelix.com/RealtimeMantra/FaultHandling/reliability_availability_basics.htm
http://www.eventhelix.com/RealtimeMantra/FaultHandling/reliability_availability_basics.htm
http://www.eventhelix.com/RealtimeMantra/FaultHandling/reliability_availability_basics.htm
http://www.eventhelix.com/RealtimeMantra/FaultHandling/system_reliability_availability.htm
http://www.eventhelix.com/RealtimeMantra/FaultHandling/system_reliability_availability.htm
http://www.eventhelix.com/RealtimeMantra/FaultHandling/system_reliability_availability.htm
http://www.gnu.org/software/autoconf/
http://xcr.cenit.latech.edu/ha-oscar/
http://www.nongnu.org/confuse/
http://linux-ha.org/HeartbeatProgram

References

[LML*T05] C. Leangsuksun, V. K. Munganuru, T. Liu, S. L. Scott, and C. Engelmann.

Asymmetric active-active high availability for high-end computing. In
Proceedings of 2nd International Workshop on Operating Systems, Program-
ming Environments and Management Tools for High-Performance Computing
on Clusters (COSET-2), Cambridge, MA, USA, June 2005. http://www.csm.

ornl.gov/~engelman/publications/leangsuksunO5asymmetric.pdf.

[LSL*03a] Box Leangsuksun, Lixin Shen, Tong Lui, Hertong Song, and Stephen L.

Scott. Presentation at ieee cluster computing 2003. http://xcr.cenit.
latech.edu/haoscar/cluster2003.pdf, December 2003. [Online; ac-
cessed 24-January-2006].

[LSLT03b] Chokchai Leangsuksun, Lixin Shen, Tong Liu, Herton Song, and

[Mal94]

[Mis05]

Stephen L. Scott. Dependability prediction of high availability oscar
cluster server. In Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications, PDPTA "03, Las Ve-
gas, Nevada, USA, June 2003. http://xcr.cenit.latech.edu/ha-oscar/
docs/PDPTA2003. pdf.

Dalia Malki. The transis user tutorial. ftp://ftp.cs.huji.ac.il/users/
transis/tutorial.ps.gz, March 1994. [Online; accessed 01-October-
2005].

Mission Critical Linux. Kimberlite. http://oss.missioncriticallinux.
com/projects/kimberlite/, 2005. [Online; accessed 29-September-2005].

[MNS*03] John Muggler, Thomas Naughton, Stephen L. Scott, Brian Barrett, An-

[Ope05]

[Res96]

drew Lumsdaine, Jeffrey M. Squyres, Benoit des Ligneris, Francis Gi-
raldeau, and Chokchai Leangsunksun. Oscar clusters. In Proceedings of
the Linux Symposium, pages 387-397, Ottawa, Ontario, Canada, July 2003.
http://citeseer.ist.psu.edu/711152 html.

Open Cluster Group. Open source cluster application resources. http:
//oscar.openclustergroup.org/, 2005. [Online; accessed 19-September-
2005].

Ron T. Resnick. A modern taxonomy of high avaﬂahi]ify_ httn:

81



http://www.csm.ornl.gov/~engelman/publications/leangsuksun05asymmetric.pdf
http://www.csm.ornl.gov/~engelman/publications/leangsuksun05asymmetric.pdf
http://xcr.cenit.latech.edu/haoscar/cluster2003.pdf
http://xcr.cenit.latech.edu/haoscar/cluster2003.pdf
http://xcr.cenit.latech.edu/ha-oscar/docs/PDPTA2003.pdf
http://xcr.cenit.latech.edu/ha-oscar/docs/PDPTA2003.pdf
ftp://ftp.cs.huji.ac.il/users/transis/tutorial.ps.gz
ftp://ftp.cs.huji.ac.il/users/transis/tutorial.ps.gz
http://oss.missioncriticallinux.com/projects/kimberlite/
http://oss.missioncriticallinux.com/projects/kimberlite/
http://citeseer.ist.psu.edu/711152.html
http://oscar.openclustergroup.org/
http://oscar.openclustergroup.org/
http://www.verber.com/mark/cs/systems/A%20Modern%20Taxonomy%20of%20High%20Availability.htm
http://www.verber.com/mark/cs/systems/A%20Modern%20Taxonomy%20of%20High%20Availability.htm

References

[Rob05]

[Sca06]

[Ser05]

[She02]

[Sil05]

//www.verber.com/mark/cs/systems/A%20Modern’20Taxonomy%200£%
20High%20Availability.htm, 1996. [Online; accessed 14-September-
2005].

Tim Robinson. High end scientific computing. http://www.ja.net/
services/network-services/bmas/seminars/streaming_seminar/
Intro_to_MC/imgl1.html, 2005. [Online; accessed 29-September-2005].

Scalable Systems Software Resource Management Working Group. Sss re-
source management and accounting: Bamboo. http://sss.scl.ameslab.
gov/bamboo . shtml, 2006. [Online; accessed 21-January-2006].

Service Availability Forum. Service availabilty forum: home. http://www.

saforum. org/home, 2005. [Online; accessed 21-September-2005].

Santosh Shetty. Determining the availability and reliability of storage con-
figurations. http://wwwl.us.dell.com/content/topics/global.aspx/
power/en/ps3q02_shetty?c=us&l=en&s=gen, August 2002. [Online; ac-
cessed 16-December-2005].

Silicon Graphics, Inc. Developer central open source - linux failsafe.
http://oss.sgi.com/projects/failsafe/, 2005. [Online; accessed 29-
September-2005].

[SOHL196] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and

[Ste05]

[The99a]

Jack Dongarra. MPI: The Complete Reference. MIT Press, Cambridge, MA,
USA, 1996.

SteelEye Technology. Lifekeeper, high availability clustering, failover, data
replication, disaster recovery, linux, windows. http://www.steeleye.
com/, 2005. [Online; accessed 29-September-2005].

The Ensemble distributed communication system. Ensemble is the next
generation of the horus group communication toolkit. http://dsl.
cs.technion.ac.il/projects/Ensemble/, 1999. [Online; accessed 01-
October-2005].

[The99b] The Transis Project. Transis group communication system, that supports

82



http://www.verber.com/mark/cs/systems/A%20Modern%20Taxonomy%20of%20High%20Availability.htm
http://www.verber.com/mark/cs/systems/A%20Modern%20Taxonomy%20of%20High%20Availability.htm
http://www.verber.com/mark/cs/systems/A%20Modern%20Taxonomy%20of%20High%20Availability.htm
http://www.ja.net/services/network-services/bmas/seminars/streaming_seminar/Intro_to_MC/img11.html
http://www.ja.net/services/network-services/bmas/seminars/streaming_seminar/Intro_to_MC/img11.html
http://www.ja.net/services/network-services/bmas/seminars/streaming_seminar/Intro_to_MC/img11.html
http://sss.scl.ameslab.gov/bamboo.shtml
http://sss.scl.ameslab.gov/bamboo.shtml
http://www.saforum.org/home
http://www.saforum.org/home
http://www1.us.dell.com/content/topics/global.aspx/power/en/ps3q02_shetty?c=us&l=en&s= gen
http://www1.us.dell.com/content/topics/global.aspx/power/en/ps3q02_shetty?c=us&l=en&s= gen
http://oss.sgi.com/projects/failsafe/
http://www.steeleye.com/
http://www.steeleye.com/
http://dsl.cs.technion.ac.il/projects/Ensemble/
http://dsl.cs.technion.ac.il/projects/Ensemble/

References

[TheO4a]

[The04b]

[The05]

[Valo6]

[Ver00]

[VHO5]

[Wes05]

[Wik05a]

[Wik05b]

[WikO6a]

efficient group multicast for high availability. http://www.cs.huji.ac.
il/labs/transis/, 1999. [Online; accessed 01-October-2005].

The HA-OSCAR Working Group. Ha-oscar cluster user manual. http://
xcr.cenit.latech.edu/haoscar/HA_OSCAR_INSTALL_PA4.pdf, 2004. [On-
line; accessed 24-January-2006].

Ed Thelen. Eniac. http://ed-thelen.org/comp-hist/ENIAC.html, 2004.
[Online; accessed 06-January-2006].

The openais project.  openais.  http://developer.osdl.org/dev/
openais/, 2005. [Online; accessed 21-September-2005].

Valgrind Developers. Valgrind. http://valgrind.org/, 2006. [Online;
accessed 21-September-2005].

Veridian Information Solutions, Inc. Portable batch system administra-
tor guide. http://www.clusterresources.com/products/torque/docs/
admin_guide.ps, 2000. [Online; accessed 06-November-2005].

Dimitri van Heesch. Doxygen. www.doxygen.org/, 2005. [Online; accessed
12-September-2005].

Western Digital Corporation. Wd caviar re2 400 gb hard drives (
wd4000yr ). http://www.wdc.com/en/products/Products.asp?DrivelD=
158&Language=en, 2005. [Online; accessed 06-January-2006].

Wikipedia. Computer cluster — wikipedia, the free encyclopedia. http:
//en.wikipedia.org/wiki/Cluster_computing, 2005. [Online; accessed
29-September-2005].

Wikipedia. = Hochleistungsrechnen — wikipedia, the free encyclo-
pedia. http://de.wikipedia.org/wiki/High_Performance_Computing,
2005. [Online; accessed 29-September-2005].

Wikipedia. Load testing — wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/Load_testing, 2006. [Online; accessed 31-January-
2006].

83



http://www.cs.huji.ac.il/labs/transis/
http://www.cs.huji.ac.il/labs/transis/
http://xcr.cenit.latech.edu/haoscar/HA_OSCAR_INSTALL_PA4.pdf
http://xcr.cenit.latech.edu/haoscar/HA_OSCAR_INSTALL_PA4.pdf
http://ed-thelen.org/comp-hist/ENIAC.html
http://developer.osdl.org/dev/openais/
http://developer.osdl.org/dev/openais/
http://valgrind.org/
http://www.clusterresources.com/products/torque/docs/admin_guide.ps
http://www.clusterresources.com/products/torque/docs/admin_guide.ps
www.doxygen.org/
http://www.wdc.com/en/products/Products.asp?DriveID=158&Language=en
http://www.wdc.com/en/products/Products.asp?DriveID=158&Language=en
http://en.wikipedia.org/wiki/Cluster_computing
http://en.wikipedia.org/wiki/Cluster_computing
http://de.wikipedia.org/wiki/High_Performance_Computing
http://en.wikipedia.org/wiki/Load_testing
http://en.wikipedia.org/wiki/Load_testing

References

[WikO6b] Wikipedia. Software testing — wikipedia, the free encyclopedia. http://

[WikO06c]

en.wikipedia.org/wiki/Software_testing, 2006. [Online; accessed 31-
January-2006].

Wikipedia. System testing — wikipedia, the free encyclopedia. http:
//en.wikipedia.org/wiki/System_testing, 2006. [Online; accessed 31-
January-2006].

84



http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/System_testing
http://en.wikipedia.org/wiki/System_testing

Appendix

A.1 Manual

A.1.1 Installation

Since the JOSHUA software system takes advantage of the Autotools [Fre05] of the
Free Software Foundation, Inc., the installation follows their basic instructions.

Basic Installation

These are generic installation instructions.

The ‘configure” shell script attempts to guess correct values for various system-
dependent variables used during compilation. It uses those values to create a ‘Make-
file” in each directory of the package. It may also create one or more “.h’ files contain-
ing system-dependent definitions. Finally, it creates a shell script ‘config.status’ that
you can run in the future to recreate the current configuration, and a file ‘config.log’

containing compiler output (useful mainly for debugging ‘configure’).

It can also use an optional file (typically called ‘config.cache” and enabled with ‘-
cache-file=config.cache” or simply -C’) that saves the results of its tests to speed up
reconfiguring. (Caching is disabled by default to prevent problems with accidental
use of stale cache files.)

If you need to do unusual things to compile the package, please try to figure out

how ‘configure” could check whether to do them, and mail diffs or instructions to the

85




A.1. Manual

address given in the ‘README’ so they can be considered for the next release. If you
are using the cache, and at some point ‘config.cache’ contains results you don’t want

to keep, you may remove or edit it.

The file ‘configure.ac” (or ‘configure.in’) is used to create ‘configure’ by a program
called ‘autoconf’. You only need ‘configure.ac” if you want to change it or regenerate

‘configure’ using a newer version of “autoconf’.

The simplest way to compile this package is:

1. ’cd’ to the directory containing the package’s source code and type “./config-
ure’ to configure the package for your system. If you're using ‘csh” on an old
version of System V, you might need to type ‘sh ./configure” instead to prevent
‘csh’ from trying to execute ‘configure’ itself. Running ‘configure’ takes awhile.
While running, it prints some messages telling which features it is checking for.

2. Type ‘make’ to compile the package.
3. Optionally, type ‘make check’ to run any self-tests that come with the package.

4. Type ‘make install’ to install the programs and any data files and documenta-

tion.

5. You can remove the program binaries and object files from the source code di-
rectory by typing ‘make clean’. To also remove the files that ‘configure’ created
(so you can compile the package for a different kind of computer), type ‘make
distclean’. There is also a ‘make maintainer-clean’ target, but that is intended
mainly for the package’s developers. If you use it, you may have to get all sorts
of other programs in order to regenerate files that came with the distribution.

Prerequisites

In order to compile and install the JOSHUA software package the following libraries
and header files must be installed:

o libconfuse

86



A.1. Manual

o [ibtransis

The configure script will automatically search for the necessary libraries before you
can compile the sources. If the the configuration script is unable to resolve the depen-

dencies it will print an error message.

Installation instructions

Following the basic installation guidelines you have to apply the following com-

mands to compile the source code and install the binaries:

e cd /tmp

tar -xzf joshua-01.tar.gz

cd joshua-0.1

./ configure

make all

make install

A.1.2 Usage

In order to use the JOSHUA software system the following runtime components must
be setup and installed on your system:

e JOSHUA server application (joshua)

job scheduler (for example Maui Cluster Scheduler)

e resource management server daemon (e.g. PSB TORQUE server)

transis group communication daemon

libconfuse runtime library

87



A.1. Manual

Especially the resourc management executor (e.g. PBS mom) must be equipped with
the pro- and epiloque scripts for the proper execution of the cluster mutex. See A.3.2
and A.3.2 for examples.

For the proper setup of the external components see their installation and configura-
tion manuals.

All components of JOSHUA use a configuration file. See example in A.1.3 for details.

Generally, JOSHUA augments the external resource management and job-scheduler
service with high availability. With some restrictions concerning the user tool options,
the system usage is quite like the used external components for your chosen cluster
setup.

Server application

To start the server application the transis group communication daemon must be up
and running. Simply start the server application and all its external components by
typing ‘jinit -c configfile’.

If everything works fine, jinit will return the following out put ti the standard output:
linux# ./jinit -c /etc/joshua/joshua.conf

jinit started...

Attemting to start JOSHUA components...

job scheduler............. done
joshua.................... done
resource manager.......... done
jobserver................. done

Additional information can always be obtained during runtime trough the error- and
logfiles specified in the configuration file.

88




11

13

15

17

A.1. Manual

User commands

The user commands need a running joshua server daemon to work. All head nodes

available on your site can be determined in the configuration file (see A.1.3 for de-

tails).

Examples for user command usage:

Capability Command Output

get queue status and redi- jstat Job id Name User Time

rect output from PBS Use S Queue ----------
- --- 1.h1 test.sh kai
0 R batch

submit job with jobscript jsub script.sh 0.hl.mycluster.org

and return job identifier

submit job via STDIN and
return job identifier

echo "hostname” | jsub

delete job by job identifier  jdel 1

1.h1l.mycluster.org

no output

Table A.1.: User command examples

A.1.3 JOSHUA configuration file example

headnodes = {"joshua.mycluster.org",
logfile = "/tmp/joshua.log"

errorlog = "/tmp/joshuaerr.log"
scheduler_exec = "/usr/local/maui/sbin/maui"
scheduler_conf = "/usr/local/maui/maui.cfg"
scheduler = "maui"

job_server_exec = "/usr/local/sbin/pbs_server"
job_server_conf = "/var/spool/server_priv/serverdb"
job_server =
group_com_exec =

"pbs_server"
"/usr/local/sbin/transis"

group_com_conf = "/etc/transis/transis.conf"
group_com = "transis"

joshua_exec = "/home/kai/joshua-0.1/joshua/joshua"
joshua_conf = "/etc/joshua/joshua.conf"

joshua = "joshua"

submit_exec = "/usr/local/bin/qgsub"

del_exec = "/usr/local/bin/qdel"

89

"hl.mycluster.org", "h2.mycluster.org"}



10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

A.2. Test output

stat_exec

==16023==
==16023==
==16023==
=16023==
=16023==
=16023==
=16023==
=16023==
==16023==
==16023==
=16023==
=16023==
=16023==
=16023==
=16023==
==16023==
==16023==
==16023==
=16023==
=16023==
=16023==
=16023==

= "/usr/local/bin/qgstat"

A.2 Test output

A.2.1 Memory allocation test output

Memcheck, a memory error detector for x86—linux.

Copyright (C) 2002-2005, and GNU GPL’d, by Julian Seward et al.
Using valgrind—2.4.0, a program supervision framework for x86—linux.
Copyright (C) 2000—2005, and GNU GPL’d, by Julian Seward et al.

My PID = 16023, parent PID = 15909. Prog and args are:
./joshua
—c
/etc/joshua/joshua.conf

Valgrind library directory: /usr/lib/valgrind
Command line
./joshua
—c
/etc/joshua/joshua.conf
Startup , with flags:
—leak—check=yes
—show—reachable=yes
—v
—Ilog—file=/tmp/joshua
Contents of /proc/version:
Linux version 2.6.8-2-686—smp (horms@tabatha.lab .ultramonkey.org) (gcc version 3.

3.5 (Debian 1:3.3.5-12)) #1 SMP Thu May 19 17:27:55 JST 2005

=16023==
==16023==
=16023==
=16023==

==16023==
==16023==
=16023==
=16023==
=16023==

=16023==
==16023==
==16023==
=16023==

=16023==
=16023==
=16023==
==16023==

==16023== ...

=16023==
=16023==
=16023==
=16023==
=16023==
==16023==
==16023==
==16023==

=16023== ...

=16023== ...

=16023== ...

Reading syms from /home/kai/joshua—0.1/joshua/joshua (0x8048000)
Reading syms from /lib/ld—2.3.2.s0o (0x1B8E4000)
object doesn’t have a symbol table
Reading debug info from /lib/ld-2.3.2.s0...
CRC mismatch (computed E7117123 wanted 4ECF6D33)
object doesn’t have any debug info
Reading syms from /usr/lib/valgrind/stage2 (0xB0000000)
Reading syms from /lib/ld-2.3.2.s0 (0xB1000000)
object doesn’t have a symbol table
Reading debug info from /lib/1d—2.3.2.s0...
CRC mismatch (computed E7117123 wanted 4ECF6D33)
object doesn’t have any debug info
Reading syms from /lib/tls/libdl—2.3.2.s0 (0xB101D000)
object doesn’t have a symbol table
Reading debug info from /lib/tls/libdl—-2.3.2.s0...
CRC mismatch (computed 71527790 wanted 2DA21AD9)
object doesn’t have any debug info
Reading syms from /lib/tls/libc—2.3.2.s0 (0xB1020000)
object doesn’t have a symbol table
Reading debug info from /lib/tls/libc—2.3.2.s0...
CRC mismatch (computed 9FEA8425 wanted 656F7E39)
object doesn’t have any debug info
Reading syms from /usr/lib/valgrind/vgskin_memcheck.so (0xB1256000)
Reading suppressions file: /usr/lib/valgrind/default.supp

Reading syms from /usr/lib/valgrind/vg_inject.so (0x1BS8FE000)
Reading syms from /usr/lib/valgrind/vgpreload_memcheck.so (0x1B901000)
Reading syms from /lib/tls/libm—2.3.2.s0 (0x1B911000)

object doesn’t have a symbol table

90



A.2. Test output

52 ==16023== Reading debug info from /lib/tls/libm—-2.3.2.s0...

==16023== ... CRC mismatch (computed F11D9E14 wanted 49928816)
54 ==16023== object doesn’t have any debug info
==16023== Reading syms from /usr/lib/libconfuse.so.0.0.0 (0x1B934000)
56 ==16023== object doesn’t have a symbol table
==16023== object doesn’t have any debug info
58 ==16023== Reading syms from /lib/tls/libc—2.3.2.s0 (0x1B93F000)
==16023== object doesn’t have a symbol table
60 ==16023== Reading debug info from /lib/tls/libc—-2.3.2.s0...
==16023== ... CRC mismatch (computed 9FEA8425 wanted 656F7E39)
62 ==16023== object doesn’t have any debug info
==16023== Reading syms from /lib/tls/libdl—-2.3.2.s0 (0x1BA75000)
64 ==16023== object doesn’t have a symbol table
==16023== Reading debug info from /lib/tls/libdl—-2.3.2.s0...
66 ==16023== ... CRC mismatch (computed 71527790 wanted 2DA21AD9)
==16023== object doesn’t have any debug info

68 ==16023== TRANSLATE: 0x1B9BOBB0O redirected to 0x1B904510
==16023== TRANSLATE: 0x1B9BOEOO redirected to 0x1B904FA1l
70 ==16023== TRANSLATE: 0x1B9B0D40 redirected to 0x1B904A82
==16023== TRANSLATE: 0x1B9B8CDO redirected to 0x1B905C80
72 ==16023== TRANSLATE: 0x1B9B73E0 redirected to 0x1B9057B0
==16023== TRANSLATE: 0x1B9B12C0 redirected to O0x1B904EE2

74 ==16023==
==16023== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 17 from 1)
76 ——16023——

——16023—— supp: 17 Ugly strchr error in /lib/1d—2.3.2.s0
78 ==16023== malloc/free: in use at exit: 17352 bytes in 8 blocks.
==16023== malloc/free: 3529 allocs, 3521 frees, 344831 bytes allocated.
80 ==16023==
==16023== searching for pointers to 8 not—freed blocks.
82 ==16023== checked 328644 bytes.

==16023==
84 ==16023== 16 bytes in 2 blocks are still reachable in loss record 1 of 5
==16023== at 0x1B90459D: malloc (vg_replace_malloc.c:130)
86 ==16023== by 0x804E325: zzz_Connect (zzz_layer.c:182)
==16023== by 0x8049658: main (joshua.c:108)
88 ==16023==
==16023==
90 ==16023== 30 bytes in 2 blocks are still reachable in loss record 2 of 5
==16023== at 0x1B90459D: malloc (vg_replace_malloc.c:130)
92 ==16023== by 0x804D223: HA Connect (ha.c:186)
==16023== by O0x804EOAF: ha_connect (zzz_layer.c:68)
94 ==16023== by 0x804E384: zzz_Connect (zzz_layer.c:190)
==16023== by 0x8049658: main (joshua.c:108)
9% ==16023==
==16023==
98 ==16023== 82 bytes in 1 blocks are still reachable in loss record 3 of 5
==16023== at 0x1B90459D: malloc (vg_replace_malloc.c:130)
100 ==16023== by 0x8049C89: handle_events (server.c:133)
==16023== by 0x804C53B: do_user_fds (events.c:275)
102 ==16023== by 0x804CC2D: E_dispatch_events (events.c:575)
==16023== by 0x804CD23: E_main_loop (events.c:633)
104 ==16023== by 0x8049729: main (joshua.c:153)
==16023==
106 ==16023==
==16023== 1000 bytes in 1 blocks are still reachable in loss record 4 of 5
108 ==16023== at 0x1B904F75: calloc (vg_replace_malloc.c:175)
==16023== by 0x804C1D6: new_sq_node (events.c:84)
110 ==16023== by 0x804C7FE: E_add_sock (events.c:407)
==16023== by 0x804DE5C: HA Add_Upcall (ha.c:586)
112 ==16023== by 0x804970F: main (joshua.c:148)
==16023==
114 ==16023==

91



116

118

120

122

124

126

128

130

132

134

136

138

140

10

12

14

16

18

20

A.2. Test output

==16023== 16224 bytes in 2 blocks are still reachable in loss record 5 of 5
==16023== at 0x1B90459D: malloc (vg_replace_malloc.c:130)

==16023== by 0x804CF06: HA Connect (ha.c:126)

==16023== by 0x804EO0AF: ha_connect (zzz_layer.c:68)

==16023== by 0x804E384: zzz_Connect (zzz_layer.c:190)

==16023== by 0x8049658: main (joshua.c:108)

==16023==

==16023== LEAK SUMMARY:

==16023== definitely lost: 0 bytes in 0 blocks.
==16023== possibly lost: 0 bytes in 0 blocks.
==16023== still reachable: 17352 bytes in 8 blocks.
==16023== suppressed: 0 bytes in 0 blocks.
——16023—— TT/TC: 0 tc sectors discarded.
——16023—— 6536 tt_fast misses.

——16023—— translate:
——16023——

——16023—— chainings:
——16023—— dispatch:
——16023——

——16023—— reg—alloc:
——16023——
——16023——
——16023——
——16023——
——16023——
——16023——

sanity:
ccalls:

[Thu Feb 9 16:05:44
startup

[Thu Feb 9 16:05:44

[Thu Feb 9 16:05:44

[Thu Feb 9 16:05:44

joshua is ready..

Feb
Feb
Feb
Feb
Feb
Feb
46
[Thu Feb 9
40
[Thu Feb 9 16:05:44
to 1 member(s)
[Thu Feb 9 16:05:44
headnodes
[Thu Feb 9 16:05:44
serverdb
[Thu Feb 9 16:05:44
[Thu Feb 9 16:05:44
ping_nodes: entered
ping_nodes: ping h3
[Thu Feb 9 16:05:45

16:
16:
16:
16:
16:
16:

144
144
144
144
144
144

[Thu
[Thu
[Thu
[Thu
[Thu
[Thu

O O © O O O

16:05:44

new 4894 (80866 —> 1077502;
discard 0 (0 —> 0; ratio 0:10).
3643 chainings, 0 unchainings.
15619093 jumps (bb entries); of them 675504 (4%) unchained.
313/20402 major/minor sched events.

915 t-req—spill , 191914+6486 orig+spill uis,

25423 total—reg—rank

314 cheap, 13 expensive checks.

18276 C calls , 55% saves+restores avoided (59886 bytes)
24918 args, avg 0.87 setup instrs each (6416 bytes)

0% clear the stack (54579 bytes)

7517 retvals, 30% of reg—reg movs avoided (4442 bytes)

ratio 133:10)

A.2.2 System tests

JOSHUA startup logfile excerpt

2006] /home/kai/joshua—0.1/joshua/jinit =29375= Info: Inititiate Server
2006] /home/kai/joshua—0.1/joshua/jinit =29375= Info: Startup finished.
2006] /home/kai/joshua—0.1/joshua/jinit =29376= Info: jbootup started...
2006] /home/kai/joshua—0.1/joshua/jinit =29376= Info: Waiting till

2006] /home/kai/joshua—0.1/joshua/jinit =29378= Info: joshua started
2006] joshua =29378= Info: Inititiate Server startup

2006] joshua =29378= Info: Startup finished.

2006] joshua =29378= Info: I’'m there

2006] joshua =29378= Info: JOSHUA daemon started...

2006] joshua =29378= Info: ++++ Event ++++ Message received ++++ size =
2006] joshua =29378= Info: ++++ Event ++++ Message received ++++ size =
2006] joshua =29378= Info: ++ Group change in group headmasters from 1
2006] joshua =29378= Info: headmaster_joshua is the first among the
2006] joshua =29378= Info: Attempting to open /var/spool/server_priv/
2006] joshua =29378= Info: Send signal, that structure is set

2006] /home/kai/joshua—0.1/joshua/jinit =29379= Info: pbs_server started
2006] /home/kai/joshua—0.1/joshua/jinit =29376= Info: Sending signal

that pbs is running

[Thu Feb 9 16:05:45

2006] /home/kai/joshua—0.1/joshua/jinit =29376= Info: Signal send

92



22

24

26

28

10

12

14

10

12

A.2. Test output

[Thu Feb 9 16:05:45 2006] /home/kai/joshua—0.1/joshua/jinit =29381= Info: jobserver started
[Thu Feb 9 16:05:45 2006] joshua =29378= Info: Waiting for bootup.. to contiue
[Thu Feb 9 16:05:45 2006] joshua =29378= Info: Got notification lets go on
[Thu Feb 9 16:05:45 2006] joshua =29378= Info: done.
[Thu Feb 9 16:05:45 2006] joshua =29378= Info: headmaster_joshua is now master
[Thu Feb 9 16:05:45 2006] joshua =29378= Info: + Members so far:
[Thu Feb 9 16:05:45 2006] joshua =29378= Info: + headmaster_joshua
[Thu Feb 9 16:05:45 2006] joshua =29378= Info: ++++ Event ++++ handled ++++
JOSHUA submission event logfile excerpt
[Thu Feb 9 16:06:23 2006] joshua =29378= Info: ++++ Event ++++ Message received ++++ size =
993
[Thu Feb 9 16:06:23 2006] joshua =29378= Info: DEBUG: /home/kai/joshua—0.1/jcmd/jsub
[Thu Feb 9 16:06:23 2006] joshua =29395= Info: Created child with pid 29395 to exec /usr/
local/bin/qsub command
[Thu Feb 9 16:06:23 2006] joshua =29378= Info: exec returned stdout
0.joshua.ornl.gov
[Thu Feb 9 16:06:23 2006] joshua =29378= Info: exec returned stderr
(null)
[Thu Feb 9 16:06:23 2006] joshua =29378= Info: Return to sender 113951918285733_joshua
[Thu Feb 9 16:06:23 2006] joshua =29378= Info: Added job 0 to internal submission queue.
[Thu Feb 9 16:06:23 2006] joshua =29378= Info: Sending..
[Thu Feb 9 16:06:23 2006] joshua =29378= Info: done..
[Thu Feb 9 16:06:23 2006] joshua =29378= Info: ++++ Event ++++ handled ++++
JOSHUA deletion event logfile excerpt
[Tue Feb 14 12:38:53 2006] joshua =4760= Info: ++++ Event ++++ Message received ++++ size =
992
[Tue Feb 14 12:38:53 2006] joshua =4760= Info: DEBUG: ./jdel
[Tue Feb 14 12:38:53 2006] joshua =4805= Info: Created child with pid 4805 to exec /usr/local
/bin/qdel command
[Tue Feb 14 12:38:53 2006] joshua =4760= Info: exec returned stdout
(null)
[Tue Feb 14 12:38:53 2006] joshua =4760= Info: exec returned stderr
(null)
[Tue Feb 14 12:38:53 2006] joshua =4760= Info: Return to sender 113993873347367_joshua
[Tue Feb 14 12:38:53 2006] joshua =4760= Info: Added job 3 to internal deletion queue.
[Tue Feb 14 12:38:53 2006] joshua =4760= Info: Sending..
[Tue Feb 14 12:38:53 2006] joshua =4760= Info: done..
[Tue Feb 14 12:38:53 2006] joshua =4760= Info: ++++ Event ++++ handled ++++
JOSHUA status event logfile excerpt
[Tue Feb 14 12:38:57 2006] joshua =4760= Info: ++++ Event ++++ Message received ++++ size =
989
[Tue Feb 14 12:38:57 2006] joshua =4760= Info: DEBUG: ./jstat
[Tue Feb 14 12:38:57 2006] joshua =4808= Info: Created child with pid 4808 to exec /usr/local
/bin/qstat command
[Tue Feb 14 12:38:57 2006] joshua =4760= Info: exec returned stdout
Job id Name User Time Use S Queue
1.joshua test.sh kai 00:00:00 R batch
2.joshua test.sh kai 0 Q batch
4 .joshua test.sh kai 0 Q batch

93



12

14

16

11

13

15

17

A.2. Test output

5.joshua test.sh kai 0 Q batch

[Tue Feb 14 12:38:57 2006] joshua =4760= Info: exec returned stderr

(null)

[Tue Feb 14 12:38:57 2006] joshua =4760= Info:

[Tue Feb 14 12:38:57 2006] joshua =4760= Info: Sending..

[Tue Feb 14 12:38:57 2006] joshua =4760= Info: done..

[Tue Feb 14 12:38:57 2006] joshua =4760= Info: ++++ Event ++++ handled ++++

JOSHUA job start event logfile excerpt

[Tue Feb 14 12:38:43 2006] joshua =4760= Info:
39

[Tue Feb 14 12:38:43 2006] joshua =4760= Info:
113993877893447 _joshua

[Tue Feb 14 12:38:43 2006] joshua =4760= Info: LDONE: —1 JID:
—> Sanity: OK

[Tue Feb 14 12:38:43 2006] joshua =4760= Info: LDONE: —1 JID:
—> Exec: OK

[Tue Feb 14 12:38:43 2006] joshua =4760= Info:
to enter job 1

[Tue Feb 14 12:38:43 2006] joshua =4760= Info:

1 LSUB:

1 LSUB:

++++ Event ++++ Message received ++++ size =

Received start message for job 1 from

Return to sender 113993873762460_joshua

1 GENDONE: 0 GENSUB: 0

1 GENDONE: 0 GENSUB: 0

++++ Event ++++ handled ++++

JOSHUA job finished event logfile excerpt

Info:
Info:
Info:

Info:

Info:

Executor 113993877893447 _joshua has allowance

Inititiate Server

Startup finished.

jbootup started. ..
Waiting till

joshua started

++++ Event ++++ Message received ++++ size =
++++ Event ++++ Message received ++++ size =
++ Group change in group headmasters from 1
headmaster_joshua is the first among the
Attempting to open /var/spool/server_priv/

Send signal, that structure is set

[Tue Feb 14 12:44:10 2006] joshua =4827= Info: ++++ Event ++++ Message received ++++ size =
29
[Tue Feb 14 12:44:10 2006] joshua =4827= Info: Received finish message for job 1 from jdone_
joshua
[Tue Feb 14 12:44:10 2006] joshua =4827= Info: ++++ Event ++++ handled ++++
JOSHUA join event logfile excerpt
[Thu Feb 9 16:05:44 2006] /home/kai/joshua—0.1/joshua/jinit =29375=
startup
[Thu Feb 9 16:05:44 2006] /home/kai/joshua—0.1/joshua/jinit =29375=
[Thu Feb 9 16:05:44 2006] /home/kai/joshua—0.1/joshua/jinit =29376=
[Thu Feb 9 16:05:44 2006] /home/kai/joshua—0.1/joshua/jinit =29376=
joshua is ready..
[Thu Feb 9 16:05:44 2006] /home/kai/joshua—0.1/joshua/jinit =29378=
[Thu Feb 9 16:05:44 2006] joshua =29378= Info: Inititiate Server startup
[Thu Feb 9 16:05:44 2006] joshua =29378= Info: Startup finished.
[Thu Feb 9 16:05:44 2006] joshua =29378= Info: I’'m there
[Thu Feb 9 16:05:44 2006] joshua =29378= Info: JOSHUA daemon started...
[Thu Feb 9 16:05:44 2006] joshua =29378= Info:
46
[Thu Feb 9 16:05:44 2006] joshua =29378= Info:
40
[Thu Feb 9 16:05:44 2006] joshua =29378= Info:
to 1 member(s)
[Thu Feb 9 16:05:44 2006] joshua =29378= Info:
headnodes
[Thu Feb 9 16:05:44 2006] joshua =29378= Info:
serverdb
[Thu Feb 9 16:05:44 2006] joshua =29378= Info:
[Thu Feb 9 16:05:44 2006] /home/kai/joshua—0.1/joshua/jinit =29379= Info: pbs_server started

ping_nodes: entered
ping_nodes: ping h3

94



19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

A.2. Test output

[Thu Feb 9 16:05:45

2006]

that pbs is running

[Thu Feb 9 16:05:45

[Thu Feb 9 16:05:45
[Thu Feb 9 16:05:45
[Thu Feb 9 16:05:45
[Thu Feb 9 16:05:45
[Thu Feb 9 16:05:45
[Thu Feb 9 16:05:45
[Thu Feb 9 16:05:45
[Thu Feb 9 16:05:45
[Thu Feb 9 16:05:56
57
[Thu Feb 9 16:05:56
to 2 member(s)
[Thu Feb 9 16:05:56
[Thu Feb 9 16:05:56
[Thu Feb 9 16:05:56
[Thu Feb 9 16:05:56
[Thu Feb 9 16:05:56
[Thu Feb 9 16:05:56
[Thu Feb 9 16:05:56
[Thu Feb 9 16:05:56
[Thu Feb 9 16:06:02
74

[Thu Feb 9 16:06:02
to 3 member(s)

[Thu Feb 9 16:06:02
headmaster_hl

[Thu Feb 9 16:06:02

[Thu Feb 9 16:06:02

[Thu Feb 9 16:06:02

[Thu Feb 9 16:06:02

[Thu Feb 9 16:06:02

[Thu Feb 9 16:06:02

[Thu Feb 9 16:06:07
91

[Thu Feb 9 16:06:07
to 4 member(s)

[Thu Feb 9 16:06:07
headmaster_hl

[Thu Feb 9 16:06:07

[Thu Feb 9 16:06:07
[Thu Feb 9 16:06:07
[Thu Feb 9 16:06:07
[Thu Feb 9 16:06:07
[Thu Feb 9 16:06:07
[Thu Feb 9 16:06:07

[Tue Feb 14 12:44:48
40
[Tue Feb 14 12:44:48
1 member(s)
[Tue Feb 14 12:44:48
[Tue Feb 14 12:44:48
[Tue Feb 14 12:44:48
[Tue Feb 14 12:44:48

2006]
2006]
2006]
2006]
2006]
2006]
2006]
2006]
2006]
2006]

2006

2006]
2006]
2006]
2006]
2006]
2006]
2006]
2006]
2006]

2006]
2006]

2006]
2006]
2006]
2006]
2006]
2006]
2006]

2006]
2006]

2006]
2006]
2006]
2006]
2006]
2006]
2006]

2006 ]
2006 ]

2006]
2006]
2006]
2006]

/home/kai/joshua—0.1/joshua/jinit =29376= Info: Sending signal

/home/kai/joshua—0.1/joshua/jinit =29376= Info: Signal send
/home/kai/joshua—0.1/joshua/jinit =29381= Info: jobserver started

joshua
joshua
joshua
joshua
joshua
joshua
joshua
joshua

joshua

joshua
joshua
joshua
joshua
joshua
joshua
joshua
joshua
joshua

joshua
joshua

joshua
joshua
joshua
joshua
joshua
joshua
joshua

joshua
joshua

joshua
joshua
joshua
joshua
joshua
joshua
joshua

=29378=
=29378=
=29378=
=29378=
=29378=
=29378=
=29378=
=29378=

=29378=

=29378=
=29378=
=29378=
=29378=
=29378=
=29378=
=29378=
=29378=
=29378=

=29378=

=29378=

=29378=
=29378=
=29378=
=29378=
=29378=
=29378=
=29378=

=29378=

=29378=

=29378=
=29378=
=29378=
=29378=
=29378=
=29378=
=29378=

Info:
Info:
Info:
Info:
Info:
Info:
Info:
Info:

Info:

Info:
Info:
Info:
Info:
Info:
Info:
Info:
Info:
Info:

Info:

Info:

Info:
Info:
Info:
Info:
Info:
Info:
Info:

Info:

Info:

Info:
Info:
Info:
Info:
Info:
Info:
Info:

Waiting for bootup.. to contiue

Got notification lets go on

done.

headmaster_joshua is now master

+ Members so far:

+ headmaster_joshua

++++ Event ++++ handled ++++

++++ Event ++++ Message received ++++ size =

++ Group change in group headmasters from 1

Assisting the new member the joining process
Send FINISH JOIN

all join data sent..

headmaster_hl is now master

+ Members so far:

+ headmaster_hl

+ headmaster_joshua

++++ Event ++++ handled ++++

++++ Event ++++ Message received ++++ size =

++ Group change in group headmasters from 2
I am not of any help headmaster_joshua

headmaster_hl is now master

+ Members so far:

+ headmaster_hl

+ headmaster_h2

+ headmaster_joshua

++++ Event ++++ handled ++++

++++ Event ++++ Message received ++++ size =

++ Group change in group headmasters from 3
I am not of any help headmaster_joshua

headmaster_hl is now master
+ Members so far:

+ headmaster_hl

+ headmaster_h2

+ headmaster_h3

+ headmaster_joshua

++++ Event ++++ handled ++++

JOSHUA failure logfile excerpt

joshua
joshua

joshua
joshua
joshua
joshua

=4827=

=4827=

=4827=
=4827=
=4827=
=4827=

Info:

Info:

Info:
Info:
Info:
Info:

++++ Event ++++ Message received ++++ size =
++ Group change in group headmasters from 2 to

headmaster_joshua is now master
+ Members so far:

+ headmaster_joshua

++++ Event ++++ handled ++++

95



2

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

A.3. Sources code listings

JOSHUA extern failure event logfile excerpt

[Tue Feb 14 12:39:13 2006] ./jinit =4758= Warning: Child exited. Shutdown initiated.
[Tue Feb 14 12:39:13 2006] ./jinit =4762= Warning: Broken pipe. Shutdown initiated .

A.3 Sources code listings

A31 jemd

jsub.c

/3 sk sk sk ok sk sk ok sk ok ok sk sk ok ok K ok ok ok ok ok ok sk ok ok K sk ok ok ok ok ok Sk ok ok K koK ok oK R ok S ok K ok K sk ok sk ok sk K ok K ok K sk ok sk ok ok K ok K sk ok sk ok sk ok ok ok

* Project: JOSHUA *
* Description: Command line tool to jsub to submit/add jobs similar qsub *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "Y88888 "Y888888 *
* .d88P *
* .d88P" 2006 Kai Uhlemann *
* 888P" *
* *
x Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—-686—smp on 1686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *

*******************************************************************************/
/*******************************************************************************

* *
x Headers *
* *

*******************************************************************************/
#include "utils.h"
/*******************************************************************************

* *
x Global data *
* *
*******************************************************************************/
static zzz_nmox_cap nwgbox;

/*******************************************************************************
* *
* Prototypes *
* *

stk ok ok ok ok sk ok ok ok ko ok sk sk ok ok Kk ok ok ok sk ok ok K Kk ok ok sk sk ok K Kk ok ok sk sk ok kK ko ok ok ok ok ok Kk ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok ko ok ok ok ok Kk /
void handle_events(int, void x);

void timeout(voidx);
/*******************************************************************************
* *
* Main *

96




46

48

50

52

54

56

58

60

62

64

66

68

70

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

A.3. Sources code listings

* *
*******************************************************************************/
int main(int argc, char sxargv, char xxenv)
{
/*
x Local data
*/
/* Transis data =/
int flag = 1;
char xstack = NULL; /* default layer stack will be used =/
static mbox_cap ha_msgbox;

char *xsender=NULL;

char *msg=NULL;

char xinput=NULL;

char spath=NULL;

char *xserverlist;

int ret=0;

struct timeval tout, t_current;
int entries=0, i=0;

/* used to create username x/
double current;
charx coname=NULL;

#ifdef SYSCONFDIR
char xconf = EXPAND(SYSCONFDIR) ;
#else
char xconf = NULL;
fprintf (stderr, "Error: No default sysconfdir defined\n");
exit (EXIT_FAILURE) ;
#endif

/* check for sane input, accept no options so far =/
if (arge>2)
{
fprintf (stderr ,"Error: Option not supported.\n");
exit (EXIT_FAILURE) ;
}

/% options for the config file x*/
cfg_opt_t opts[] =
{

CFG_STR("logfile", "/var/log/joshua/joshua.log", CFGF_NONE),
CFG_STR("errorlog", "/var/log/joshua/joshuaerr.log", CFGF_NONE),
CFG_STR("scheduler_exec", "/usr/local/maui/sbin/maui", CFGF_NONE) ,
CFG_STR("scheduler_conf", "/usr/local/maui/maui.cfg", CFEGF_NONE) ,
CFG_STR("scheduler", "maui", CFGF_NONE) ,

CFG_STR("job_server_exec", "/usr/local/sbin/pbs_server", CFGF_NONE),
CFG_STR("job_server_conf", "/var/spool/server_priv/serverdb", CFGF_NONE),
CFG_STR("job_server", "pbs_server", CFGF_NONE),
CFG_STR("group_com_exec", "/usr/local/sbin/transis", CFGF_NONE),
CFG_STR("group_com_conf", "/etc/transis/transis.conf", CFGF_NONE) ,
CFG_STR("group_com", "transis", CFGF_NONE),

CFG_STR("joshua_exec", "/home/kai/joshua-0.1/joshua/joshua", CFGF_NONE),
CFG_STR("joshua_conf", "/etc/joshua/joshua.conf", CFGF_NONE),
CFG_STR("joshua", "joshua", CFGF_NONE),

CFG_STR("submit_exec", "/usr/local/bin/gsub", CFGF_NONE),
CFG_STR("del_exec", "/usr/local/bin/qdel", CFGF_NONE),
CFG_STR("stat_exec", "/usr/local/bin/qgstat", CFGF_NONE) ,

/* a memory leak in libconfuse forces to leave the default to NULL x/
CFG_STR_LIST ("headnodes", NULL, CFGF_NONE) ,

97




A.3. Sources code listings

CFG_END()

110 };

cfg_t xcfg;
112

cfg = cfg_init (opts, CFGF_NONE);
114

if (cfg_parse(cfg, conf) == CFG_PARSE_ERROR)
116 {

/* no output will be seen when uninitialized =/
118 fprintf(stderr, "Error: parsing configfile\n");
exit (EXIT_FAILURE) ;
120 }

122/« alloc server list =/
entries=cfg_size(cfg, "headnodes");
124 if (entries <1)

{

126 fprintf(stderr, "No headnode entries in config file %s\n", conf);
cfg_free(cfg);
128 exit (EXIT_FAILURE) ;
}
130

serverlist=(char xx)malloc(sizeof (charx*)x(entries+1));
132 if (serverlist==NULL)
{
134 fprintf(stderr, "malloc %s\n",strerror(errno));
exit (EXIT_FAILURE) ;
136 }

138 /* servers x/
for(i=0; i<entries; i++)
140 {
serverlist[i]=cpystr(cfg_getnstr (cfg, "headnodes" , i));
142 }
serverlist[i]=NULL;
144

146 /* free config file structure x*/
cfg_free(cfg);
148

150 /+ set the timeout values x/
tout.tv_sec=10;
152 tout.tv_usec=0;

154 /+ create connection name from clockticks since 1970 =*/
gettimeofday (&t_current, NULL);
156 current=t_current.tv_sec*1000000.0+t_current.tv_usec;

158 /% get the string size for the clock ticks and allocate space x*/
if ((coname=(char*)malloc ((snprintf (NULL, 0, "%.01f",
160 current)+1)xsizeof(char)))==NULL)
{
162 log_err("malloc %s\n", strerror(errno));
}
164
/* create the connection name */
166 snprintf (coname, snprintf(NULL, 0, "%.01f", current)+1, "%.01f",
current);
168
/* get the cwd =/
170 path=gewd() ;

98



172

174

176

178

180

1

®
N

184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

216

218

220

222

224

226

228

230

232

234

A.3. Sources code listings

/* get the stdin x/
if (chkstdin ()==0)
{

}

input=readfd (STDIN_FILENO) ;

/* connect remotely to transis x/
for(i=0; i<entries; i++)

{

if ((msgbox = zzz_RemoteConnect( coname, stack, flag, serverlist[i],
4001)) !'=0)
{

break;
}
}

/* if none of the listed head nodes was reachable exit =/

if (msgbox==0)
{

for(i=0; i<entries; i++)

{

fprintf(stderr ,"Error: RemoteConnect to host %s connection failed.\n",
serverlist[i]);

}
destroylist (&serverlist);

exit (EXIT_FAILURE) ;
}

/* we dont need that string anymore x/
free (coname) ;

/* free server list x/
destroylist (&serverlist);

/* change focus x/
ha_msgbox = zzz_Focus (msgbox, "HA");

/* get sender name x/
sender= HA_ Get_Logical_Name(ha_msgbox) ;

E_init();

/* put together a message includeing all execution
msg=mkaddmsg(getuid () , getgid (), input, argv, env, sender, path);

if (strlen (msg)>MAX MSG_SIZE)
{

fprintf(stderr, "Message to remote server too long. Try less STDIN.\n");

exit (EXIT_FAILURE) ;
}

destroystring (&input) ;
destroystring (&path);

ret = zzz_VaSend(msgbox, SAFE, 0, strlen(msg)+1 , msg,
HEADNODEGROUP, NULL) ;

if (ret<strlen (msg))

{

fprintf (stderr, "Message sent failed.\n");

exit (EXIT_FAILURE) ;
}

destroystring (&msg) ;

99




236

238

240

242

244

246

248

250

252

254

256

258

260

262

264

266

268

270

272

274

276

278

280

282

284

286

288

290

292

294

296

A.3. Sources code listings

/* add event base for incoming messages x/

zzz_Add_Upcall (msgbox, handle_events, USER_PRIORITY, (void *) 1);

E_sched (tout, timeout, (void x) 1);

/* start event handler */
E_main_loop () ;

return (EXIT_SUCCESS) ;

/*******************************************************************************

*

* handle_events

*

*
*
*

*******************************************************************************/
void handle_events(int dummyl, void xparam)

{
/*

x local data

*/

/* message buffer for TRANSIS msgs */
char recv_buf[MAX MSG_SIZE];

int recv_type, amount;

char sxout=NULL, *err=NULL;

view *gview ;

amount=zzz_Receive (msgbox, recv_buf, MAX MSG_SIZE, &recv_type, &gview);
/* distinguish between group chang msg and data msg */

/% data msg, dont care for group msgs */
if ( recv_type != VIEW_CHANGE)

{

/* first recover the msgid =/
switch (recov_id (recv_buf))
{
/* message received was an submit msgs/
case (RSPMSGID) :
err=recov_stderr (recv_buf);

out=recov_stdout(recv_buf);

{

if (out!=NULL)
{
fprintf (stdout, "%s", out);

}

else

if (err!=NULL)
{

}

fprintf (stderr, "%s", err);

destroystring (&out) ;
destroystring (&err) ;
exit (EXIT_SUCCESS) ;
break;
/+ message unknown and is being ignored

case (UNKNOWNMVSG) :

fprintf(stderr, "Unknown message: %s\n", recv_buf);

exit (EXIT_FAILURE) ;

*/

100




298

300

302

304

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

A.3. Sources code listings

}

void timeout(void xparam)

{

fprintf (stderr, "Operation timed out...\n");
exit (EXIT_FAILURE) ;

jdel.c

] 3 sk ks ok sk ks o sk sk o sk ks ok s sk sk ks ok sk sk sk ks ok sk o sk sk ks ok sk sk sk o st ks o sk sk ok stk ok sk o sk sk R sk ok sk ok o o ok
* Project: JOSHUA
* Description: Command line tool jdel to delete jobs, similar qsub

Created at: Mon Nov 7 10:58:14 EST 2005
System: Linux 2.6.8—2—686—smp on i686

Copyright (c) 2006 Oakridge National Laboratory All rights reserved.

*

*
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
s 888  "Y88P" 88888P" 888 888 "Y88888 "Y888888 *
* .d8sp *
* .d8sp" 2006 Kai Uhlemann *
* 888P" *
* *
* *
* *
* *
* *
* *

ok ok ok oKk ok ok K ok Kk Kk oKk ok K ok K ok Kk Kk oKk ok K ok ok ok ok Kk ok K ok K ok K ok K ok oKk ok ok ok ok ok K ok ok ok ok ok ok oKk ok ok ok ok ok ok ok ok /
/] 3k sk sk s ok sk sk ok sk ok sk sk sk ok ok K ok ok sk ok ok ok sk ok ok K ok ok ok ok ok ok Sk ok ok K sk ok ok oKk ok S ok K ok K sk ok sk ok sk R ok K ok K sk ok sk ok sk K ok K ok ok sk ok sk ok ok ok ok

* *
* Headers *
* *

*************>(<****************************>(<************************************/
#include "utils.h"
/*******************************************************************************

* *
x Global data *
* *
*******************************************************************************/
static zzz_mbox_cap msgbox ;

/*******************************************************************************
* *
* Prototypes *
* *

Sk ok ok ok ok R R R R R o oK o o oK R R R R R R KK KK KK KKK KKK KKK K SR SR oK R R oK o o o o ok o o R R R K K KK K KKK KRR Rk Rk ok ok ok /)
void handle_events(int, void x);

void timeout(voidx);
/*******************************************************************************

* *
* Main *
* *

ok ok ok ok ok oK ok K oKk K ok koK ok oKk K ok kK ok koK ok oKk K ok koK ok oKk R oKk ok ok oK ok oKk K ok koK ok oKk ok ko ok ok ok ok K KOk K kR ok R Kok Rk ok /)
int main(int argc, char xxargv, char xxenv)
/*

x Local data

101




52

54

56

58

60

62

64

66

68

70

90

92

94

96

98

100

102

104

106

108

110

112

114

A.3. Sources code listings

*/

/* Transis data =/

int flag = 1;

char xstack = NULL; /* default layer stack will be used =/
static mbox_cap ha_msgbox;

char ssender=NULL;
char *msg=NULL;
char xinput=NULL;
char xpath=NULL;
char *xserverlist;
int ret=0;

st

int entries=0, i=0;

/+ used to create username x*/
double current;

ruct timeval tout, t_current;

charx coname=NULL;

#ifdef SYSCONFDIR
char xconf = EXPAND(SYSCONFDIR) ;

#els

e

char sconf = NULL;
fprintf(stderr, "Error: No default sysconfdir defined\n");
exit (EXIT_FAILURE) ;

#endif

/% check for sane input, accept no options so far */

if
{

(argc>2)

fprintf(stderr ,"Error: Multiple job deletion not supported or option not\

supported.\n");

}

exit (EXIT_FAILURE) ;

/% options for the config file x*/

{

Vs
cf

cf

cfg_opt_t opts[] =

CFG_STR("logfile", "/var/log/joshua/joshua.log", CFGF_NONE),
CFG_STR("errorlog", "/var/log/joshua/joshuaerr.log", CFGF_NONE),
CFG_STR("scheduler_exec", "/usr/local/maui/sbin/maui", CFGF_NONE),
CFG_STR("scheduler_conf", "/usr/local/maui/maui.cfg", CFEGF_NONE) ,
CFG_STR("scheduler", "maui", CFGF_NONE) ,

CFG_STR("job_server_exec", "/usr/local/sbin/pbs_server", CFGF_NONE),
CFG_STR("job_server_conf", "/var/spool/server_priv/serverdb", CFGF_NONE),
CFG_STR("job_server", "pbs_server", CFGF_NONE),
CFG_STR("group_com_exec", "/usr/local/sbin/transis", CFGF_NONE) ,
CFG_STR("group_com_conf", "/etc/transis/transis.conf", CFGF_NONE) ,
CFG_STR("group_com", "transis", CFGF_NONE),

CFG_STR("joshua_exec", "/home/kai/joshua-0.1/joshua/joshua", CFGF_NONE),
CFG_STR("joshua_conf", "/etc/joshua/joshua.conf", CFGF_NONE),
CFG_STR("joshua", "joshua", CFGF_NONE),

CFG_STR("submit_exec", "/usr/local/bin/gsub", CFGF_NONE),
CFG_STR("del_exec", "/usr/local/bin/qdel", CFGF_NONE),
CFG_STR("stat_exec", "/usr/local/bin/qgstat", CFGF_NONE) ,

/% a memory leak in libconfuse forces to leave the default to NULL =/
CFG_STR_LIST ("headnodes", NULL, CFGF_NONE) ,

CFG_END()

g_t xcfg;

g = cfg_init(opts, CFGF_NONE);

102



A.3. Sources code listings

116 if (cfg_parse(cfg, conf) == CFG_PARSE_ERROR)
{

118 /* no output will be seen when uninitialized =/
fprintf(stderr, "Error: parsing configfile\n");
120 exit (EXIT_FAILURE) ;
}
122

/* alloc server list */
124 entries=cfg_size (cfg, "headnodes");
if (entries <1)
126 {
fprintf(stderr, "No headnode entries in config file %s\n", conf);
128 cfg_free(cfg);
exit (EXIT_FAILURE) ;
130 }

132 serverlist=(char xx)malloc(sizeof (charx)x(entries+1));
if (serverlist==NULL)

134 {
fprintf(stderr, "malloc %s\n",strerror(errno));
136 exit (EXIT_FAILURE) ;
}
138

/* servers x/
140 for(i=0; i<entries; i++)
{
142 serverlist[i]=cpystr(cfg_getnstr (cfg, "headnodes" , i));

}
144 serverlist[i]=NULL;

146
/* free config file structure x/
148 cfg_free(cfg);

150

/+ set the timeout values x/
152 tout.tv_sec=10;

tout.tv_usec=0;
154

/* create connection name from clockticks since 1970 =/
156 gettimeofday (&t_current, NULL);

current=t_current.tv_sec*1000000.0+t_current.tv_usec;
158

/% get the string size for the clock ticks and allocate space x*/
160 if ((coname=(char*)malloc ((snprintf (NULL, 0, "%.01f",

current)+1)xsizeof (char)))==NULL)
162 {
log_err("malloc %s\n", strerror(errno));

164 }

166 /* create the connection name x/
snprintf (coname, snprintf(NULL, 0, "%.01f", current)+1, "%.01f",
168 current);

170 /* get the cwd =/
path=gcwd () ;
172
/% get the stdin x/
174 if (chkstdin ()==0)
{
176 input=readfd (STDIN_FILENO) ;
}

103



A.3. Sources code listings

178
/% connect remotely to transis x/
180 for(i=0; i<entries; i++)

{

182 if ((msgbox = zzz_RemoteConnect( coname, stack, flag,
serverlist[i], 4001))!=0)
184 {
break;
186 }

}
188 /* if none of the listed head nodes was reachable exit =/
if (msgbox==0)
190 {
for(i=0; i<entries; i++)
192 {
fprintf(stderr ,"Error: RemoteConnect to host %s connection failed.\n",
194 serverlist[i]);
}
196 destroylist (&serverlist);
exit (EXIT_FAILURE) ;

198 }

200 /% we dont need that string anymore */
free (coname) ;

202
/+ free server list x/

204 destroylist (&serverlist);

206 /* change focus x/

ha_msgbox = zzz_Focus (msgbox, "HA");
208

/% get sender name x/
210 sender= HA_Get_Logical _Name(ha_msgbox) ;

212 E_init();

214 /* put together a message includeing all execution details =/
msg=mkdelmsg(getuid () , getgid (), input, argv, env, sender, path);
216 if (strlen (msg)>MAX MSG_SIZE)
{
218 fprintf (stderr, "Message to remote server too long. Try less STDIN.\n");
exit (EXIT_FAILURE) ;
220 }

222 destroystring (&input) ;

destroystring (&path) ;
224

ret = zzz_VaSend (msgbox, SAFE, 0, strlen(msg)+1 , msg,
226 HEADNODEGROUP, NULL) ;

228 if (ret<strlen (msg))

{

230 fprintf (stderr, "Message sent failed.\n");
exit (EXIT_FAILURE) ;
232 }

234 destroystring (&msg) ;

236
/* add event base for incoming messages */

238 zzz_Add_Upcall (msgbox, handle_events, USER_PRIORITY, (void x) 1);
E_sched (tout, timeout, (void *) 1);

240

104



A.3. Sources code listings

/x start event handler */
242 E_main_loop () ;

244 return (EXIT_SUCCESS) ;

246}
248
/*******************************************************************************
250 *
* handle_events *
252 * *

*******************************************************************************/
254 void handle_events(int dummyl, void sparam)
{
256/
x local data
258 x/
/* message buffer for TRANSIS msgs */
260 char recv_buf[MAX MSG_SIZE] ;
int recv_type, amount;
262 char sxout=NULL, xerr=NULL;
view xgview;

264

266 amount=zzz_Receive (msgbox, recv_buf, MAX MSG_SIZE, &recv_type, &gview);
/* distinguish between group chang msg and data msg */

28  /+ data msg, dont care for group msgs */
if ( recv_type != VIEW_CHANGE)

270 {
/* first recover the msgid =/
272 switch (recov_id (recv_buf))
{
274 /+ message received was an response msg x/
case (RSPMSGID) :
276 err=recov_stderr (recv_buf);
out=recov_stdout(recv_buf);
278 if (out!=NULL)
{
280 fprintf (stdout, "%s", out);
}
282 else
{
284 if (err !=NULL)
{
286 fprintf (stderr, "%s", err);
}
288 }
destroystring (&out) ;
290 destroystring (&err);
exit (EXIT_SUCCESS) ;
292 break;
/* message unknown and is being ignored =/
294 case (UNKNOWNMSG) :
fprintf(stderr, "Unknown message: %s\n", recv_buf);
296 exit (EXIT_FAILURE) ;
}
298 }
300 }

302 void timeout(void xparam)

{

105



304

306

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

A.3. Sources code listings

fprintf (stderr, "Operation timed out...\n");
exit (EXIT_FAILURE) ;

jstat.c

/*******************************************************************************

* Project: JOSHUA

* Description: Command line tool to get queue status
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org>

*
* 888888 888

* "88b 888

* 888 888

* 888 .d88b. .d8888b 88888b. 888 888
* 888 d88""88b 88K 888 "88b 888 888
* 888 888 888 "Y8888b. 888 888 888 888
* 88P Y88..88P X88 888 888 Y88b 888
* 888 "Y88P" 88888P" 888 888 "Y88888
* .d88P

* .d88P" 2006 Kai
* 888P"

*

x Created at: Mon Nov 7 10:58:14 EST 2005

* System: Linux 2.6.8-2—-686—smp on i686
*

* Copyright (c) 2006 Oakridge National Laboratory All

*

8888b.
"88b
.d888888
888 888
"Y888888

Uhlemann

rights reserved.

¥ K K X X X XK X X X X X X X ¥ X X ¥ X ¥ ¥

*******************************************************************************/

/*******************************************************************************

*
x Headers
*

*
*
*

K ok ok ok ok ok oK K ok K ok ok sk oK Sk ok K oK K ok K sk ok Sk oK ok K ok K sk ok sk ok sk ok ok K ok K sk ok sk ok sk ok ok K ok oK sk ok sk ok sk ok ok K ok ok sk ok sk ok sk ok ok ok ok ok ok /

#include "utils.h"

/***>|<>|<**********************>k************************>|<**************************

*
x Global data

*

*
*
*

*******************************************************************************/
msgbox ;
/*******************************************************************************

static zzz_mbox_cap

k
* Prototypes
*

*
*
*

*******************************************************************************/
void handle_events(int, void x);
void timeout(void=x);
/*******************************************************************************

*
* Main
*

*
*
*

*******************************************************************************/
int main(int argc, char sxargv, char xxenv)

{
/*
% Local data

*/

/* Transis data */

int flag = 1;

char xstack = NULL; /* default layer stack will be used =/

106




56

58

60

62

64

66

68

70

A.3. Sources code listings

static mbox_cap ha_msgbox;

char ssender=NULL;

char +msg=NULL;

char xinput=NULL;

char xpath=NULL;

char xxserverlist;

int ret=0;

struct timeval tout, t_current;
int entries=0, i=0;

/+ used to create username x*/
double current;
charx coname=NULL;

72 #ifdef SYSCONFDIR

char xconf = EXPAND(SYSCONFDIR) ;

74 #else

76

78

80

82

84

86

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

char *xconf = NULL;
fprintf (stderr, "Error: No default sysconfdir defined\n");
exit (EXIT_FAILURE) ;

#endif

/% check for sane input, accept no options so far =/
if (arge>2)
{
fprintf (stderr ,"Error: Option not supported.\n");
exit (EXIT_FAILURE) ;
}

/% options for the config file x*/
cfg_opt_t opts[] =
{

CFG_STR("logfile", "/var/log/joshua/joshua.log", CFGF_NONE),
CFG_STR("errorlog", "/var/log/joshua/joshuaerr.log", CFGF_NONE),
CFG_STR("scheduler_exec", "/usr/local/maui/sbin/maui", CFGF_NONE) ,
CFG_STR("scheduler_conf", "/usr/local/maui/maui.cfg", CFGF_NONE),
CFG_STR("scheduler", "maui", CFGF_NONE),
CFG_STR("job_server_exec", "/usr/local/sbin/pbs_server", CFGF_NONE),
CFG_STR("job_server_conf", "/var/spool/server_priv/serverdb", CFGF_NONE) ,
CFG_STR("job_server", "pbs_server", CFGF_NONE),
CFG_STR("group_com_exec", "/usr/local/sbin/transis", CFGF_NONE),
CFG_STR("group_com_conf", "/etc/transis/transis.conf", CFGF_NONE) ,
CFG_STR("group_com", "transis", CFGF_NONE),
CFG_STR(" joshua_exec", "/home/kai/joshua-0.1/joshua/joshua", CFGF_NONE),
CFG_STR("joshua_conf", "/etc/joshua/joshua.conf", CFGF_NONE),
CFG_STR("joshua", "joshua", CFGF_NONE),
CFG_STR("submit_exec", "/usr/local/bin/gsub", CFGF_NONE),
CFG_STR("del_exec", "/usr/local/bin/qdel", CFGF_NONE),
CFG_STR("stat_exec", "/usr/local/bin/qgstat", CFGF_NONE) ,
/* a memory leak in libconfuse forces to leave the default to NULL =/
CFG_STR_LIST ("headnodes", NULL, CFGF_NONE) ,
CFG_END()

I

cfg_t *cfg;

cfg = cfg_init (opts, CFGF_NONE);
if (cfg_parse(cfg, conf) == CFG_PARSE_ERROR)
{

/* no output will be seen when uninitialized x/

107




120

122

124

126

128

130

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

176

178

180

A.3. Sources code listings

fprintf(stderr, "Error: parsing configfile\n");
exit (EXIT_FAILURE) ;
}

/% alloc server list =/
entries=cfg_size (cfg, "headnodes");
if (entries <1)

{

fprintf(stderr, "No headnode entries in config file J%s\n",

cfg_free(cfg);
exit (EXIT_FAILURE) ;
}

serverlist=(char =xx)malloc(sizeof (charx)x(entries+1));
if (serverlist==NULL)
{
fprintf(stderr, "malloc %s\n",strerror(errno));
exit (EXIT_FAILURE) ;
}

/% servers x/
for(i=0; i<entries; i++)
{
serverlist[i]=cpystr(cfg_getnstr (cfg, "headnodes" , i));

}
serverlist[i]=NULL;

/% free config file structure x*/
cfg_free(cfg);

/* set the timeout values x/
tout.tv_sec=10;
tout.tv_usec=0;

/+ create connection name from clockticks since 1970 =*/
gettimeofday (&t_current, NULL);
current=t_current.tv_sec*1000000.0+t_current.tv_usec;

conf);

/% get the string size for the clock ticks and allocate space =/

if ((coname=(char*)malloc ((snprintf (NULL, 0, "%.01f",
current)+1)*sizeof (char)))==NULL)
{

log_err("malloc %s\n", strerror(errno));

}

/* create the connection name */

snprintf (coname, snprintf(NULL, 0, "%.01f", current)+1, "%.01f",

current);

/% get the cwd =/
path=gcwd () ;

/% get the stdin x/
if (chkstdin ()==0)
{
input=readfd (STDIN_FILENO) ;
}

/* connect remotely to transis x/
for(i=0; i<entries; i++)

{

108




A.3. Sources code listings

182 if ((msgbox = zzz_RemoteConnect( coname , stack, flag, serverlist[i],
4001)) !'=0)
184 {
break;
186 }

}

188 /+ if none of the listed head nodes was reachable exit =/
if (msgbox==0)

190 {

for(i=0; i<entries; i++)
192 {

fprintf(stderr ,"Error: RemoteConnect to host %s connection failed.\n",

194 serverlist[i]);

}
196 destroylist (&serverlist);

exit (EXIT_FAILURE) ;

198 }

200 /% we dont need that string anymore */
free (coname) ;

202
/* free server list x/

204 destroylist(&serverlist);

206 /% change focus */

ha_msgbox = zzz_Focus (msgbox, "HA");
208

/* get sender name x/
210 sender= HA_Get_Logical _Name(ha_msgbox) ;

212 E_init();

214 /% put together a message includeing all execution details x*/
msg=mkstamsg (getuid () , getgid (), input, argv, env, sender, path);
216 if (strlen (msg)>MAX MSG_SIZE)
{
218 fprintf (stderr, "Message to remote server too long. Try less STDIN.\n");
exit (EXIT_FAILURE) ;
220 }

222 destroystring (&input) ;

destroystring (&path) ;
224

ret = zzz_VaSend (msgbox, SAFE, 0, strlen(msg)+1 , msg,
226 HEADNODEGROUP, NULL) ;

228 if (ret<strlen (msg))

{

230 fprintf (stderr, "Message sent failed.\n");
exit (EXIT_FAILURE) ;
232 }

234 destroystring (&msg) ;

236
/* add event base for incoming messages x/

238 zzz_Add_Upcall (msgbox, handle_events, USER_PRIORITY, (void *) 1);
E_sched (tout, timeout, (void x*) 1);

240
/* start event handler */

22 E_main_loop () ;

244 return (EXIT_SUCCESS) ;

109



A.3. Sources code listings

246 |
248
/*******************************************************************************
250 * *
x handle_events *
252k *

*******************************************************************************/
254 void handle_events(int dummyl, void sparam)
{
256 /%
x local data
258 x/
/* message buffer for TRANSIS msgs */
260 char recv_buf[MAX MSG SIZE];
int recv_type, amount;
262 char *out=NULL, xerr=NULL;
view xgview;

264

266 amount=zzz_Receive (msgbox, recv_buf, MAXMSG_SIZE, &recv_type, &gview);
/* distinguish between group chang msg and data msg */

268  /* data msg, dont care for group msgs x/
if ( recv_type != VIEW_CHANGE)

270 {
/% first recover the msgid =/
272 switch (recov_id (recv_buf))
{
274 /* message received was an response msg */
case (RSPMSGID) :
276 err=recov_stderr (recv_buf);
out=recov_stdout(recv_buf);
278 if (out!=NULL)
{
280 fprintf (stdout, "%s", out);
}
282 else
{
284 if (err!=NULL)
{
286 fprintf (stderr, "%s", err);
}
288 }
destroystring (&out) ;
290 destroystring (&err) ;
exit (EXIT_SUCCESS) ;
292 break;
/* message unknown and is being ignored x/
294 case (UNKNOWNMSG) :
fprintf(stderr, "Unknown message: %s\n", recv_buf);
296 exit (EXIT_FAILURE) ;
}
298 }
300 |}

302 void timeout(void xparam)

{

304 fprintf (stderr, "Operation timed out...\n");
exit (EXIT_FAILURE) ;
306

110



10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

A.3. Sources code listings

A.3.2 jmutex

jmutex.c

/*******************************************************************************

* Project: JOSHUA *
* Description: JOSHUA mutex to request job execution on cluster node *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "Y88888 "Y888888 *
* .d88P *
* .d8sp" 2006 Kai Uhlemann *
* 888P" *
* *
x Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—-686—smp on 1686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *

*******************************************************************************/
/*******************************************************************************

* *
* Headers *
* *

*******************************************************************************/
#include "utils.h"
/*******************************************************************************

* *
x Global data *
* *

*******************************************************************************/
static zzz_mbox_cap msgbox;
/*******************************************************************************

* *
* Prototypes *
* *

Sk ok ok ok ok R R R R ok ok ok o o oK R R R R R K K K K K K KK KKK KK K K SR oK oK ok o o o o o o o o o o R R K K K KK K KKK KRRk Rk ok ok ok ok /)
void handle_events(int, void x);

void timeout(voidx);
/*******************************************************************************

* *
* Main *
* *

stk otk ok ok ok sk ok ok ok ko ok ok sk ok Kk ok ok ok sk ok kK Kk ok ok sk sk ok kK sk o ok sk sk ok ok sk ko ok sk ok sk ok Kk ok ok ok sk ok ok ok sk ok ok ok sk ok ok kK ok ok ok ok ok ok Kk /
int main(int argc, char sxargv, char sxenv)
{
/*
x Local data
*/
/+ Transis data */
int flag = 1;
char xstack = NULL; /* default layer stack will be used =/
static mbox_cap ha_msgbox;

111




58

60

62

64

66

68

70

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

A.3. Sources code listings

char sxsender=NULL;

char *msg=NULL;

char *xserverlist;

int ret=0;

struct timeval tout, t_current;
int entries=0, i=0;

/* used to create username x/
double current;
charx coname=NULL;

#ifdef SYSCONFDIR
char xconf = EXPAND(SYSCONFDIR) ;

#els

e

char sxconf = NULL;
fprintf (stderr, "No default sysconfdir defined\n");
exit (EXIT_FAILURE) ;
#endif
/* options for the config file =/

{

'
cf

cf

if
{

}

cfg_opt_t opts[] =

CFG_STR("logfile", "/var/log/joshua/joshua.log", CFGF_NONE),
CFG_STR("errorlog", "/var/log/joshua/joshuaerr.log", CFGF_NONE),
CFG_STR("scheduler_exec", "/usr/local/maui/sbin/maui", CFGF_NONE) ,
CFG_STR("scheduler_conf", "/usr/local/maui/maui.cfg", CFGF_NONE) ,
CFG_STR("scheduler", "maui", CFGF_NONE),

CFG_STR("job_server_exec", "/usr/local/sbin/pbs_server", CFGF_NONE) ,
CFG_STR("job_server_conf", "/var/spool/server_priv/serverdb", CFGF_NONE),
CFG_STR("job_server", "pbs_server", CFGF_NONE),
CFG_STR("group_com_exec", "/usr/local/sbin/transis", CFGF_NONE) ,
CFG_STR("group_com_conf", "/etc/transis/transis.conf", CFGF_NONE) ,
CFG_STR("group_com", "transis", CFGF_NONE) ,

CFG_STR("joshua_exec", "/home/kai/joshua-0.1/joshua/joshua", CFGF_NONE),
CFG_STR("joshua_conf", "/etc/joshua/joshua.conf", CFGF_NONE),

CFG_STR(" joshua", "joshua", CFGF_NONE),

CFG_STR("submit_exec", "/usr/local/bin/gsub", CFGF_NONE),
CFG_STR("del_exec", "/usr/local/bin/qdel", CFGF_NONE),
CFG_STR("stat_exec", "/usr/local/bin/qgstat", CFGF_NONE) ,

/* a memory leak in libconfuse forces to leave the default to NULL x/
CFG_STR_LIST ("headnodes", NULL, CFGF_NONE) ,

CFG_END()

g_t xcfg;

g = cfg_init (opts, CFGF_NONE);

(cfg_parse(cfg, conf) == CFG_PARSE_ERROR)

/* no output will be seen when uninitialized =/

fprintf(stderr, "Error: parsing configfile\n");
exit (EXIT_FAILURE) ;

/* alloc server list */
entries=cfg_size (cfg, "headnodes");

if
{

(entries <1)
fprintf(stderr, "No headnode entries in config file %s\n", conf);

cfg_free(cfg);
exit (EXIT_FAILURE) ;

112




A.3. Sources code listings

}

122
serverlist=(char x*)malloc(sizeof (charx*)x(entries+1));
124 if (serverlist==NULL)
{
126 fprintf(stderr, "malloc %s\n",strerror(errno));
exit (EXIT_FAILURE) ;
128 }

130 /* servers x/
for(i=0; i<entries; i++)

132 {
serverlist[i]=cpystr(cfg_getnstr(cfg, "headnodes" , i));
134 }
serverlist[i]=NULL;
136

138 /% free config file structure x*/
cfg_free(cfg);
140

142 /* set the timeout values %/
tout.tv_sec=5;
144 tout.tv_usec=5;

146

/* create connection name from clockticks since 1970 =/
148 gettimeofday (&t_current, NULL);

current=t_current.tv_sec*1000000.0+t_current.tv_usec;
150

/* get the string size for the clock ticks and allocate space x*/
152 if ((coname=(char*)malloc ((snprintf (NULL, 0, "%.01f",

current)+1)*sizeof (char)))==NULL)
154 {
log_err("malloc %s\n", strerror(errno));

156 }

158 /* create the connection name x/
snprintf (coname, snprintf(NULL, 0, "/.01f", current)+1, "%.01f",
160 current);

162 /+ connect remotely to transis x/
for(i=0; i<entries; i++)
164 {
if ((msgbox = zzz_RemoteConnect( coname , stack, flag,
166 serverlist[i], 4001))!=0)
{
168 break;
}
170 }
/+ if none of the listed head nodes was reachable exit x*/
172 if (msgbox==0)
{

174 for(i=0; i<entries; i++)

{
176 fprintf(stderr ,"Error: RemoteConnect to host %s connection\

failed.\n", serverlist[i]);

178 }

destroylist (&serverlist);
180 exit (EXIT_FAILURE) ;

}

182

/* we dont need that string anymore x/

113



184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

216

218

220

222

224

226

228

230

232

234

236

238

240

242

244

246

A.3. Sources code listings

free (coname) ;

/+ free server list x/
destroylist (&serverlist);

/* change focus x/
ha_msgbox = zzz_Focus (msgbox, "HA");

/% get sender name x/
sender= HA_Get_Logical _Name(ha_msgbox) ;

E_init();

/* put together a message includeing all execution details =/
msg=mkstrmsg (atoi(argv[1]), sender);
if (strlen (msg)>MAX MSG_SIZE)
{
fprintf (stderr, "Message to remote server too long.\n");
exit (EXIT_FAILURE) ;
}

ret = zzz_VaSend (msgbox, SAFE, 0, strlen(msg)+1 , msg,

HEADNODEGROUP, NULL) ;

!/

if (ret<strlen (msg))

{

fprintf (stderr, "Message sent failed.\n");
exit (EXIT_FAILURE) ;
}

destroystring (&msg) ;
/* add event base for incoming messages */
zzz_Add_Upcall (msgbox, handle_events, USER_PRIORITY, (void *) 1);

E_sched (tout, timeout, (void =) 1);

/* start event handler */
E_main_loop () ;

return (EXIT_SUCCESS) ;

/*******************************************************************************

*
*
*

handle_events

*
*
*

*******************************************************************************/
void handle_events(int dummyl, void xparam)

{
/%

*

*/

local data
/* message buffer for TRANSIS msgs */
char recv_buf[MAX MSG_SIZE];

int recv_type, amount;
view xgview;

amount=zzz_Receive (msgbox, recv_buf, MAX MSG SIZE, &recv_type, &gview);

114




248

250

252

254

256

258

260

262

264

266

268

270

272

274

276

10

12

14

16

18

20

22

24

26

28

A.3. Sources code listings

/* distinguish between group chang msg and data msg */
/* data msg, dont care for group msgs x/
if ( recv_type != VIEW_CHANGE)
{
/* first recover the msgid =/
switch (recov_id (recv_buf))
{
/* message received was an response msg x/
case (STRMSGID) :
fprintf(stderr, "Allowed\n");
exit (EXIT_PBS_SUCCESS) ;
break;
case (FNSMSGID) :
fprintf(stderr, "Not Allowed\n");
exit (EXIT_PBS_ABORT) ;
break;
/* message unknown and is being ignored =/
case (UNKNOWNMSG) :
fprintf (stderr, "Unknown message: %s\n", recv_buf);
exit (EXIT_PBS_ABORT) ;

}

void timeout(void xparam)

{

fprintf (stderr, "Operation timed out...\n");
exit (EXIT_FAILURE) ;

jjdone.c

/3 sk sk s ok sk sk ok sk ok sk sk sk ok K ok K ok ok sk oK ok ok Sk ok ok K sk ok ok ok ok ok Sk ok ok K ok ok ok oKk ok Sk ok K ok K sk ok sk oKk sk K oK K ok ok sk ok sk ok R sk K ok K koK sk ok K ok ok ok

* Project: JOSHUA *
* Description: JOSHUA mutex to signal job finished on cluster node *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "Y88888 "Y888888 *
* .d88P *
* .d8spP" 2006 Kai Uhlemann *
* 888P" *
* *
x Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—-686—smp on 1686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *

ook ok ok oKk ok K ok K ok Kk Kk oKk ok K ok K ok ok ok Kk oKk ok K ok o ok K ok oKk ok K ok K ok ok ok ok oKk ok ok o ok ok Kk oKk ok ok ok ok Kk ok ok ok ok ok ok ok ok /
/] 3 sk sk s ok sk sk ok sk ok sk sk sk ok ok K ok ok ok ok ok ok sk ok ok K ok oK ok ok ok ok Sk oK ok K ok ok ok oKk ok R ok K ok K sk ok sk ok R sk K ok K ok ok sk ok sk ok sk K ok Kk ok sk ok Sk ok ok K

* *
x Headers *
* *

*******************************************************************************/

115




30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

68

70

72

74

76

78

80

82

84

86

88

A.3. Sources code listings

#include "utils.h"

/*******************************************************************************
* *
* Global data *
* *
stk ok ok ok ok sk ok ok ok sk ko ok ok sk ok kK ok ok ok sk ok ok Kk ok ok ok sk sk ok kK sk ok ok ok sk ok ok ks ok ok sk sk sk ok Kk sk ok ok sk ok ok ok sk ok ok ok ok ok ok ok Kk ok ok ok ok ok Kk /
static zzz_mbox_cap msgbox ;
/% 5%k ok ok ok ok ok ok ok ok ok ok ok ok ok oKk R ok koK ok koK ok R oK kK ok koK ok oKk R ok koK ok koK ok oKk K ok koK ok oKk K ok koK ok koK ok K oKk o ok kK ok K KOk K KOk
* *
* Main *
* *
*******************************************************************************/
int main(int argc, char sxargv, char sxenv)
{
/%
x Local data
*/

/* Transis data =/

int flag = 1;

char xstack = NULL; /* default layer stack will be used =/

static mbox_cap ha_msgbox;

char ssender=NULL;

char *msg=NULL;

char xxserverlist;

int ret=0;

struct timeval tout;

int entries=0, i=0;
#ifdef SYSCONFDIR

char xconf = EXPAND(SYSCONFDIR) ;
#else
char sxconf = NULL;
fprintf (stderr, "No default sysconfdir defined\n");
exit (EXIT_FAILURE) ;
#endif
/* options for the config file =/
cfg_opt_t opts[] =
{

CFG_STR("logfile", "/var/log/joshua/joshua.log", CFGF_NONE),
CFG_STR("errorlog", "/var/log/joshua/joshuaerr.log", CFGF_NONE),
CFG_STR("scheduler_exec", "/usr/local/maui/sbin/maui", CFGF_NONE) ,
CFG_STR("scheduler_conf", "/usr/local/maui/maui.cfg", CFGF_NONE),
CFG_STR("scheduler", "maui", CFGF_NONE),
CFG_STR("job_server_exec", "/usr/local/sbin/pbs_server", CFGF_NONE),
CFG_STR("job_server_conf", "/var/spool/server_priv/serverdb", CFGF_NONE) ,
CFG_STR("job_server", "pbs_server", CFGF_NONE),
CFG_STR("group_com_exec", "/usr/local/sbin/transis", CFGF_NONE) ,
CFG_STR("group_com_conf", "/etc/transis/transis.conf", CFGF_NONE) ,
CFG_STR("group_com", "transis", CFGF_NONE) ,
CFG_STR("joshua_exec", "/home/kai/joshua-0.1/joshua/joshua", CFGF_NONE),
CFG_STR("joshua_conf", "/etc/joshua/joshua.conf", CFGF_NONE),
CFG_STR("joshua", "joshua", CFGF_NONE),
CFG_STR("submit_exec", "/usr/local/bin/gsub", CFGF_NONE),
CFG_STR("del_exec", "/usr/local/bin/qdel", CFGF_NONE),
CFG_STR("stat_exec", "/usr/local/bin/qgstat", CFGF_NONE) ,
/* a memory leak in libconfuse forces to leave the default to NULL x/
CFG_STR_LIST ("headnodes", NULL, CFGF_NONE) ,
CFG_END()

b

cfg_t *cfg;

116




A.3. Sources code listings

92 cfg = cfg_init(opts, CFGF_NONE);

94 if (cfg_parse(cfg, conf) == CFG_PARSE_ERROR)
{

96 /* no output will be seen when uninitialized =/
fprintf(stderr, "Error: parsing configfile\n");
98 exit (EXIT_FAILURE) ;
}
100

/* alloc server list x/
102 entries=cfg_size(cfg, "headnodes");
if (entries <1)
104 {
fprintf(stderr, "No headnode entries in config file %s\n", conf);
106 cfg_free(cfg);
exit (EXIT_FAILURE) ;

108 }

110 serverlist=(char x*)malloc(sizeof (charx*)x(entries+1));
if (serverlist==NULL)

112 {
fprintf(stderr, "malloc %s\n",strerror(errno));
114 exit (EXIT_FAILURE) ;
}
116

/* servers x/
118 for(i=0; i<entries; i++)
{
120 serverlist[i]=cpystr(cfg_getnstr(cfg, "headnodes" , i));

}
122 serverlist[i]=NULL;

124
/% free config file structure x*/
126 cfg_free(cfg);

128
/* set the timeout values x*/
130 tout.tv_sec=5;
tout.tv_usec=5;
132
/% connect remotely to transis x/
134 for(i=0; i<entries; i++)

{

136 if ((msgbox = zzz_RemoteConnect("jdone", stack, flag,
serverlist[i], 4001))!=0)
138 {
break;
140 }

}
142 /+ if none of the listed head nodes was reachable exit =/
if (msgbox==0)
144 {
for(i=0; i<entries; i++)
146 {
fprintf(stderr ,"Error: RemoteConnect to host %s connection\
148 failed.\n", serverlist[i]);
}
150 destroylist (&serverlist);
exit (EXIT_FAILURE) ;
152 }

154 /x free server list x/

117



A.3. Sources code listings

destroylist (&serverlist);
156
/* change focus x/
158 ha_msgbox = zzz_Focus (msgbox, "HA");

160 /* get sender name x/

sender= HA_ Get_Logical_Name(ha_msgbox) ;
162

E_init();
164

/* put together a message includeing all execution details =/
166  msg=mkfnsmsg(atoi(argv[1]), sender);

if (strlen (msg)>MAX MSG_SIZE)
168 {

fprintf (stderr, "Message to remote server too long.\n");

170 exit (EXIT_FAILURE) ;

}

172
ret = zzz_VaSend (msgbox, SAFE, 0, strlen(msg)+1 , msg,
174 HEADNODEGROUP, NULL) ;

176 if (ret<strlen (msg))

{

178 fprintf (stderr, "Message sent failed.\n");
exit (EXIT_FAILURE) ;
180 }

182 destroystring (&msg) ;
184

return (EXIT_SUCCESS) ;
186

Prologue script

1 #!/bin/sh
L s i s s g s A e s s i sk i
3 # Project: JOSHUA #
# Description: proloque script for cluster mutex #
5 # Author: Kai Uhlemann, <kai.uhlemann@nextq.org> #
# #
7 # 888888 888 #
# "88b 888 #
9 # 888 888 #
# 888 .d88b. .d8888b 88888b. 888 888 8888b. #
1 # 888 d88""88b 88K 888 "88b 888 888 "88b #
# 888 888 888 "Y8888b. 888 888 888 888 .d888888 #
13 # 88P Y88..88P X88 888 888 Y88b 888 888 888 #
# 888 "vy8gp" 88888P’" 888 888 "v38838 "Y888888 #
15 # .d88P #
# .d8sp" 2006 Kai Uhlemann #
17 # 888P" #
# #
19 # Created at: Mon Nov 7 10:58:14 EST 2005 #
# System: Linux 2.6.8—2—686—smp on i686 #
21 # #
# Copyright (c) 2006 Oakridge National Laboratory All rights reserved. #
23 # #
HHHH R R

25
echo "Prologue Args:" >/tmp/pre.txt

118



27

29

31

33

35

37

39

11

13

15

17

19

21

23

25

27

29

31

33

35

A.3. Sources code listings

echo
echo
echo

echo

"Job ID: $1">>/tmp/pre.txt
"User ID: $2">>/tmp/pre. txt
"Group ID: $3">>/tmp/pre. txt

"Starting jutex">>/tmp/pre.txt

/home/kai/joshua—0.1/jmutex/jmutex $1
EXIT_CODE=%?

echo —n "Exiting with exit code $EXIT_CODE...">>/tmp/pre. txt
echo "done.">>/tmp/pre. txt
exit $EXIT_CODE
exit 0

Epilogue script
#!/bin/sh
HEFHHHHH R R R R I R R R R R R R
# Project: JOSHUA #
# Description: epiloque script for cluster mutex #
# Author: Kai Uhlemann, <kai.uhlemann@nextq.org> #
# #
# 888888 888 #
# "88b 888 #
# 888 888 #
# 888 .d88b. .d8888b 88888b. 888 888 8888b. #
# 888 d88""88b 88K 888 "88b 888 888 "88b #
# 888 888 888 "Y8888b. 888 888 888 888 .d888888 #
# 88P Y88..88P X88 888 888 Y88b 888 888 888 #
# 888 "y8gp" 88888P’" 888 888 "v38838 "Y888888 #
# .d8sP #
# .d8sp" 2006 Kai Uhlemann #
# 888P" #
# #
# Created at: Mon Nov 7 10:58:14 EST 2005 #
# System: Linux 2.6.8—2—686—smp on i686 #
# #
# Copyright (c) 2006 Oakridge National Laboratory All rights reserved. #
# #
R R R R
echo "Prologue Args:" >/tmp/epi.txt
echo "Job ID: $1">>/tmp/epi. txt
echo "User ID: $2">>/tmp/epi.txt
echo "Group ID: $3">>/tmp/epi. txt
echo "JOB name : $4">>/tmp/epi.txt
echo "Releasing Job $4...">>/tmp/epi. txt

/home/kai/joshua—0.1/jmutex/jjdone $1

echo

"done.">>/tmp/epi. txt

exit 0

A.3.3 joshua

jinit.c

119




10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

A.3. Sources code listings

/3 sk ok ok ok ok ko ok ok sk ok sk sk ok ook ok koK ok sk sk ok ok ook ok ok ok sk sk ok ok ok ok oKk sk sk ok ok ok ok oKk sk ok ook ok ook sk ok ok ok ok ok ok Kok ok ok ok ok

* Project: JOSHUA *
* Description: JOSHUA SERVER daemon startup init *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P"  88888P’ 888 888 "Y88888 "Y888888 *
* .d88P *
* .d88P" 2006 Kai Uhlemann *
* 888P" *
* *
* Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2-686—smp on 1686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *

ok ok ok oKk ok K ok K ok K ok Kk oKk ok K ok K ok K ok Kk oK ok K ok o ok ok ok Kk ok K ok K ok ok ok K ok oKk ok ok o ok o ok K ok ok ok ok ok ok Kk ok ok ok ok ok ok ok ok /
/% 3k ko ok ok ok ok ok ok ok ok ok ok ok ok oK ok K ok koK ok koK ok oKk o ok koK ok K Kk R ok koK ok koK ok oK ok K ok koK ok K oK ok ok koK ok koK ok K oKk K ok koK oK K Kk K KOk

* *
x Headers *
* *

*******************************************************************************/
#include "utils.h"

#include "startup.h"

#include "signals.h"

#define JOBS "job scheduler............. "

#define RESM "resource manager..........
#define JOSH "joshua.................... "
#define OBSE "jobserver................. "
#define DONE " done\n"

#define ILEN 128

/*******************************************************************************

* *
* Global data *
* *

*******************************************************************************/
extern char xprogram_name;

extern char xconfigfile;

extern srvdata svdat;

extern FILE xlog_target_err;

extern FILE xlog_target_out;

void jobserver(int pipefd);
/*******************************************************************************

* *
* Main *
* argc — argument counter *
* argv — argument vector *
* env — environment vector *
* *
*******************************************************************************/

int main(int argc, char *xargv)
{
/%
* local data
*/
int i=0;
int p0[2];

120




64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

A.3. Sources code listings

int fd[2];

pid_t pid;

int initpipe[2];

char *initout=NULL;

/+ data for select =/
fd_set fdset;

struct timeval tv;

int ret=0;

int initcheck=0;

program_name = argv|[0];
decode_switches (argc, argv);

/* init init pipe */
if (pipe(initpipe)!=0)
{

fprintf (stderr ,"pipe %s\n",strerror(errno));
log_err("pipe %s\n",strerror(errno));

}

/+ daemonize me */
i=fork();
if (i<0) {exit(EXIT_FAILURE);} /* fork error x/
if (i>0) {
/* close write for init pipe */
close (initpipe[1]);

fprintf(stdout, "jinit started...\nAttemting to start JOSHUA components..

/% decide which output to read =/
/* empty fdset =/

FD_ZERO(&fdset) ;

FD_SET (initpipe[0], &fdset);

/% wait 5s for input =/

tv.tv_sec = 12;
tv.tv_usec = 0;
ret=1;

/% check max file escriptor =/
ret=select (initpipe[0]+1,&fdset ,NULL,NULL,&tv ) ;
if (ret==—1)
{
fprintf (stderr ,"select %s\n", strerror(errno));
}
else
{
if (ret>0)
{
initout=readfd (initpipe[0]);
}
else
{
log_warn("select timeout\n");
fprintf (stderr ,"select timeout\n");
}
}
fprintf (stdout, "%s", initout);
fflush (NULL) ;
deletedata (&svdat);
if (initout !=NULL)
{
initcheck=strlen (initout);
}
if (initcheck==ILEN)
{

121

An");




128

130

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

176

178

180

182

184

186

A.3. Sources code listings

destroystring (&initout);
exit (EXIT_SUCCESS) ;
}
else
{
fprintf (stderr ," failed.\nCheck logs for further information.\n");
destroystring (&initout);
exit (EXIT_FAILURE) ;
}

destroystring (&initout);
exit (EXIT_SUCCESS) ;
} /% parent exits x/

/% child (daemon) continues x/

/% its always safe to do that =/
initdata (&svdat, configfile);
log_target_out=fopen(svdat.logfile , "a");
log_target_err=fopen(svdat.errlog,h"a");

bootinit(log_target_out, log_target_err);

if (log_target_out==NULL)
{
}
if (log_target_err==NULL)
{

}

log_err("logfile %s: %s\n",svdat.logfile ,strerror(errno));

log_err("errorlog %s: %s\n", svdat.errlog,h strerror(errno));

/* make me a daemon x/
fd[0]=open(svdat.logfile , O_WRONLYIO_CREATIO_APPEND, S_IRUSR | S_IWUSRIS_IRGRP | S_IWGRP | S_IROTH

fd[1]=open(svdat.errlog, O_WRONLYIO_CREATIO_APPEND,S_IRUSRIS_IWUSRIS_IRGRP |S_IWGRP|S_IROTH
),

dup2(fd[0], STDOUT_FILENO) ;
dup2(fd[1], STDERR FILENO) ;

close (STDIN_FILENO) ;
/*close read for init pipe =/
close(initpipe[0]);

log_info (" jbootup started...\n");
writefd (initpipe[1], JOBS, strlen(JOBS));
/* create maui process x/
pid=fork () ;
switch (pid)
{
/% error x/
case —1: log_err("fork %s\n",6strerror(errno));
break;
/* child %/
case 0: log_warn("maui started with %s %s %s\n", svdat.watch[O].prgexec, svdat.watch[0]
.name, "-4");
/% close the init pipe */
close (initpipe[1]);
execl(svdat.watch[0].prgexec, svdat.watch[0].name, "-d4","0", NULL);

exit(—1);
break;
/% parent x/
default: /x reset observer pid x/

122



A.3. Sources code listings

svdat.watch[0] . pid=pid;
188 break;

190 }
log_warn("maui started\n");
192 writefd (initpipe[1], DONE, strlen (DONE)) ;

194
sigsyncinit () ;
196  /+ prepare bidirectional pipe for data interchange with observer x/
if (pipe(p0)!=0)
198 {
log_err("pipe %s\n",strerror(errno));
200 }

202 writefd (initpipe[1], JOSH, strlen (JOSH));

204 /% create joshua process =/
pid=fork () ;

206 switch (pid)
{

208 /* error */
case —1: log_err("fork %s\n",6strerror(errno));
210 break;
/* child %/
212 case 0: log_info("joshua started\n");
/* close the init pipe */
214 close (initpipe[1]);
execl(svdat.watch[3].prgexec, svdat.watch[3].name, "-c", svdat.watch[3].conf,
NULL) ;
216 exit(—1);
break;
218 /* parent x/
default: /x reset observer pid x/
220 svdat.watch[3] . pid=pid;
break;
222 }

224 log_info("Waiting till joshua is ready..\n");
waitforsig () ;
226 writefd (initpipe[1], DONE, strlen (DONE)) ;

228 writefd (initpipe[1], RESM, strlen (RESM));
/% create pbs_server process x/
230 pid=fork () ;

switch (pid)
232 {
/* error x/
234 case —1: log_err("fork %s\n",strerror(errno));
break;
236 /* child =/
case 0: log_info ("pbs_server started\n");
238 /* close the init pipe %/
close(initpipe[1]);
240 char *envs[]={"PBSDEBUG=1", NULL};
execle(svdat.watch[1].prgexec, svdat.watch[1].name, NULL, envs);
242 exit(—1);
break;
244 /% parent x/
default: /* reset observer pid */
246 svdat.watch[1].pid=pid;
break;
248 }

123



A.3. Sources code listings

250 Sleep (1,0);
log_info("Sending signal that pbs is running\n");
252 notify_joshua(svdat.watch[3].pid);
log_info("Signal send\n");
254
sigsyncunset () ;
256
writefd (initpipe[1], DONE, strlen (DONE));
258 writefd (initpipe[1], OBSE, strlen(OBSE));

260 /% create observer process x/
pid=fork () ;

262 switch (pid)
{

264 /* error x/
case —1: log_err("fork %s\n",strerror(errno));
266 break;
/+ child =/
268 case 0: log_info("jobserver started\n");
/% close the init pipe %/
270 close (initpipe[1]);
/% close read for first pipe */
272 close (p0[0]);
jobserver (p0[1]);
274 break;
/% parent x/
276 default: /+ close write for first pipe =/
close(p0[1]);
278 /* reset observer pid x/
svdat.observer=pid;
280 break;
}
282

writefd (initpipe[1], DONE, strlen (DONE));
284 /% close the init pipe */

close (initpipe[1]);
286

log_warn("Set to pause()\n");
288 pause();

log_warn("0Over pause(O\n");
290

shutd (" jbootup ended");
292 return EXIT_SUCCESS;

}

294 /*******************************************************************************

* *
296 * jobserver *
* *

298 *******************************************************************************/
void jobserver(int pipefd)
300 {
char buf[10%4096]={0};
302 int re=0;
long max=0;
304 max=fpathconf (pipefd, _PC_PIPE_BUF);
if (max==—1)
306 {
max=10%4096 ;
308 }
/* reset observer pid x/
310  svdat.observer=getpid () ;

124



312

314

316

318

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

A.3. Sources code listings

log_warn("Write to pipe %d bytes maximal possible\n", fpathconf(pipefd,
_PC_PIPE_BUF) ) ;

/* block with pipe =/

re=write (pipefd , &buf, max+1);

log_warn("done with pipe %d bytes written\n", re);

shutd (" jobserver ended...");

exit (EXIT_SUCCESS) ;

joshua.c

/3 sk sk s ok sk sk ok sk ok sk sk sk ok ok K ok K sk ok ok ok sk ok ok K sk ok ok ok ok ok Sk oK ok K ok oK ok oK sk ok R ok K ok K sk ok sk ok R sk K ok K ok ok sk ok sk ok sk K ok K koK sk ok sk ok ok K

* Project: JOSHUA *
* Description: JOSHUA SERVER daemon *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "YB88888 "Y888888 *
* .d88P %
* .d88P" 2006 Kai Uhlemann *
* 888P" *
* *
x Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—-686—smp on 1686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *

ok ok ok oKk ok ok K ok Kk Kk oKk ok K ok K ok Kk Kk oKk ok K ok ok ok ok Kk ok K ok K ok K ok K ok oKk ok ok ok ok ok K ok ok ok ok ok ok oKk ok ok ok ok ok ok ok ok /
/] 3k sk sk s ok sk sk ok sk ok sk sk sk ok ok K ok ok sk ok ok ok sk ok ok K ok ok ok ok ok ok Sk ok ok K sk ok ok oKk ok S ok K ok K sk ok sk ok sk R ok K ok K sk ok sk ok sk K ok K ok ok sk ok sk ok ok ok ok

* *
x Headers *
* *

st sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk ok ok ok ok /
#include "utils.h"

#include "server.h"

#include "startup.h"

#include "signals.h"

/s sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk ok ok sk sk sk sk sk ok ok sk sk sk sk sk sk sk ok ok s sk ok ok ok

* *
x Global data *
* *

*******************************************************************************/
/* Transis relevant message boxes x/

extern zzz_mbox_cap msgbox;

extern zzz_mbox_cap msgbox_join;

extern char xprogram_name;

extern char xconfigfile;

extern srvdata svdat;

extern FILE xlog_target_err;

extern FILE xlog_target_out;
/*******************************************************************************

* *
* Main *
* argc — argument counter *
* argv — argument vector *
* env — environment vector *

125




A.3. Sources code listings

52 * *
*******************************************************************************/
54 int main(int argc, char sxargv)
{
56 /%
* local data
58 %/
/% default TRANSIS layer stack will be used x/
60 int flag = 1;
char sstack = NULL;
62 mbox_cap ha_msgbox;
mbox_cap ha_msgbox_join ;
64
/* init server x/
66 ~ program_name = argv|[0];
decode_switches (argc, argv);
68 initdata (&svdat, configfile);
log_target_out=fopen(svdat.logfile , "a");
70  log_target_err=fopen(svdat.errlog,"a");

72
/* its always safe to do that x*/
74 serverinit (log_target_out, log_target_err);

76 if (log_target_out==NULL)
{

78 log_err("logfile %s: %s\n",svdat.logfile ,strerror(errno));
}

80 if (log_target_err==NULL)
{

82 log_err("errorlog %s: %s\n", svdat.errlog,h strerror(errno));

)

84 log_info("I’m there\n");

86 /* init msgbox for join operation =/
msgbox_join = zzz_Connect("join", stack, flag);
88

90 /+ set focus x/
ha_msgbox_join = zzz_Focus (msgbox_join , "HA");
92 zzz_Join (msgbox_join , "join");

94 /* open transis conection x/

msgbox = zzz_Connect("headmaster", stack, flag);
%

/* we dont need that string anymore */
98 /*free (coname) ; x/

100 if (msgbox == NULL)
{
102 log_err("Connection to TRANSIS failed\n");
}
104 /% set focus x*/
ha_msgbox = zzz_Focus (msgbox, "HA");
106
E_init();
108
/* join the headnode group =/
110 zzz_Join (msgbox, HEADNODEGROUP) ;

112 /* add event base for incoming messages x/

zzz_Add_Upcall (msgbox, handle_events, USER_PRIORITY, (void *) 1);
114

126



116

118

120

122

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

A.3. Sources code listings

log_info ("JOSHUA daemon started...\n");

/* start event handler */
E_main_loop () ;

return EXIT_SUCCESS;

server.h

/3 sk sk s ok sk sk ok sk ok sk sk sk ok ok K ok K sk ok ok ok sk ok ok K ok ok ok ok ok ok Sk ok ok K ok ok ok oKk ok R ok K ok K sk ok sk oK sk K ok K ok K sk ok sk ok sk K ok K koK sk ok K ok ok K

* Project: JOSHUA *
* Description: functions for the JOSHUA server *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "YB88888 "Y888888 *
* .d88P *
* .d88P" 2006 Kai Uhlemann *
* 888P" *
* *
x Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—-686—smp on 1686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *

ok ok ok oKk ok ok K ok Kk Kk oKk ok K ok K ok Kk Kk oKk ok K ok ok ok ok Kk ok K ok K ok K ok K ok oKk ok ok ok ok ok K ok ok ok ok ok ok oKk ok ok ok ok ok ok ok ok /
/] 3k sk sk s ok sk sk ok sk ok sk sk sk ok ok K ok ok sk ok ok ok sk ok ok K ok ok ok ok ok ok Sk ok ok K sk ok ok oKk ok S ok K ok K sk ok sk ok sk R ok K ok K sk ok sk ok sk K ok K ok ok sk ok sk ok ok ok ok

* *
* handle_events *
* *

*************>(<**>k*************************>(<************************************/

/x!

\fn void handle_events(int dummyl, void xparam);

\brief function handles incomming events for TRANSIS messages

handle_events returns nothing

\param dummy unused

\param xparam unused

*/

void handle_events(int, void x);
/*******************************************************************************
* *
x handle_exec %
* *

*********************************>k*********************************************/
/x|

\fn void handle_join (int dummyl, void *param);

\brief function handles incomming events for TRANSIS messages during join event
handle_join returns nothing

\param dummy unused

\param xparam unused

*/

void handle_join (int dummyl, void #param);
/*******************************************************************************
* *

127




54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

A.3. Sources code listings

* handle_exec *
* *
*******************************************************************************/

/x!

\fn void handle_exec(char xmsg, char *cmd, int identifier);

\brief function handles the add/summit/del/stat message events

function e.g. performs the actual submission of jobs using the stored stdin,
arg and environment from a message

handle_exec returns nothing

\param xmsg message string transmitted via TRANIS

\param *cmd command to execute

\param identifier message identifier

*/

void handle_exec(char smsg, char xcmd, int identifier);

[ 3 3k sk o sk sk R KoK K K R K K R K K R KK SR R KK R KK K SR R K K R K K R K K SR K K KR K SR R KK R K K R K K R KK KK KK KoK R K

* *
* handle_jutex *
* *

*************>(<****************************>(<************************************/
/x!
\fn void handle_jutex (char xmsg, char *cmd, int identifier);
\brief function handles the start and finish message events
handle_jutex returns nothing
\param xmsg message string transmitted via TRANIS
\param identifier message identifier
*/
void handle_jutex(char xmsg, int identifier);
/*****************************************>(<*********>(<***************************

* *
x checkexec *
* *

************************>k******************************************************/
/x!

\fn int checkexec(int ldone, int lsub, int gendone, int gensub, int jid);
\brief function to check start message for sanity

checkexec returns 0 on success or —1 in case of failure

\param ldone last job done

\param Isub last job submitted

\param gendone generation counter for jobs done

\param gensub generation counter for jobs submitted

\param jid currend job identifier to check

*/

int checkexec(int ldone, int lsub, int gendone, int gensub, int jid);
/*******************************************************************************

* *
* do_join %
* *

*******************************************************************************/
/x|

\fn void do_join(void);

\brief function handles join event for new member

do_join returns nothing

*/

void do_join (void);
/*******************************************************************************

* *
* assist_join *
* *

*******************************************************************************/
/!

\fn void assist_join(void);

\brief function handles join event for existing member

assist_join returns nothing

128




116

118

120

122

124

126

128

130

132

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

A.3. Sources code listings

*/
void assist_join (void);
/*******************************************************************************

* *
* handle_join *
* *

*******************************************************************************/
/%!

\fn void handle_join (char xmsg, char xcmd, int identifier);

\brief function handles the add/summit/del/stat/start and finish message events
function e.g. performs the actual submission of jobs using the stored stdin,
arg and environment from a message

handle_join returns nothing

\param xmsg message string transmitted via TRANIS

\param xcmd command to execute

\param identifier message identifier

*/

void handle_join (int dummyl, void *param);

server.c

/*******************************************************************************

* Project: JOSHUA *
* Description: functions for the JOSHUA server *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> %
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "YB88888 "Y888888 *
* .d88r *
* .d88P" 2006 Kai Uhlemann *
* 888P" *
* *
* Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2-686—smp on i686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *

*******************************************************************************/
/*******************************************************************************

* *
* Headers *
* *

stk otk ok ok ok sk ok ok ok sk ko ok ok sk ok ok Kk ok ok ok sk ok ok kK ok ok ok sk sk ok kR sk ok ok sk sk ok ok sk sk ok ok ok sk sk ok Kk ok ok ok sk ok ok ok sk ok o ok ok ok ok ok ok ko ok ok ok ok ok ok /
#include "utils.h"

#include "startup.h"

#include "server.h"

#include "signals.h"
/*******************************************************************************

* *
x Global data %
* *

*******************************************************************************/
zzz_mbox_cap msgbox;

zzz_mbox_cap msgbox_join;

extern srvdata svdat;

char *firstone=NULL;

129




43

45

47

49

51

53

A.3. Sources code listings

long members=1;

int master=0;

int joined=0;

/% last submitted job id =/

static int lsub=-1;

/* last job done id x*/

static int ldone=—1;

/* submission generation counter for turnover x/
static int gensub=0;

/% finished job generation counter for turnover x/

static int gendone=0;
/* —1 means no job runnung or submitted, yet x/

/*******************************************************************************

* *
* handle_events *
* *

*******************************************************************************/

59

61

63

65

67

69

71

void handle_events(int dummyl, void xparam)

{

/*
x local data
*/
/* message buffer for TRANSIS msgs */
char recv_buf[MAX MSG_SIZE];
char smyname;
int i, recv_type, amount;
view *gview ;
static mbox_cap ha_msgbox;

amount=zzz_Receive (msgbox, recv_buf, MAX MSG_SIZE, &recv_type, &gview);
log_info ("++++ Event ++++ Message received ++++ size = Jd\n", amount);
/* distinguish between gtoup chang msg and data msg x*/

75

77

79

81

83

85

87

89

91

93

95

97

101

103

/* data msg x/

if ( recv_type != VIEW_CHANGE)

{
/* first recover the msgid =/
switch (recov_id(recv_buf))
{

/* message received was an submit msgs/

case (ADDMSGID) : handle_exec(recv_buf, svdat

break;

case (STAMSGID) : handle_exec(recv_buf, svdat

break;

case (DELMSGID) : handle_exec(recv_buf, svdat.

break;

.submit, ADDMSGD) ;
.stat , STAMSGID) ;

del, DELMSGID) ;

case (STRMSGID) : handle_jutex (recv_buf, STRMSGID) ;

break;

case (EINSMSGID) : handle_jutex (recv_buf, FNSMSGID) ;

break;
/* message unknown and is being ignored =/

case (UNKNOWNMSG) : log_warn("Unknown message: %s\n", recv_buf);

}
}
/* group change msg x*/
else

{ /+ only headnode group membership changes are interesting =/
if (stremp (HEADNODEGROUP, gview—>members[0])!=0)
{

return;

}

log_info ("++ Group change in group %s from %lu to %lu member (s)\n",

130



105

107

109

111

113

115

117

119

121

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

153

155

157

159

161

163

165

167

A.3. Sources code listings

gview—>members[0] , members, gview—>nmembers) ;

/% change focus */
ha_msgbox = zzz_Focus (msgbox, "HA");

/* get own name x/
myname= HA_Get_Logical _Name(ha_msgbox) ;

/* set master to the first one if none set, yet x/
if (firstone==NULL)
{
/+ start allocating =/
firstone = (char x)malloc(sizeof (char)*(MBOX NAME LEN+1)) ;
if (firstone==NULL)
{
log_err("malloc %s\n",strerror(errno));

}

/% intit used char fields x/
memset( firstone , ’\0’, MBOX NAME LEN+1) ;
//firstone=gview—>members[1];
strncpy (firstone , gview—>members[1], MBOX_NAME LEN) ;
}
/% check if alone in the group x*/
if (gview—>nmembers==1)
{
/* not yet joined? x/
if (joined==0)
{
log_info("%s is the first among the headnodes\n", myname);
/* set parameters for pbs_server =/
log_info("Attempting to open %s\n",svdat.watch[1].conf);
/* set the next job id to 0 =/
jidset(svdat.watch[1].conf, 0);
sigsyncinit () ;
log_info("Send signal, that structure is set\n");
notify_jbootup (getppid ());
waitforsig () ;
log_info("Waiting for bootup.. to contiue\n");
log_info("Got notification lets go on\n");
//notify_jbootup (getppid ());
log_info("done.\n");
sigsyncunset () ;
/* joint =/
joined=1;

}
/* not alone in group... =/
else
{
/* want to join ? x/
if (joined==0)
{
/* set the new master x/
strncpy (firstone , gview—>members[1], MBOX_NAME LEN) ;
log_info("%s is now master\n", firstone);

log_info ("+ Members so far:\n");
for( i=1 ; i<= gview—>nmembers ; i++ )
{

log_info ("+ %s\n", gview—>members[i]);

131




169

171

173

175

177

179

181

183

185

187

189

191

193

195

197

199

201

203

205

207

209

211

213

215

217

219

221

223

225

227

229

A.3. Sources code listings

}
/ *

}

/* adjust member counter x/
members=gview—>nmembers ;

log_info("-—> %s is requesting the join process\n",
/* do_join () never returns x/
do_join () ;

}

else

{
/* check if I was the last first one x/
if (stremp (myname, firstone )==0)
{

myname) ;

log_info("Assisting the new member the joining process\n");

assist_join () ;
}

else

{

log_info ("I am not of any help %s %s\n",myname, firstone);

}

set the new master x*/

strncpy (firstone , gview—>members[1], MBOX_NAME LEN) ;
log_info("%s is now master\n", firstone);

log_info("+ Members so far:\n");
for( i=1 ; i<= gview—>nmembers ; i++ )

{
}
/*

log_info("+ %s\n", gview—>members[i]);

adjust member counter */

members=gview—>nmembers ;

}
log_
}

/*******************************************************************************

*

info ("++++ Event ++++ handled ++++\n");

x handle_exec

*

*******************************************************************************/

void handle_exec(char smsg, char xcmd, int identifier)

{
/*

x local data

*/

pid_

char
char
char
char
char
char

t pid;

*in=NULL;

++ fakearg=NULL, *xfakeenv=NULL;
sout=NULL, serr=NULL;

*rsp=NULL;

xsender=NULL;

*path=NULL;

int p0[2], pl[2], p2[2];

int

status;

132




231

233

235

237

239

241

243

245

247

249

251

253

255

257

259

261

263

265

267

269

271

273

275

277

279

281

283

285

287

289

291

293

A.3. Sources code listings

/x data for

select x/

fd_set fdset;
struct timeval tv;

int ret;
int maxfd=0;

/* create pipe to pump STDIN into child

if (pipe(p0)!
{

=0)

log_err("pipe %s\n",strerror(errno));

}

/* create pipe to get SIDOUT from child

if (pipe(pl)!
{

=0)

log_err("pipe %s\n",strerror(errno));

}

/% create pipe to get STDERR from child

if (pipe(p2)!
{

=0)

log_err("pipe %s\n",strerror(errno));

}

/* recover the STDIN from the msg =/
in=recov_stdin (msg) ;

/* recover the argument vector from msg

fakearg=recov_argv (msg) ;
log_info ("DEBUG: 7%s\n", fakearg[0]);

*/

*/

*/

*/

/* recover the environment vector from msg x*/
fakeenv=recov_env(msg) ;

/* recover sender from msg x/
sender=recov_sender (msg) ;

/* recover the path from msg x/
path=recov_path (msg);

/* create child process =/

pid=fork () ;
switch (pid) {

/* error */

case —1: log_err("fork %s\n",strerror(errno));
break;

/* child x/

case 0:

log_info("Created child with pid %d
/* close the stdin and put the pipe

dup2(p0[0], STDIN_FILENO) ;

/* close stdout and put on the pipe

dup2(p1[1], STDOUT_FILENO) ;

/* close stderr and put on the pipe

dup2(p2[1], STDERR_FILENO) ;

/* close write for stdin pipe */

close(pO0[1]);

/*close read for stdout pipe */

close(p1[0]);

/«close read for stderr pipe */

close (p2[0]);

133

to exec %s command\n", getpid(), cand);
on */

*/
*/




A.3. Sources code listings

gid_t gid = recov_gid (msg);

295 if (setgid (gid)==-1)
{
297 log_warn("setgid %s\n", strerror(errno));
}
299 /* set stored uid and gid =/
uid_t uid = recov_uid (msg);
301 if (setuid (uid)==-1)
{
303 log_err("setuid %s\n", strerror(errno));
}
305 /* change cwd =/
if (chdir(path)==-1)
307 {
log_err("path %s\n", strerror(errno));
309 }
/x attemt to exec command x*/
311 if (execve (emd, fakearg, fakeenv)==-1)
{
313 log_err("exec %s\n", strerror(errno));
}
315 break;
/% parent x/
317 default: break;
319 }

/* more parent code x/

321 /% close read for stdin pipe */
close (p0[0]);

323  /xclose write for stdout pipe */
close(pl[1]);

325 /*close write for stderr pipe */
close(p2[1]);

327
/* feed stdin pipe with recovered stuff =/

329 if (in !=NULL)
{

331 writefd (p0[1], in, strlen(in));
}

333 /+ close the writer side =/
close(p0[1]);

335
/% decide which output to read x*/

337 /% empty fdset x/
FD_ZERO(&fdset) ;

339 FD_SET(pl1[0], &fdset);
FD_SET(p2[0], &fdset);

341 /% wait 5s for input =/
tv.tv_sec = 12;

343 tv.tv_usec = 0;

345 /% Calculate the greatest file descriptor in the set. x/
maxfd = p2[0];
347 if (maxfd < pl1[0])
{
349 maxfd = pl[0];
}
351
/* check max file escriptor x/
353 ret=select (maxfd+1,&fdset ,NULL,NULL,&tv) ;
if (ret==—1)
355 {
log_warn("select %s\n", strerror(errno));

134



357

359

361

363

365

367

369

371

373

375

377

379

381

383

385

387

389

391

393

A.3. Sources code listings

}

else

{

}

if (ret>0)

{

}

i

{

f (FD_ISSET (p1[0] ,&fdset))

/* read stuff from child with builtin

out=readfd (p1[0]);

i
1

{

/* read stuff from child with builtin timeoutx/

f (FD_ISSET (p2[0] ,&fdset))

err=readfd (p2[0]);

}

else

{
}

log_warn("select timeout\n");

close(p1[0]);
close (p2[0]);

timeoutx*/

log_info ("exec returned stdout \n%s\n", out);

log_info("exec returned stderr \n%s\n",

log_info("Return to sender %s\n", sender);

/* add submit and del messages to the queue, when no stderr was

{

* returned */
if (err==NULL)

switch(identifier)

{

case (ADDMSGID) :

if (out!=NULL)
{

err);

log_info("Added job %d to internal submission queue.\n", atoi(out));
/% a job id is just valid once, also after a rollover x*/
if (getelmt(&svdat.submitq, atoi(out))==NULL)
{
addelmt(&svdat.submitq, atoi(out), msg);
/* increase submitted job id generation counter in case of

401

403

405

407

409

411

413

415

417

419

x turnover x/
if ((atoi(out)<lsub)&&k(joined==1))
{

/* increase turnover generation counter x/

gensub++;

}

/* set the last submitted value x/

Isub=atoi(out);
}

}
break;

case (DELMSGID) :

}

/+ only add a del message once x/

if (getelmt(&svdat.delq, atoi(fakearg[1]))==NULL)

{
log_info("Added job %d to internal

}
break;

deletion queue.\n", atoi(fakearg[1l]));
addelmt(&svdat.delq, atoi(fakearg[1l]), msg);

135



421

423

425

427

429

431

433

435

437

439

441

443

445

447

451

453

455

457

459

461

463

465

A.3. Sources code listings

}

rsp=mkrspmsg (out, err);

log_

zzz_VaSend (msgbox, CAUSAL, 0, strlen(rsp)+1 , rsp, sender, NULL);

log_

info("Sending..\n");

info("done..\n");

/* try to get the exit status of the child =/
switch (waitpid (pid, &status , WNCHANG) )

{

ca

/* give the child a chance to get killed =/

se 0:

/* no child waiting, yet x/
if (kill (pid, SIGKILL)==0)

{

log_warn("Child still active though I’m done, so I attemted to kill child with pid %d

\n", pid);

Sleep (0,1);

ca

waitpid (pid, &status, WNOHANG) ;
}
else
{
log_warn("Kill failed. Zombie process
}
break;
se —1:
log_warn("wait %s\n", strerror(errno));
break;

default:

}
/x £

/* wait successfull */
break;

ree all used memory */

destroystring (&rsp) ;
destroystring (&err) ;
destroystring (&out) ;
destroystring (&in) ;
destroylist (&fakeenv);
destroylist (&fakearg);
destroystring (&sender) ;
destroystring (&path) ;

}

with pid ’%d remains in process table.\n", pid);

/*******************************************************************************

* *
* handle_jutex *
* *

*******************************************************************************/

471

473

475

477

479

481

void handle_jutex(char xmsg, int identifier)

{
/*

x local data

*/
char
char
char
char
int

xsender=NULL;

xrsender=NULL;

xrespond=NULL;

*rmsg=NULL;
jid=0;

136



483

485

487

489

491

493

495

497

499

501

503

505

507

509

511

513

515

517

519

521

523

525

527

529

531

533

535

537

539

541

543

A.3. Sources code listings

/* recover job id x/
jid=recov_jid (msg) ;

/* recover sender x/
sender=recov_jutex_sender (msg) ;

switch(identifier)
{
case (STRMSGID) :
log_info("Received start message for job %d from %s\n", jid, sender);
/* check if jid made turnover s/
if (gensub>0)
{
if (jid <ldone)
{
/* adjust generation counter x/
gensub—;
gendone++;

}
}
/* check if jid can be executed x*/
if (checkexec(ldone, lsub, gendone, gensub, jid)==0)
{
/* only allow first request to enter the job x*/
if (getelmt(&svdat.jutexq, jid)==NULL)
{
log_info ("Executor %s has allowance to enter job %d\n", sender, jid);
addelmt(&svdat.jutexq, jid, msg);
/* create start message */
rmsg=mkstrmsg (jid , NULL) ;
/* send message to let job start =/
zzz_VaSend (msgbox, CAUSAL, 0, strlen (rmsg)+1 , rmsg, sender, NULL);
/x free respond and msg x/
destroystring (&rmsg) ;
}
else
{
log_info ("Executor %s was put on hold for job %d\n", sender, jid);
addelmt(&svdat.jutexq, jid, msg);
}
}
else
{
/* release the job immediately =/
log_info ("Executor %s is not allowed to enter job %d\n",sender, jid);
/* create finish message =/
rmsg=mkfnsmsg(jid , NULL) ;
/* send finish message */
zzz_VaSend (msgbox, CAUSAL, 0, strlen(rmsg)+1 , rmsg, sender, NULL);
/* free respond and msg */
destroystring (&rmsg) ;
}
break;
case (FNSMSGID) :
log_info ("Received finish message for job %d from %s\n", jid, sender);
/* check for generation turnover x/
if (gendone>0)
{
if (jid <ldone)
{

/* adjust generation counter x/
gendone—;

}

137



A.3. Sources code listings

545 }
/+ set ldone to the current last job done x/
547 if XNOR( ldone<jid , !gendone))
{
549 ldone=jid ;
}
551 /* release all executors by sending finish message */
while (getelmt (&svdat.jutexq, jid)!=NULL)
553 {
respond=getsender (&svdat.jutexq, jid);
555 rsender=recov_jutex_sender (respond);
log_info ("Realeasing executor %s\n", rsender);
557 /% create finish message x*/
rmsg=mkfnsmsg(jid , NULL) ;
559 /* send finish message */
zzz_VaSend (msgbox, CAUSAL, 0, strlen(rmsg)+1 , rmsg, rsender, NULL);
561 /* remove sender entry from list =/
remelmt (&svdat.jutexq, jid);
563 /* free respond and msg */
destroystring (&rmsg) ;
565 destroystring (&rsender) ;
//destroystring (&respond) ;
567 }

/* remove the jobs done from the internal queues x/
569 remelmt (&svdat.submitq, jid);
remelmt (&svdat.delq, jid);

571
573 break;
default:
575 log_warn("Unkown message caught from cluster\n");

}

577 destroystring (&sender) ;

579 }
/*******************************************************************************

581 * *
x checkexec *

583 *

*******************************************************************************/
585 int checkexec(int ldone, int lsub, int gendone, int gensub, int jid)
{
587 /% check job sanity x/
if XNOR(jid <=lsub, !gensub))

589 {
logiinfo(“LDDNE: %d JID: %d LSUB: %d GENDONE: %d GENSUB: %d -—> Sanity: 0K\n", ldone, jid
, lsub, gendone, gensub);
591 }
else
593 {
log_info ("LDONE: %d JID: %d LSUB: %d GENDONE: %d GENSUB: %d -—> Sanity: FALSE\n", ldone,
jid , Isub, gendone, gensub);
595 return —1;
}
597

/x check first rexec x*/
599 if XNOR( Idone<jid , !gendone))

{
601 log_info ("LDONE: %d JID: %d LSUB: %d GENDONE: %d GENSUB: %d -—> Exec: OK\n", ldone, jid,

Isub , gendone, gensub);

}

603 else

{

138



605

607

609

611

613

615

617

619

621

623

625

627

629

631

633

635

637

639

641

643

645

647

649

651

653

655

657

659

661

663

665

A.3. Sources code listings

log_info ("LDONE: %d JID: %d LSUB: %d GENDONE: %d GENSUB: %d -—> Exec: FALSE\n", ldone,

jid , lsub, gendone, gensub);
return —1;

}

return 0;

}

/*******************************************************************************

* *
* do_join *
* *

*******************************************************************************/
void do_join (void)
{
log_info ("Removing normal event handler...\n");
zzz_Remove_Upcall (msgbox) ;
zzz_Add_Upcall (msgbox_join , handle_join , USER_PRIORITY, (void *) 1);
log_info("Join event handler initiated\n");
log_info("Join event handler started...\n");
E_main_loop () ;
return;

}

/***>|<>|<**********************************************>|<>|<**************************

* *
* assist_join *
* *

*******************************************************************************/
void assist_join (void)

char *join=NULL, * finish=NULL;

gelmt xelmtptr;

/% send join information =/

join=mkjoinmsg (lsub ,ldone , gensub , gendone) ;

zzz_VaSend (msgbox, SAFE, 0, strlen(join)+1 , join, "join", NULL);
destroystring (&join);

/* send all submit messages */

/x start at tail %/

elmtptr=svdat.submitq. tail ;

while (elmtptr ! =NULL)

{
//log_info ("SEND JID: %ld MSG: %s\n", elmtptr—>jid , elmtptr—>jmsg);
zzz_VaSend (msgbox, CAUSAL, 0, strlen (elmtptr—>jmsg)+1 , elmtptr—>jmsg, "join"
/* move towards the head x/
elmtptr=elmtptr—>prv;

}

/% send all del messages =/

/+ start at tail =/

elmtptr=svdat.delq. tail;

while (elmtptr ! =NULL)

{
zzz_VaSend (msgbox, CAUSAL, 0, strlen (elmtptr—>jmsg)+1 , elmtptr—>jmsg, "join"
/* move towards the head x/
elmtptr=elmtptr—>prv;

}

/* send all jmutex messages */
/x start at tail %/
elmtptr=svdat.jutexq. tail;
while (elmtptr !=NULL)

139

, NULL) ;

, NULL) ;




A.3. Sources code listings

667 {

zzz_VaSend (msgbox, CAUSAL, 0, strlen (elmtptr—>jmsg)+1l , elmtptr—>jmsg, "join", NULL);
669 /% move towards the head =/

elmtptr=elmtptr—>prv;
671 }

673  /* send finish message =/
finish=mkfnsmsg (0, NULL) ;

675 /% send finish message */
log_info("Send FINISH JOIN\n");

677 zzz_VaSend (msgbox, CAUSAL, 0, strlen(finish)+1 , finish, "join", NULL);
/* free finish msg */

679 destroystring (&finish);

681 log_info("all join data sent..\n");

return;
683 }
/*******************************************************************************
685 *
* handle_join *
687 * *

sk s o ok sk o o K Sk ok o o K sk o o S Sk ok o o K K ok o o KK Sk o o S K stk ok ok K sk o o KK Sk ok o o K ok sk ok Sk sk ok ok K KK ok ok o Kk sk ok ok ok /
689 void handle_join (int dummyl, void xparam)
{
691 /* message buffer for TRANSIS msgs */
char recv_buf[MAX MSG_SIZE];
693 int recv_type, amount;
view xgview=NULL;
695
amount=zzz_Receive (msgbox_join , recv_buf, MAXMSG_SIZE, &recv_type, &gview);
697 log_info ("++++ Event ++++ join event handler received message ++++ size = J%d\n", amount);
/* distinguish between gtoup chang msg and data msg */
699 /% data msg x/
if (recv_type!= VIEW_CHANGE)

701 {
switch (recov_id (recv_buf))
703 {
/* message received was an submit msgs/

705 case (JOIMSGID) : /* recover the join msg =/
Isub=recov_lsub (recv_buf);

707 ldone=recov_ldone (recv_buf);
gensub=recov_gensub (recv_buf);

709 gendone=recov_gendone(recv_buf);

logiinfo("JGIN: Received: LDONE: %d LSUB: %d GENDONE: %d\
1 GENSUB: 7%d\n", ldone, lsub, gendone, gensub);
log_info("Attempting to open %s\n",svdat.watch[1].conf);

7

=

713 /* set the next job id to 0 x/
jidset (svdat.watch[1].conf, ldone+1);
715 sigsyncinit () ;
log_info("Send signal, that structure is set\n");
717 notify_jbootup (getppid());
waitforsig () ;
719 log_info("Waiting for bootup.. to contiue\n");
log_info("Got notification lets go on\n");
721 log_info("done.\n");
sigsyncunset () ;
723 /* wait for PBS to settle down x*/
Sleep (3,0) ;
725 log_info ("PBS TORQUE Ready\n");
break;
727 case (ENSMSGID) : /% reinit handler =/
log_info ("Removing join handler...\n");
729 zzz_Remove_Upcall (msgbox_join) ;

140



731

733

735

737

739

741

743

745

747

749

751

753

10

12

14

16

18

20

22

24

26

28

30

32

34

A.3. Sources code listings

/% leave 2nd msg_box =/

zzz_Leave (msgbox_join , "join");
log_info("Reinitiate first event handler...\n");
zzz_Add_Upcall (msgbox, handle_events, USER_PRIORITY, (void *) 1);
joined=1;
log_info("-—> successfully finished the join process\n");
log_info ("++++ Event ++++ handled ++++\n");
break;

case (ADDMSGID) : /% add all add msgs into internal add queue x/
handle_exec(recv_buf, svdat.submit, ADDMSGID);
break;

case (DELMSGID) : /% add all del msgs into internal del queue =/
handle_exec(recv_buf, svdat.del, DELMSGID) ;
break;

case (STRMSGID) : handle_jutex (recv_buf, STRMSGID) ;
break;

/* message unknown and is being ignored =/

case (UNKNOMNMSG) : log_warn("Unknown message: %s\n", recv_buf);

}
}
return;
}

signals.h

/***>|<>|<*********************>k>k***********************>|<>|<**************************

* Project: JOSHUA *
* Description: functions for signal handling *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888  "Y88P" 88888P" 888 888 "Y88888 "Y888888 *
* .d88P *
* .d8sp" 2006 Kai Uhlemann *
* 888P" *
* *
* Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—-686—smp on 1686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *

ok ok ok oKk ok K ok K ok Kk Kk oK K ok K ok K ok ok ok Kk oK K ok K ok K ok ok ok Kk ok K ok o ok ok ok ok ok oKk ok ok o ok ok K ok oKk ok ok ok ok Kk ok ok ok ok ok ok ok ok /
/% 5k ok ok ok ok ok ok ok ok ok ok ok ok ok ok oKk K ok kK ok koK ok oKk o ok koK ok K oKk K ok koK ok koK ok oK ok K ok koK ok oK ok K ok koK ok koK ok R oKk o ok koK oK K Kk K Kok

* *
x Headers *
* *

*******************************************************************************/
typedef void sigfunc(int);

#define notify_joshua (PID) notify ( SIGUSR2, (PID))

#define notify_jbootup (PID) notify( SIGUSR1, (PID))

sigfunc xmysignal(int signr, sigfunc xsighandler);

void sig_usr(int signal);
void sigbootinit(void);

141




36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

A.3. Sources code listings

void sigsyncinit(void);

void notify(int signalno, pid_t pid);

void sigsyncunset(void);

void waitforsig(void);

void sig_term(int signal);

void sigjoshuainit(void);
/*******************************************************************************

* *
* timeout *
* *

*******************************************************************************/
/%!

\fn void timeout(int signal)

\brief function react on timeouts identified by SIGALRM

function provides signal handling, when timeout event occurs (SIGALRM)

\param signal gives integer indentifier for signal

*/

void timeout(int signal);
/*******************************************************************************

* *
* shutdown *
* *

ok ok ok ok ok oK ok K oKk oK ok koK ok K K K K oK koK ok koK ok oK ok K ok koK oK K ok K ok koK ok koK ok K oKk K ok koK ok koK ok R oKk o ok koK ok K Kk K ok ok ok kK ok Rk ok /)
/x!

\fn void turndown(int signal)

\brief function react on shutdown request identified by SIGTERM

function provides signal handling, when shutdown event occurs (SIGTERM)

\param signal gives integer indentifier for signal

*/

void turndown(int signal);
/*******************************************************************************

* *
x child *
* *

*******************************************************************************/
/!

\fn void child(int signal)

\brief function reacts when child process ends identified by SIGCHLD

function provides signal handling, when childprocess dies (SIGCHLD)

\param signal gives integer indentifier for signal

*/

void sig_warn(int signal);
/*******************************************************************************

* *
* spipe *
* *

*******************************************************************************/
/%!

\fn void spipe(int signal)

\brief function reacts when pipe breaks identified by SIGPIPE

function provides signal handling, when pipe breaks (SIGPIPE)
\param signal gives integer indentifier for signal
*/

/* see define section for prototype x/

signals.c

/*******************************************************************************

142




11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

A.3. Sources code listings

* Project: JOSHUA *
* Description: functions for signal handling *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "Y88888 "Y888888 *
s .d8sP *
* .dssp” 2006 Kai Uhlemann *
* 888P" *
* *
* Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2-686—smp on 1686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *
sk o ok o KK R KK R K K K SR R K K SR K K R KK K R KK R KR K SR R KK SR K K R K SR KK KK K SR R KK R K K R oK K KK KK KK R Kok K/

/*******************************************************************************

* *
* Headers *
* *

*******************************************************************************/
#include "utils.h"

#include "signals.h"

#include "startup.h"

extern FILE xlog_target_err;

extern FILE xlog_target_out;

extern srvdata svdat;

static volatile sig_atomic_t sigflag;

static sigset_t null_mask;

/*******************************************************************************
* *
* mysignal *
* *

*******************************************************************************/
sigfunc smysignal(int signr, sigfunc xsighandler)
{
struct sigaction new_handler, old_handler;
new_handler.sa_handler = sighandler;
sigemptyset (&new_handler .sa_mask) ;
new_handler.sa_flags = 0;
if (signr == SIGALRM)
{
#ifdef SA_INTERRUPT
new_handler.sa_flags |= SA_INTERRUPT; /% Solaris =/
#endif
}
else

{
#ifdef SA_RESTART

new_handler.sa_flags |= SA_RESTART; /x SVR4, BSD x/
#endif
}
if (sigaction(signr, &new_handler, &old_handler) < 0)
{
return (SIG_ERR) ;
}

143




65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

A.3. Sources code listings

return (old_handler.sa_handler);

}

/*******************************************************************************

* *
* sig_usr *
* *

ok ok ok ok oK ok K oKk K ok kK ok oK K K oKk K ok koK ok oK ok K ok koK ok koK ok K ok koK ok koK ok K oKk o ok koK ok koK ok ok ko ok koK ok R oKk R kR ok R Kok Rk ok /)
void sig_usr(int signal)

sigflag=1;

return;

}

/*******************************************************************************

* *
* sigbootinit *
* *

*******************************************************************************/
void sigbootinit(void)
/* set the sig_term function as signal handler for PIPE, CHLD, TERM

* and INT %/
if (mysignal (SIGPIPE, sig_term)==SIG_ERR)
{

log_err("Unable to set signal handler for SIGPIPE.\n");
}

if (mysignal (SIGCHLD, sig_term)==SIG_ERR)
{

log_err("Unable to set signal handler for SIGCHLD.\n");
}

if (mysignal (SIGTERM, sig_term)==SIG_ERR)
{

log_err("Unable to set signal handler for SIGTERM.\n");

}
if (mysignal (SIGINT, sig_term)==SIG_ERR)
{

log_err("Unable to set signal handler for SIGINT.\n");

}
if (mysignal (SIGHUP, sig_term)==SIG_ERR)
{

log_err("Unable to set signal handler for SIGHUP.\n");

}
/* init null mask */

if (sigemptyset(&null_mask) !=0)
{

}

log_err("Unable to set signalmask %s\n", strerror(errno));

/* no further action, just return to interupt =/
return;

}

/*******************************************************************************

* *
* sigjoshuainit
* *

*******************************************************************************/

144




A.3. Sources code listings

void sigjoshuainit(void)
129 {
/* set the sig_term function as signal handler for PIPE, CHLD, TERM
131 * and INT %/
if (mysignal (SIGPIPE, sig_warn)==SIG_ERR)
{

133
log_err("Unable to set signal handler for SIGPIPE.\n");
135 }
137 if (mysignal (SIGTERM, sig_term)==SIG_ERR)
{
139 lOg_err("Unable to set signal handler for SIGTERM.\n");
}
141
if (mysignal (SIGINT, sig_term)==SIG_ERR)
143 {
log_err("Unable to set signal handler for SIGINT.\n");
145 }
147 if (mysignal (SIGHUP, sig_term)==SIG_ERR)
{
149 log_err("Unable to set signal handler for SIGHUP.\n");
}
151
/* set signal handler for sigchld =/
153 if (mysignal (SIGCHLD, sig_warn) == SIG_ERR)
{
155 log_err("Cannot install signalhandler timeout\n");
}
157
/* init null mask */
159 if (sigemptyset(&null_mask) !=0)
{
161 log_err("Unable to set signalmask %s\n", strerror(errno));
}
163
/* no further action, just return to interupt =/
165 return;

}

167 /***>|<>|<************>k*********************************>|<>|<**************************

* *
169 * sigsyncinit *
* *

171 *******************************************************************************/
void sigsyncinit(void)

173 {
if (mysignal (SIGUSR1, sig_usr)==SIG_ERR)
175 {
log_err("Unable to set signal handler for SIGUSR1.\n");
177 }
179 if (mysignal (SIGUSR2, sig_usr)==SIG_ERR)
{
181 log_err("Unable to set signal handler for SIGUSE2.\n");
}
183
/% no further action, just return to interupt s/
185 return;

}

187 /*******************************************************************************

* *
189 * notify *
* *

145




191

193

195

197

199

201

203

205

207

209

211

213

215

217

219

221

223

225

227

229

231

233

235

237

239

241

243

245

247

249

251

253

A.3. Sources code listings

*******************************************************************************/
void notify(int signalno, pid_t pid)
if (kill (pid, signalno)!=0)

log_err("kill (notify) %s\n", strerror(errno));

}

/* no further action, just return to interupt =/
return;

/*******************************************************************************

* *
* sigsyncunset *
* *

*******************************************************************************/
void sigsyncunset(void)
{

/* set handling of USR1 and USR2 to default =/

if (mysignal (SIGUSR1, SIG_DFL)==SIG_ERR)

{

log_err("Unable to reset signal handler for SIGUSR1.\n");

}
if (mysignal (SIGUSR2, SIG_DFL)==SIG_ERR)
{

log_err("Unable to reset signal handler for SIGUSE2.\n");

}

/* no further action, just return to interupt =/
return;

/*******************************************************************************

* *
* waitforsig *
* *

*******************************************************************************/
void waitforsig(void)
while (sigflag==0)
sigsuspend (&null_mask) ;
/* reset sflag =/
sigflag=0;

/* no further action, just return to interupt */
return;

}

/*******************************************************************************

* *
* timeout *
* *

*******************************************************************************/
void timeout(int signal)

{

log_warn("Operation timed out!\n");
/* no further action, just return to interupt =/
return;

146




255

257

259

261

263

265

267

269

271

273

275

277

279

281

283

285

287

289

291

293

295

297

299

301

303

305

307

309

311

313

315

A.3. Sources code listings

}

/*******************************************************************************

* *
* sig_term *
* *

ok ok o K KR K R R R R KRR K R KR KR KR SR K R R KR R K ok K R KR KR R K K SR KR R K R KR KR KR KRR kR %/
void sig_term(int signal)

{

/% GNU hack its not safe to call strsignal in signal handler =/
#ifdef _GNU_SOURCE

log_warn("%s. Shutdown initiated.\n", sys_siglist[signal]);
#else

log_warn("%s. Shutdown initiated.\n", strsignal(signal));
#endif
// log_warn("Shutdown initiated .\n");

if (log_target_out!=NULL)

{

fclose (log_target_out);

}

if (log_target_err!=NULL)

{

fclose (log_target_err);

}

/* kill all processes x/

killpids (&svdat) ;

/* delete internal data =/

deletedata (&svdat) ;

/* exit on error */

exit (EXIT_SUCCESS) ;
}

/% 5k ok ok ok ok ok ok ok ok ok ok ok ok ok ok oKk K ok koK ok koK ok oKk o ok koK ok oK ok R ok koK ok koK ok oK ok K ok koK ok Kk K ok koK ok koK ok R oKk o oKk oK oK R Kk K KOk

* *
x shutdown *
* *

*******************************************************************************/
void turndown(int signal)
{
log_warn("SIGTERM received. Shutdown initiated.\n");
if (log_target_out!=NULL)
{
fclose (log_target_out);
}
if (log_target_err!=NULL)
{
fclose (log_target_err);
}
/* delete internal data =/
deletedata (&svdat) ;
/+ exit on error x/
exit (EXIT_SUCCESS) ;
}

/*******************************************************************************

* *
x child *
* *

*******************************************************************************/
void sig_warn(int signal)

{

/% GNU hack its not safe to call strsignal in signal handler =/
#ifdef _GNU_SOURCE

log_warn("%s. Child process got killed.\n", sys_siglist[signal]);
#else

log_warn("%s. Child process got killed.\n", strsignal(signal));

147




317

319

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

A.3. Sources code listings

#endif
/% no further action, just return to interupt s/
return;
}
startup.h

/***>|<*********>|<*********>|<***************************>|<>|<**************************

* Project: JOSHUA *
* Description: functions for startup assistence *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "YB88888 "Y888888 *
* .d88P *
* .d8sp" 2006 Kai Uhlemann *
* 888P" *
* *
* Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2-686—smp on i686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *
*******************************************************************************/

/***>|<*********>|<*********>|<***************************>|<>|<**************************

* *
x Structures *
* *

sk o ok o sk R KK R K K K K R K K R K K R KK SR R K K R KK K SR R K K SR K K R K K KK R KK K SR R KK R K K R K K R KK KK KK R K ok %/
/x!
\struct progs_
\brief simple structure to hold name, path for exec, configuration and pid
*/
typedef struct progs_ {
char *name; /% name of the program =/
char xprgexec; /+ path to exec x/
char xconf; /% path to conf =/
pid_t pid; /% pid of program =/
} progs;
/*!
\struct progs_
\brief structure to hold server data
*/
typedef struct srvdata_ {
pid_t observer; /+ pid job observer x/
pid_t jbootup; /+ pid jbootup x/
char *xservers; /* head node server list x/
progs watch [WATCHCOUNI] ; /+ array of processes to watch x/
char xlogfile; /+ logfile %/
char xerrlog; /* error logfile x/
char *submit; /* submission command */
char xdel; /% deletion command x/
char *stat; /* status command */
queue submitq; /# submission queue x*/
queue delq; /* deletion queue x/
queue jutexq; /* mutex queue x/

148




57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

A.3. Sources code listings

} srvdata;

/* getopt_long return codes x/
enum {DUMMY CODE=129} ;

/*******************************************************************************

* *
* usage *
* *
*******************************************************************************/
/%!

\fn void usage(int status)

\brief function to printout usage information

\param status depending on status, usage may end the program

*/

void usage (int status);

/*******************************************************************************
* *
* decode_switches *
* *
*******************************************************************************/
/%!

\fn int decode_switches (int argc, char sxargv);

\brief function decode switches on startup

\param argc argument counter

\param #*argv argument vector
*/

int decode_switches (int argc, char s*xargv);

/*******************************************************************************
* *
* serverinit *
* *
*******************************************************************************/
/%!

\fn void serverinit(FILE xlogfile , FILE xerrorlog);

\brief function to initialize server logging facilities

\param logfile logfile

\param errorlog error logfile

*/

void serverinit (FILE xlogfile , FILE xerrorlog);

/*******************************************************************************

* *
* bootinit *
* *

*******************************************************************************/
/x!

\fn void bootinit(FILE xlogfile , FILE xerrorlog);

\brief function to initialize jinit logging facilities

\param logfile logfile

\param errorlog error logfile

*/

void bootinit (FILE xlogfile , FILE xerrorlog);

/*******************************************************************************

* *
% initdata *
* *

*******************************************************************************/

/x!

\fn int initdata(srvdata =serverdata, char xconfigfile);

\brief function to initialize the data structures of the server by parsing the
configuration file

\param xserverdata server datastructure

\param xconfigfile configuration file to parse

*/

149




119

121

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

10

12

14

16

18

20

22

24

A.3. Sources code listings

int initdata(srvdata xserverdata, char xconfigfile);
/*******************************************************************************

* *
x deletedata *
* *

Sk ok ok ok ok ok ok ok ok ok ok ok o o o o R R R R R K K K K K KKK KKK K K K K oK oK ok ok ok ok o o o o o o o o R R K K K K K KK K KKK KRRk ok ok ok ok ok ok /)
/%!

\fn int deletedata(srvdata xserverdata);

\brief function to free the data structures of the server

\param xserverdata server datastructure

*/

int deletedata(srvdata xserverdata);
/*******************************************************************************

* *
* shutd *
* *

*******************************************************************************/
/x!

\fn void shutd(char xmsg);

\brief function to shutdown the server

\param xmsg message for shutdown

*/

void shutd(char *msg);

/% 5%k ok ok ok ok ok ok ok ok ok ok ok ok ok oKk K ok koK ok kK ok K oK ko ok koK ok K Kk R ok koK ok koK ok oK ok K ok koK ok R Kk R oK koK ok koK ok K oKk o ok koK oK K Kk K KOk

* *
* killpids *
* *

*******************************************************************************/
/!

\fn void killpids(srvdata xserverdata);

\brief function to kill all pending processes on watchdog group

\param xserverdata server datastructure

*/

void killpids (srvdata sserverdata);

startup.c

/*******************************************************************************

* Project: JOSHUA *
* Description: functions for startup assistence *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "YB88888 "Y888888 *
* .d88sP *
* .d8sp” 2006 Kai Uhlemann *
* 888P" *
* *
* Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2-686—smp on i686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *

*******************************************************************************/
/*******************************************************************************
* *

150




26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

A.3. Sources code listings

*+ Headers *
* *
*******************************************************************************/
#include "utils.h"

#include "startup.h"

#include "signals.h"

extern char xprogram_name;
char xconfigfile;
srvdata svdat;

struct option const long_options[] =

{

{"help", no_argument, 0, °h’},
{"version", no_argument, 0, *V’},
{"config", required_argument, 0, ’c’},
{NULL, 0, NULL, 0}

b

/*******************************************************************************

* *
x decode_switches *
* *

*******************************************************************************/
/* Set all the option flags according to the switches specified.
Return the index of the first non—option argument. =/
int decode_switches (int argc, char =xargv)
{
int c;
configfile=NULL;

while ((c = getopt_long (argc, argv,
"h" /x help =/
"v" /% version x/
"c:", /+ config file x/
long_options, (int x) 0)) != EOF)
{
switch (c¢)
{
case ’V’:
printf ("joshua %s\n", VERSION) ;
exit (EXIT_SUCCESS) ;

case ’h’:
usage (EXIT_SUCCESS) ;

case ’c’:
configfile=optarg;
break;

default:

usage (EXIT_FAILURE);
}

}

/* check if configfile was given x/

if (configfile==NULL)

{
fprintf (stderr, "Error: Missing config file.\n");
usage (EXIT_FAILURE) ;

}

return optind;

151




90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

146

148

150

A.3. Sources code listings

/*******************************************************************************

* *
* serverinit %
* *

*******************************************************************************/

void serverinit (FILE xlogfile , FILE xerrorlog) {

/* init logging facility =x/
if (errorlog==NULL)
{

}

else

{

set_log_target (NULL, NULL);

set_log_target(logfile , errorlog);

log_info("Inititiate Server startup\n");

/* set signal handlers */
sigjoshuainit () ;

log_info("Startup finished.\n");

return;

/*******************************************************************************

* *
x bootinit *
* *

*******************************************************************************/

void bootinit(FILE xlogfile , FILE xerrorlog) {

/* init logging facility x/
if (errorlog==NULL)
{

}

else

{

set_log_target (NULL, NULL);

set_log_target(logfile, errorlog);

log_info("Inititiate Server startup\n");

/% set signal handlers x/
sigbootinit () ;

log_info("Startup finished.\n");
return;

}

/*******************************************************************************

* *
* usage *
* *

*******************************************************************************/
void usage (int status)

{
printf("/s - \
JOSHUA - JOb Scheduler for High availability Using Active/active\

152




152

154

156

158

160

162

164

166

168

170

172

174

176

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

A.3. Sources code listings

replication\n" ,program_name) ;

printf ("Usage: %s [OPTION]... [FILE]...\n", program_name);
printf ("\
Options:\n\
-h, --help display this help and exit\n\
-V, --version output version information and exit\n\
-c config, --config config configuration file (mandatory)\n\

||);

exit (status);
}

/***>|<*********>|<********>|<********************************************************

* *
x initdata *
* *

Kok ok ok ok oK ok K oKk K ok koK ok oKk R ok kK ok koK ok oKk K ok koK ok 3k oKk R oKk ok ok oK ok oKk K ok koK ok koK ok oKk K ok ok ok ok R oKk R kR ok ok Kok Rk ok /)
int initdata(srvdata *serverdata, char xconfigfile)

{

cfg_opt_t opts[] =
{

CFG_STR("logfile", "/var/log/joshua/joshua.log", CFGF_NONE),
CFG_STR("errorlog", "/var/log/joshua/joshuaerr.log", CFGF_NONE),
CFG_STR("scheduler_exec", "/usr/local/maui/sbin/maui", CFGF_NONE) ,
CFG_STR("scheduler_conf", "/usr/local/maui/maui.cfg", CFGF_NONE) ,
CFG_STR("scheduler", "maui", CFGF_NONE),
CFG_STR("job_server_exec", "/usr/local/sbin/pbs_server", CFGF_NONE),
CFG_STR("job_server_conf", "/var/spool/server_priv/serverdb", CFGF_NONE) ,
CFG_STR("job_server", "pbs_server", CFGF_NONE),
CFG_STR("group_com_exec", "/usr/local/sbin/transis", CFGF_NONE),
CFG_STR("group_com_conf", "/etc/transis/transis.conf", CFGF_NONE),
CFG_STR("group_com", "transis", CFGF_NONE) ,
CFG_STR("joshua_exec", "/home/kai/joshua-0.1/joshua/joshua", CFGF_NONE),
CFG_STR("joshua_conf", "/etc/joshua/joshua.conf", CFGF_NONE),
CFG_STR("joshua", "joshua", CFGF_NONE),
CFG_STR("submit_exec", "/usr/local/bin/gsub", CFGF_NONE),
CFG_STR("del_exec", "/usr/local/bin/qdel", CFGF_NONE),
CFG_STR("stat_exec", "/usr/local/bin/qstat", CFGF_NONE),
/* a memory leak in libconfuse forces to leave the default to NULL =/
CFG_STR_LIST ("headnodes", NULL, CFGF_NONE) ,
CFG_END()

}s

cfg_t xcfg;

int i=0;

int entries=0;

cfg = cfg_init (opts, CFGF_NONE);
if (cfg_parse(cfg, configfile) == CFG_PARSE_ERROR)
{

/* no output will be seen when uninitialized =/
log_err("parsing configfile\n");

}

serverdata—>jbootup=getpid () ;

/* parse trough config data and store into internal serverdata =/

/% TODO cpystr =/

serverdata—>watch[0] .name=cpystr(cfg_getstr (cfg, "scheduler"));
serverdata—>watch[0] . prgexec=cpystr(cfg_getstr (cfg, "scheduler_exec"));
serverdata—>watch[0].conf=cpystr(cfg_getstr (cfg, "scheduler_conf"));
serverdata—>watch[0] . pid=0;

serverdata—>watch[1] .name=cpystr(cfg_getstr (cfg, "job_server"));
serverdata—>watch[1].prgexec=cpystr(cfg_getstr (cfg, "job_server_exec"));
serverdata—>watch[1].conf=cpystr(cfg_getstr (cfg, "job_server_conf"));

153



A.3. Sources code listings

serverdata—>watch[1].pid=0;

216 serverdata—>watch[2] .name=cpystr(cfg_getstr (cfg, "group_com"));
serverdata—>watch[2] . prgexec=cpystr(cfg_getstr (cfg, "group_com_exec"));

218 serverdata—>watch[2].conf=cpystr(cfg_getstr (cfg, "group_com_conf"));
serverdata—>watch[2].pid=0;

220 serverdata—>watch[3] .name=cpystr(cfg_getstr (cfg, "joshua"));
serverdata—>watch[3] . prgexec=cpystr(cfg_getstr (cfg, "joshua_exec"));

222 serverdata—>watch[3].conf=cpystr(cfg_getstr(cfg, "joshua_conf"));
serverdata—>watch[3].pid=0;

224
/* logging =/

26  serverdata—>logfile=cpystr(cfg_getstr(cfg, "logfile"));
serverdata—>errlog=cpystr(cfg_getstr(cfg, "errorlog"));

228
/* cmdtools */

230  serverdata—>submit=cpystr(cfg_getstr(cfg, "submit_exec"));
serverdata—>del=cpystr(cfg_getstr (cfg, "del_exec"));

232 serverdata—>stat=cpystr(cfg_getstr (cfg, "stat_exec"));

234 /* alloc server list */
entries=cfg_size (cfg, "headnodes");
236 serverdata—>servers=(char xx)malloc(sizeof(charx*)*(entries+1));
if (serverdata—>servers==NULL)
238 {
log_err("malloc %s\n", strerror(errno));
240 }

242 /% servers x/
for(i=0; i<entries; i++)
244 {
serverdata—>servers[i]=cpystr(cfg_getnstr(cfg, "headnodes" , i));
246 }
serverdata—>servers|[i]|=NULL;
248 cfg_free(cfg);

250 /* init queues x/
initq (&serverdata—>submitq) ;
252 initq (&serverdata—>delq);
initq (&serverdata—>jutexq);
254
return 0;
256}

258 int deletedata(srvdata *xserverdata)

{

260 int i=0;

22 for(i=0; i<WATCHCOUNT; i++)
{

264 destroystring (&serverdata—>watch[i] .name);
destroystring (&serverdata—>watch[i].prgexec);
266 destroystring (&serverdata—>watch[i].conf);
}
268

/* logging =/
270 destroystring (&serverdata—>logfile);
destroystring (&serverdata—>errlog);
272
/* cmdtools */
274 destroystring (&serverdata—>submit) ;
destroystring (&serverdata—>del) ;
276  destroystring (&serverdata—>stat);

154



278

280

282

284

286

288

290

292

294

296

298

300

302

304

306

308

310

312

314

316

318

320

322

324

326

328

1

A.3. Sources code listings

/x servers x/
destroylist (&serverdata—>servers);

/* free queues x/

destroyq (&serverdata—>submitq) ;
destroyq(&serverdata—>delq);
destroyq(&serverdata—>jutexq);

return 0;

}

/*******************************************************************************

* *
x shutd *
* *

*******************************************************************************/

void shutd(char *msg) {

if (msg!=NULL)
{

}

/* close log files x/
raise (SIGTERM) ;

log_warn("%s\n" ,msg) ;

}

/*******************************************************************************

* *
* killpids *
* *

*******************************************************************************/
void killpids (srvdata xserverdata)
{
int i=0;
/% kill everything which has a pid with SIGTERM x/
for (i=0; i<WATCHCOOUNT; i++)
{
if (serverdata—>watch[i].pid!=0)
{

}
}
/% kill everything which has a pid again with SIGKILLx/
for (i=0; i<WATCHCOUNT; i++)
{
if (serverdata—>watch[i].pid!=0)
{

}
}

kill (serverdata—>watch[i].pid, SIGTERM);

kill (serverdata—>watch[i].pid, SIGKILL);

}

A.3.4 libjutils
data.h

/*******************************************************************************

* Project: JOSHUA *

155




11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

A.3. Sources code listings

* Description: data definitions and structures for the JOSHUA components *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888  "Y88P" 88888P" 888 888 "Y88888 "Y888888 *
* .d88P *
* .d8spP" 2006 Kai Uhlemann *
* 888P" *
* *
* Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—686—smp on i686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *
*******************************************************************************/

/%!
\file data.h
\brief contains all data structures useful for server or client

Here all structs, enums and defines of any kind used for server
or client will be stored and may so easy changes or extended.
*/

/*******************************************************************************

* *
* HIML Main Page Costumization *
* *

*******************************************************************************/

/*! \mainpage JOSHUA Documentation

*

% \section intro_sec Introduction

*

% This is the introduction.

*

* \section install_sec Installation

*

* \subsection stepl Step 1: Opening the box

*

* etc...
*/
/*******************************************************************************
* *
x Structures *
* *

*******************************************************************************/
/%!

\struct server_gs

\brief simple structure to read the first byted out of the pbs serverdb

This is a structure which facilitates parts of the pbs_server serverdb.
The structure has been extracted from the pbs code in torque 2.0pl

*/

struct server_qs {
int sv_numjobs; /% number of job owned by server */
int sv_numque; /* nuber of queues managed */
int sv_jobidnumber; /% next number to use in new jobid x/
/* the server struct must be saved =/

156




67

69

71

73

75

77

A.3. Sources code listings

/* whenever this value is updated */
time_t sv_savetm; /% time of server db update
} sv_qgs;

#define XNOR(A,B) (((A)&&(B)) Il ((!(A))&&(!(B))))

/!

\def WATCHCOUNT

set number of processes to watch to 4
*/
#define WATCHOOUNT 4

/*******************************************************************************
* *
* Macros *
* *

*******************************************************************************/

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

/!

\def HEADNODEGROUP

set string for the headnodegroup to "headmasters"
*/
#define HEADNODEGROUP "headmasters"

/x!

\def STARTSIZE

set startsize for allocation to 8
*/

#define STARTSIZE 8

/x!

\def REGFILE

set value for regular file to 1
*/

#define REGFILE 1

/x!

\def NREGFILE

set non regular file to 0

*/

#define NREGFILE 0

/%!

\def ENTLEN

set regular entry length of a msg string to 5

dont change that till sollutiion for sprintf is found

*/
#define ENTLEN 4

/%!

\def PRTLEN

set regular printf format string of a msg string to "%5d"
dont change that till sollutiion for sprintf is found

*/

#define PRTLEN "74x"

/%!

\def UIDLEN

set UID length in a msg to 5

dont change that till sollutiion for sprintf is found

*/

157



129

131

133

135

137

139

141

143

145

147

149

151

153

155

157

159

161

163

165

167

169

171

173

175

177

179

181

183

185

187

189

191

A.3. Sources code listings

#define UIDLEN 4

/!

\def PRTUID

set regular printf format string of a uid string to "%5d"
dont change that till sollutiion for sprintf is found

*/

#define PRTUID "%4x"

/!

\def GIDLEN

set GID length in a msg to 5

dont change that till sollutiion for sprintf is found

*/
#define GIDLEN 4

/%!

\def PRTGID

set regular printf format string of a uid string to "%5d"
dont change that till sollutiion for sprintf is found

*/

#define PRTGID "%4x"

/x!

\def MSGHLEN

set length for a message header to 3
dont change that either

*/

#define MSGHLEN 3

/%!

\def ADDVSG

set submit/add message identifier to "add"
*/
#define ADDMSG "add"

/!

\def RSPMSG

set response message identifier to "rsp"
*/
#define RSPMSG "rsp"

/x!

\def RSPMSG

set status message identifier to "sta"
*/
#define STAMSG "sta"

/%!

\def DELMSG

set deletion message identifier to "del"
*/

#define DELMSG "del"

/!

\def STRMSG

set start message identifier to "str"
*/

#define STRMSG "str"

/%!

\def FNSMSG

set finish message identifier to "fns"

158




193

195

197

199

201

203

205

207

209

211

213

215

217

219

221

223

225

227

229

231

233

235

237

239

241

243

245

247

249

251

253

A.3. Sources code listings

*/
#define FNSMSG "fns"

/x!

\def JOIMSG

set joi message identifier to "joi"

*/
#define JOIMSG "joi"

/x!

\def ADDMSGID

set submit/add message identifier to 1
*/

#define ADDMSGID 1

/x!

\def RSPMSGID

set response message identifier to 2
*/

#define RSPMSGID 2

/!

\def STAMSGID

set status message identifier to 3
*/

#define STAMSGID 3

/x!

\def DELMSGID

set del message identifier to 4
*/
#define DELMSGID 4

/%!

\def STRMSGID

set start message identifier to 5
*/
#define STRMSGID 5

/!

\def FNSMSGID

set finished message identifier to 6
*/

#define FNSMSGID 6

/x!

\def JOIMSGID

set join message identifier to 7
*/

#define JOIMSGID 7

/%!

\def UNKNOWNMVEG

set submit/add message identifier to 0
*/

#define UNKNOWNMSG 0
/%!

\def LOG_INFO
set logging information identifier to 1

159




255

257

259

261

263

265

267

269

271

273

275

277

279

281

283

285

287

289

291

293

295

297

299

301

303

305

307

309

311

313

315

317

A.3. Sources code listings

*/
#define LOG_INFO 1

/x!

\def LOG_WARN

set logging warning identifier to 2
*/

#define LOG_WARN 2

/!

\def LOG_ERR

set logging information identifier to 3
*/

#define LOG_ERR 3

/x!

\def IDUID

set uid message identifier to 1
*/

#define IDUID 1

/%!

\def IDGID

set gid message identifier to 2
*/

#define IDGID 2

/x!

\def IDJID

set job message identifier to 3
*/

#define IDJID 3

/%!

\def IDARGV

set job message identifier to 4
*/

#define IDARGV 4

/x!

\def IDARGV

set job message identifier to 5
*/

#define IDENV 5

/x!

\def IDLSU

set last submitted job message identifier to 6

*/
#define IDLSU 6

/!

\def IDLDO

set last job done message identifier to 7

*/

#define IDLDO 7

/!

\def IDGSU

set generation submitted job message identifier to 8

*/
#define IDGSU 8

160




319

321

323

325

327

329

331

333

335

337

339

341

343

11

13

15

17

19

21

23

25

27

29

31

33

A.3. Sources code listings

/x!
\def IDGDO
set generation job done message identifier to 9

*/
#define IDGDO 9

/%!
\def PBS_SEQNUMIOP
set maximum PBS job id value to 99999999

*/
#define PBS_SEQNUMIOP 99999999

/%!

\def EXIT_PBS_SUCCESS

set exit value for PBS job success to 0
*/

#define EXIT_PBS_SUCCESS 0

/x!
\def EXIT_PBS_ABORT
set exit value for PBS job abortion to 1

*/
#define EXIT_PBS_ABORT 1

list.h

/*******************************************************************************

* Project: JOSHUA *
* Description: double linked queue q *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P"  88888P’ 888 888 "Y88888 "Y888888 *
* .d88P" 2006 Kai Uhlemann *
* 888P" *
* *
* Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—-686—smp on 1686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *
*******************************************************************************/

/*******************************************************************************

*
x Macro functions
*

*
*
*

*******************************************************************************/

#define qsize(q) ((q)—>size)
#define ghead(q) ((q)—>head)
#define qtail(q) ((q)—>tail)

#define addelmt(QUEUE, JID, MSG) inselmt(QUEUE, createlmt (JID, MSG))

#define getmsg(QUEUE, JID) getelmt(QUEUE, JID)—>jmsg

161




35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

A.3. Sources code listings

#define getsender (QUEUE, JID) getelmt(QUEUE, JID)—>jmsg

/*******************************************************************************

* *
x structure for linked list elements *
* *

sk ok ok o KK R KK R K K K K R K K R K R KK SR R KK R KK K SR R KK SR K K R K SR KKK KK K SR R KK R K K R K K R KK KK KK R Kok ok /
/!

\struct qelmt_

\brief double linked list to manage the internal jobqueue

This is a structure which facilitates the jobmessages from the clients , hold
in this internal queue list

*/

typedef struct qelmt_ {

unsigned long jid; /% job identifier */

char *jmsg; /+ job message */

struct qelmt_ xnext; /% pointer to next element =/

struct qelmt_ xprv; /x pointer to previous element x/

} qelmt;

/*******************************************************************************

* *
% structure for linked list *
* *

ok ok ok ok ok ok ok K oKk K ok koK ok Kk K oK koK ok koK ok oK ok K ok koK oK oKk K ok koK ok koK ok K oKk K ok koK ok kK ok oKk o ok koK ok K Kk K kR ok R Kok Rk ok /)
/%!

\struct queue_

\brief manage the internal jobqueue

\param size size of queue

This is a structure holds the internal job queue
*/
typedef struct queue_ {
unsigned int size; /% size of the queue x/
gelmt xhead; /* head element of the queue x/
gelmt =tail; /% tail element of the queue x/

} queue;

/*******************************************************************************
* *
* prototypes *
* *

*******************************************************************************/
/*******************************************************************************

* *
* initq *
* *

*******************************************************************************/
/%!

\fn void initq(queue *q)

\brief function to initialize the internal jobqueue

function initializes the internal jobqueue given by argument, it set the size to
0 and head and tail of the queue to NULL

\param xq jobqueue

*/

void initq(queue xq);
/*******************************************************************************

* *
* destroyq *
* *

*******************************************************************************/
/%!

\fn void destroyq(queue *q)

\brief function to free the internal jobqueue

162




97

101

103

105

107

109

111

113

115

117

119

121

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

153

155

1

g1
S

159

A.3. Sources code listings

function frees the internal jobqueue given by argument, it frees all elements of
the queue

\param xq jobqueue

*/

void destroyq(queue xq);
/*******************************************************************************

* *
x createlmt *
* *

******************************************>|<************************************/
/%!

\fn gelmt xcreatelmt(unsigned long jid , char xmsg)

\brief function to create queue elements

function is used to create a queue element out of a jobid and the jobmessage
createlmt returns a queue element or NULL in case of failure

\param jid the jobidentifier

\param jmsg the jobmessage

\return queue element or NULL in case of failure

*/

gelmt xcreatelmt(unsigned long jid , char smsg);
/*******************************************************************************

* *
* destroyelmt *
* *

*******************************************************************************/
/*!

\fn int destroyelmt(qelmt xxelement)

\brief function to free queue elements

function is used to free a queue element

detroyelmt returns 0 or —1 in case of failure

\param element element to free

\return 0 or —1 in case of failure

*/

int destroyelmt(qelmt xxelement);

/st kst ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk R R R KR SRRk ok ok sk ok ok ok ok sk Sk Sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk 3k R KKKk ok ok ok ok ok ok ok oK

* *
* inselmt *
* *

*******************************************************************************/
/%!

\fn int inselmt(queue *q, qelmt xelement)

\brief function to insert queue elements into the internal queue

function is inserts the given element into the given queue. Since jobqueue works
like a FIFO, the job is always added at the head of the queue.

inselmt returns 0 or —1 in case of failure

\param xq jobqueue

\param element element to add

\return 0 or —1 in case of failure

*/

int inselmt(queue *q, gelmt xelement);
/*******************************************************************************

* *
* getelmt *
* *

*******************************************************************************/
/!

\fn gelmt sgetelmt(queue xq, unsigned long jid)

\brief function to get queue elements

163




161

163

165

167

169

171

173

175

177

179

181

10

12

14

16

18

20

22

24

26

28

30

32

34

36

A.3. Sources code listings

function is used to get a queue element out of a jobid a

getelmt returns a queue element or NULL in case of failure

\param xq jobqueue

\param jid the jobidentifier

\return queue element or NULL in case of failure

*/

gelmt xgetelmt(queue *q, unsigned long jid);

] 3 sk ks ok sk ks o sk sk o stk ks o s sk sk ks ok s sk sk ks ok sk o sk sk o ks ok sk sk sk o st ok sk o sk sk stk ok sk ok sk sk sk ok ok sk ok o o ok

* *
* remelmt *
* *

*******************************************************************************/
/%!

\fn int remelmt(queue *q, unsigned long jid)

\brief function to remove queue element from the internal queue

function removes an element by given job identifier from the given queue.
remelmt returns 0 or —1 in case of failure

\param xq jobqueue

\param element element to add

\return 0 or —1 in case of failure

*/

int remelmt(queue *q, unsigned long jid);

list.c

/*******************************************************************************

* Project: JOSHUA *
* Description: double linked queue q *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "Y88888 "Y888888 *
* .d88P *
* .d8spP" 2006 Kai Uhlemann *
* 888P" *
* *
* Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—686—smp on i686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *

*******************************************************************************/
/*******************************************************************************

* *
x Headers *
* *

*******************************************************************************/
#include "utils.h"
/*******************************************************************************

* *
* initq *
* *

*******************************************************************************/
void initq(queue *q)

{

164




38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

A.3. Sources code listings

q—>size = 0;
g—>head = NULL;
q—>tail = NULL;
return;

}

/*******************************************************************************

*
* destroyq
*

*
*
*

*******************************************************************************/

void destroyq(queue xq) {
gelmt xelmtptr, stmpptr;

/* start at head to destroy queue x/
elmtptr=q—>head;

/% free until end of queue is reached =/
while (elmtptr!=NULL)
{
/* save ptr position =/
tmpptr=elmtptr;
/* go to next element x/
elmtptr=elmtptr—>next;
/* free the element x/
destroyelmt (&tmpptr) ;
}

/* even destroy all data in queue structure x/

memset(q, 0, sizeof(queue));
return;

}

/*******************************************************************************

*
x createelmt
*

*
*
*

s sk o KoK R SRR S KR SR SRR K SR R SRR K SRR SR KRR R SRR SR KRR SR R R K oK R SRR S KSR SRR S KRR SR K K ok R otk %/
gelmt xcreatelmt(unsigned long jid, char =xmsg)

{
gelmt xelement;

/% test msg */
if (msg==NULL)
{

log_warn("q message was empty\n");
return NULL;
}
/* initialize the new element x/
/% allocate storage for the element x/
element = (qelmt x)malloc(sizeof(qelmt));
if (element==NULL)
{
log_err("malloc %s\n", strerror(errno));
}

/% start allocating for the message */

element—>jmsg = (char x)malloc(sizeof(char)=*(strlen (msg)+1));

if (element—>jmsg==NULL)
{

log_err("malloc %s\n",strerror(errno));

}

/x set memory */

165




100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

A.3. Sources code listings

memset(element—>jmsg, ’\0’, strlen (msg)+1);
/% copy the q job message =/

strncpy (element—>jmsg ,msg, strlen (msg) ) ;

/* set the rest =/

element—>jid = jid;

element—>next=NULL;

element—>prv=NULL;

return element;

}

/*******************************************************************************

* *
* destroyelmt %
* *

*******************************************************************************/
int destroyelmt(qgelmt *xelement) {

if (xelement==NULL)
{

}

/* destroy the job message string first =/
destroystring (&(*element)—>jmsg) ;

/* then free the element x/

free (xelement) ;

xelement=NULL;

return EXIT_SUCCESS;

return EXIT_FAILURE;

}

/% 3k ok ok ok ok ok ok ok ok ok ok ok ok ok oKk K ok koK ok koK ok R oK ko ok koK ok oKk R ok kK ok koK ok ok ok K ok koK ok oKk ok koK ok koK ok R oKk K ok ok oK oK K Kk K Kok

* *
x inselmt *
* *

*******************************************************************************/
int inselmt(queue *q, qgelmt xelement) {

gelmt xelmtptr;

/* Insert the element into the q x/
/% find correct position in q */
/+ if first element x/
if (q—>head==NULL)
{
g—>head=element;
g—>tail=element;
//log_info ("Inserted JOB %Ild to internal list\n", element—>jid);
return 0;
}
/% if not insert at the head of the queue x/
elmtptr=q—>head;
/x set backlink of old head to new element */
elmtptr—>prv=element;
/x set the forward link of the new element to the old head x/
element—>next=elmtptr;
/* new element is now new head x/
q—>head=element;
//log_info ("Inserted JOB %ld to internal list\n", element—>jid);
return 0;

/*******************************************************************************
* *

166




A.3. Sources code listings

* getelmt *
164 *

*******************************************************************************/
166 qelmt xgetelmt(queue *q, unsigned long jid){

168  unsigned long tailjid=0, headjid=0;
gelmt xelmtptr=NULL;

170
if (q—>head==NULL) {
172 /* nothing yet x/
return NULL;
174 }

176 /+ get the head and tail jids =/
tailjid=q—>tail—>jid;
178 headjid=q—>head—>jid ;

180 /* which has shortest distance x/
if (labs(tailjid —jid )>labs (headjid—jid))

182 {
/* start at tail =/
184 elmtptr=q—>tail ;
/* search until head of queue is reached =/
186 while (elmtptr!=NULL)
{
188 /* check jid =/
if (elmtptr—>jid==jid)
190 {
return elmtptr;
192 }
/* go to next element x/
194 elmtptr=elmtptr—>prv;
}
196
198 }
else
200 {
/* start at head =/
202 elmtptr=q—>head;
/% search until tail of queue is reached x*/
204 while (elmtptr!=NULL)
{
206 /* check jid =/
if (elmtptr—>jid==jid)
208 {
return elmtptr;
210 }
/* go to next element x/
212 elmtptr=elmtptr—>next;
}
214
}
216
return NULL;
218
}
220
/*******************************************************************************
22 * *
* remelmt *
24 * *

*******************************************************************************/

167



A.3. Sources code listings

226 int remelmt(queue xq, unsigned long jid){
228  qelmt xelmtptr=NULL, stmpptr=NULL, *next=NULL, sprev=NULL;

230 /* get the element to remove x*/
elmtptr=getelmt(q, jid);

232 if (elmtptr==NULL)
{

234 return —1;
}

236 /* if element to remove is head */
if (elmtptr==q—>head)

238 {
/* save ptr position =/
240 tmpptr=elmtptr;
/* go to next element x/
242 elmtptr=elmtptr—>next;
/* check whether there is a next element x/
244 if (elmtptr!=NULL)
{
246 /+ set new head x*/
q—>head=elmtptr;
248 elmtptr—>prv=NULL;
}
250 /% reset the head and tail pointer since noone is left =/
else
252 {
q—>head=NULL;
254 q—>tail =NULL;
}
256 //log_info ("Removed JOB %ld from internal list at head\n", tmpptr—>jid);
/* free the element x/
258 destroyelmt (&tmpptr) ;
return 0;
260 }

/* if element to remove is tail */
262 if (elmtptr==q—>tail)
{

264 /% save ptr position x/
tmpptr=elmtptr;
266 /% go to previous element =/
elmtptr=elmtptr—>prv;
268 /% check whether there is a previous element x/
if (elmtptr!=NULL)
270 {
/% set new tail x/
272 g—>tail=elmtptr;
elmtptr—>next=NULL;
274 }
/% reset the tail and head pointer, since there is no element anymore x/
276 else
{
278 q—>head=NULL;
q—>tail =NULL;
280 }
//log_info ("Removed JOB %ld from internal list at tail\n", tmpptr—>jid);
282 /* free the element x/
destroyelmt (&tmpptr) ;
284 return 0;

}

286 /x if somewhere in between x/
/% save ptr position =/

288 tmpptr=elmtptr;

168



290

292

294

296

298

300

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

45

A.3. Sources code listings

/* go to next element x/
next=elmtptr—>next;

/* go to previous element x/
prev=elmtptr—>prv;

/* set next and prv pointers x/
next—>prv=prev;
prev—>next=next;

//log_info ("Removed JOB %ld from internal list in between\n", tmpptr—>jid);
/* free the element x/
destroyelmt (&tmpptr) ;

return 0;

log.h

/*******************************************************************************

* Project: JOSHUA *
* Description: logging related function for all JOSHUA components *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
s 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
s 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "Y88888 "Y888888 *
* .d88P *
* .d8spP" 2006 Kai Uhlemann *
* 888P" *
* *
x Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—-686—smp on 1686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *

*******************************************************************************/
/*******************************************************************************

* *
x Macro functions *
* *

*******************************************************************************/
#define log_info (FORMAT, args...) log_all (LOG_INFO, (FORMAT), ## args)

#define log_warn(FORMAT, args...) log_all (LOG_WARN, (FORMAT), ## args)

#define log_err (FORMAT, args...) log_all (LOG_ERR, (FORMAT),6 ## args)

/*******************************************************************************

* *
* Function prototypes *
* *

*******************************************************************************/

/*******************************************************************************
* *
* get logdate %
* *

*******************************************************************************/
/%!

\fn char xgetlogdate ()

\brief function to get the system time

function to get the local time as a string from the system

169




'S
A

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

A.3. Sources code listings

getlogdate returns a string or NULL in case of a failure
\return a string or NULL in case of a failure

*/

char xgetlogdate () ;

/*******************************************************************************

* *
* set_log_target *
* *

*******************************************************************************/
/%!

\fn void set_log_target(FILE xout, FILE xerr)

\brief function to set the target file streams for the logging facilty

function set the target to the given filestreams. If the parameters are NULL
stdout and stderr are used

\param xout the normal output target for information and warnings

\param xerr the error output target for errors

*/

void set_log_target (FILE xout, FILE xerr);

/*******************************************************************************

* *
* log *
* *

*******************************************************************************/
/x!

\fn void log_all(int loglevel , const char xformat, ...);

\brief function to log events

function logs events to the file streams given by set_log_target, depending on
the loglevel. The function is somewhat generic and is used to provide log_err,
log_warn and log_info

\param loglevel distingiushes between information, errors and warnings

\param xformat format string for message, similar to printf() format string

*/

void log_all(int loglevel , const char sformat, ...);
/*******************************************************************************

* *
* log_info *
* *

ok ok ok ok ok ok ok ok ok ok ok Kok oKk ok K ok ok ok ok ok sk ok ok ok ok ook ok oKk sk sk ok ok ook ok ok ok ok sk ok ok ook ok sk sk ok ok ook ok Kok ok ok ok ok ok ok ok ok /
/x!

\fn void log_info(const char xformat, ...);

\brief function to log information events

function logs information events to the file streams given by set_log_target.
\param xformat format string for message, similar to printf() format string

*/

/* see define section for prototype */
/*******************************************************************************

* *
* log_err *
* *

*******************************************************************************/
/%!

\fn void log_err(const char *format, ...);

\brief function to log error events

function logs error events to the file streams given by set_log_target

and raises SIGTERM

\param xformat format string for message, similar to printf() format string

*/

/* see define section for prototype */

/3 sk ok ok ook ko ok ok sk ok ok sk ok ok ok ok ok sk sk ok ok ok ok ok ok sk sk ok ok ok ook Kk sk sk ok ok ok ok oKk sk sk ok ook ok ok sk ok ok K ok ok ok Kok ok ok ok ok

170




111

113

115

117

119

121

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

A.3. Sources code listings

* *
* log_warn *
* *

*******************************************************************************/
/x|

\fn void log_warn(const char sformat, ...);

\brief function to log information events

function logs warning events to the file streams given by set_log_target.
\param xformat format string for message, similar to printf() format string

*/

/* see define section for prototype x/

log.c

/*******************************************************************************

* Project: JOSHUA *
* Description: logging related function for all JOSHUA components *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P"  88888P’ 888 888 "Y88888 "Y888888 *
* .d88P" 2006 Kai Uhlemann *
* 888P" *
* *
* Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—-686—smp on 1686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *

*******************************************************************************/
/*******************************************************************************

* *
x Headers *
* *

*******************************************************************************/
#include "utils.h"
/*******************************************************************************

* *
x Global data *
* *

stk ok ok ok ok sk ok ok ok sk ko ok ok sk ok ok Kk ok ok ok sk ok ok Kk ok ok ok sk sk ok Kk ok ok sk sk ok ok sk ko ok ok sk sk ok Kk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok Kk ok ok ok ok ok Kk /
char sprogram_name =NULL;

FILE xlog_target_err = NULL;

FILE xlog_target_out = NULL;

/*******************************************************************************

* *
* get logdate *
x* return — allocated string with logging date and time on success or NULL *
* *

*******************************************************************************/
char xgetlogdate ()
/*

* local data

171




49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

95

97

99

101

103

105

107

109

A.3. Sources code listings

*/
time_t curtime;
struct tm xtimest;

curtime = time (NULL) ;
timest = localtime (&curtime);

return asctime (timest);

Sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk ok sk

}
/*******************************************************************************
*
* set_log_target *
* FILE xout — set the log output for information to out *
* FILE xerr — set the log output for errors and warnings to err *
* *
/

void set_log_target (FILE xout, FILE xerr)
{

if (out!=NULL)
{

}

else

{
}

if (err !=NULL)
{

}

else

{

}
}

log_target_out = out;

log_target_out = stdout;

log_target_err = err;

log_target_err = stderr;

/*******************************************************************************

*
* log_all
* int loglevel — distiquish between information , warning and error level

x cont char xformat — format string for log message
*

>k 3k 3k sk 3k sk 3k sk sk skosk sk sk sk skosk sk sk sk sk Sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk kosk sk

void log_all(int loglevel , const charx format, ...)
{

/*

% local data

*/

char *timebuf=NULL;
va_list vp;

/* return immediatly if no format is given x/
if (format == NULL)
{

}

/* return immediatly if log targets not set x/

return;

if ((log_target_out == NULL) | | (log_target_err==NULL))

{
}

return;

172

*
*
*
*
/




111

113

115

117

119

121

123

125

127

129

131

133

135

137

139

141

143

145

147

149

11

13

15

17

19

A.3. Sources code listings

/% get the time x/
timebuf = getlogdate () ;
timebuf[24] = ’\07;

/* start parameter list x/
va_start (vp, format);

/* print message depending on log level x/
switch (loglevel)

{
/* just an info message */
case LOG_INFO:
fprintf(log_target_out, "[%s] %s =lkd= Info: ", timebuf, program_name, getpid());
viprintf (log_target_out, format, vp);
fflush (log_target_out);
break;
/% a warning x/
case LOG WARN:
fprintf(log_target_err, "[%s] s =/d= Warning: ", timebuf, program_name, getpid());
viprintf(log_target_err, format, vp);
fflush (log_target_err);
break;
/* error message */
case LOG_ERR:
fprintf (log_target_err, "[%s] %s =)d= Error: ", timebuf, program_name, getpid());
viprintf(log_target_err, format, vp);
fflush (log_target_err);
/* when an error occurs, shutdown x*/
raise (SIGTERM) ;
break;
default:
break;
}
/* end parameter sweep */
va_end (vp);

msg.h

/*******************************************************************************

* Project: JOSHUA *
* Description: message related functions for joshua and jemd *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "Y88888 "Y888888 *
* .d88P *
* .d8sp” 2006 Kai Uhlemann *
* 888P" *
* *
* Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2-686—smp on 1686 *
* *

173




23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

A.3. Sources code listings

* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *
*******************************************************************************/

/*******************************************************************************

* *
x Macro functions *
* *

*******************************************************************************/
#define recov_str_header (MSG) recov_msgentry ((MSG), 1)
#define recov_str_uid (MSG) recov_msgentry (MSG), 2)
#define recov_str_jid (MSG) recov_msgentry ((MSG), 2)
#define recov_str_lsub (MSG) recov_msgentry ((MSG), 2)
#define recov_str_gid (MSG) recov_msgentry ((MSG), 3)
#define recov_str_ldone(MSG) recov_msgentry ((MSG), 3)
#define recov_str_stdin (MSG) recov_msgentry ((MSG), 4)
#define recov_str_gensub(MSG) recov_msgentry ((MSG), 4)
#define recov_str_argv(MSG) recov_msgentry ((MSG), 5)
#define recov_str_gendone(MSG) recov_msgentry ((MSG), 5)
#define recov_str_env(MSG) recov_msgentry ((MSG), 6)
#define recov_str_sender (MSG) recov_msgentry ((MSG), 7)
#define recov_uid (MSG) recov_ids ((MSG), IDUID)
#define recov_gid (MSG) recov_ids ((MSG), IDGID)
#define recov_jid (MSG) recov_ids ((MSG), IDJID)
#define recov_lsub (MSG) recov_ids ((MSG), IDLSU)
#define recov_ldone (MSG) recov_ids ((MSG), IDLDO)
#define recov_gensub(MSG) recov_ids ((MSG), IDGSU)
#define recov_gendone(MSG) recov_ids ((MSG), IDGDO)
#define recov_stdin (MSG) recov_msgentry ((MSG), 4)
#define recov_sender (MSG) recov_msgentry ((MSG), 7)
#define recov_path(MSG) recov_msgentry ((MSG), 8)
#define recov_argv(MSG) recov_vector ((MSG), IDARGV)
#define recov_env(MSG) recov_vector ((MSG), IDENV)
#define recov_stdout(MSG) recov_msgentry ((MSG), 2)
#define recov_stderr (MSG) recov_msgentry ((MSG), 3)

#define mkaddmsg(Al, A2, A3, A4, A5, A6, A7) mkemdmsg(Al, A2, A3, A4, A5, A6, A7, ADDMSGID)
#define mkdelmsg(Al, A2, A3, A4, A5, A6, A7) mkamdmsg(Al, A2, A3, A4, A5, A6, A7, DELMSGID)
#define mkstamsg(Al, A2, A3, A4, A5, A6, A7) mkemdmsg(Al, A2, A3, A4, A5, A6, A7, STAMSGID)

#define mkstrmsg(JID, SENDER) mkjutexmsg(JID , SENDER, STRMSGID)
#define mkfnsmsg(JID, SENDER) mkjutexmsg(JID , SENDER, FNSMSGID)
#define recov_jutex_sender (MSG) recov_msgentry ((MSG), 3)

/*******************************************************************************

* *
* Function prototypes *
* *

*******************************************************************************/
/*******************************************************************************

* *
* packlist *
* *

*******************************************************************************/
/x|

\fn char xpacklist(char =sxlistvec)

\brief function to pack list of strings, like argv into a dynamic string

function to pack a list of strings, such as the argument vector

and the environment into a buffer to make jemds transparent to

remotely called functions

packall returns a fully allocated string with flatened list vector

\param xx*listvec a vector like argv or env to be packed in string

\return allocated string with flatened list vector

*/

char spacklist(char *xlistvec);
/*******************************************************************************

174




85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

129

131

133

135

137

139

141

143

145

A.3. Sources code listings

* *
x rebuildvector *
* *

*******************************************************************************/
/%!

\fn char sxrebuildlist(char *flatlist)

\brief function to uppack the a string to get argv and env

function to upack pack everything out of a string to get the argument vector
and the environment to make jemds transparent to remotely called functions
packall returns a fully allocated string list

\param xflatlist a flatened list packed in string

\return allocated exploded list vector

*/

char sxrebuildvector(char «flaitlist);
/*******************************************************************************

* *
* mkmsg *
* *

*******************************************************************************/
/x|

\fn charx mkaddmsg(char smsg, char xappend)

\brief generic function to creates messages for TRANSIS

function creates a message in appending the append string to the msg including
the length information header

mkaddmsg returns a fully allocated string

\param xmsg the msg so far

\param xappen the string to be appended to the message

\return a fully allocated message string

*/

char smkmsg(char s*msg, char xappend);

/*******************************************************************************

* *
* mkaddmsg *
* *

*******************************************************************************/
/*!
\fn char* mkaddmsg(uid_t uid, gid_t gid, char xin, char xxargvec,\
char sxenvvec, char *sender, char xpath)
\brief function creates add/submit message for TRANSIS

function creates a message for submitting a job via jsub to the HEADMASTER

group. The included data will be used to invoke a qsub there

mkaddmsg returns a fully allocated string

\param uid the user id

\param gid the group id

\param xin the standard input stored as string

\param xxargvec the argument vector

\param #*envvec the environment vector

\param xsender the message sender

\param xpath the working directory

\return a fully allocated message string

*/

char* mkemdmsg(uid_t uid, gid_t gid, char xin, char xxargvec, char *xenvvec,
char xsender, char xpath, int identifier);

/*******************************************************************************

* *
* recov_msgentry *
* *

stk ok ok ok ok sk ok ok ok ko ok ok sk ok ok Kk ok ok ok sk ok ok K Kk ok ok sk sk ok kR sk ok ok sk sk ok ok Kk ok ok sk sk ok ok Kk ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok Kk ok ok ok ok ok kK k /
/x!

\fn char xrecov_msgentry(char xmsg, int entryno)

175




147

149

151

153

155

157

159

161

163

165

167

169

171

173

175

177

179

181

183

185

187

189

191

193

195

197

199

201

203

205

207

209

A.3. Sources code listings

\brief function recovers any entry given by entrynumber from TRANSIS message

function recover the content of a message (a the string, using the entry number
this function is somewhat generic and is used for recovery

recov_msgentry returns a fully allocated string or NULL in case of failure
\param xmsg the message as string

\param entryno number of entry to recover

\return a msg or UNKNOMNMS in case of a failure

*/

char xrecov_msgentry(char smsg, int entryno);
/*******************************************************************************

* *
* recov_id *
* *

*******************************************************************************/
/%!

\fn int recov_id(char xmsg)

\brief function recovers msgid from TRANSIS message

function recover the identifier of a message (not the string but an

integer identifier), using the identifier approporiate action can be taken
recov_msgid returns a msg id defined in data.h or UNKNOANMSG in case

of a failure

\param xmsg the message as string

\return a msgi ID or UNKNOAMNMSG in case of a failure

*/

int recov_id(char xmsg);
/*******************************************************************************

* *
* recov_ids %
* *

*******************************************************************************/
/%!

\fn int recov_ids(char *msg, int identifier)

\brief function recovers ids by identifier from TRANSIS message

function recover the ids of a message (as an integer), using the id number
this function is somewhat generic and is used for recov_uid, recov_gid and
recov_jid

recov_msgentry returns an int or —1 in case of failure

\param xmsg the message as string

\param identifier number of id to recover

\return an integer id or —1 in case of a failure

*/

int recov_ids(char smsg, int identifier);
/*******************************************************************************

* *
* recov_vector *
* *

*******************************************************************************/
/%!

\fn char sxrecov_vector(char #msg, int identifier)

\brief function recovers any entry given by entrynumber from TRANSIS message

function recover the content of a message (as a vector), using the identifier
this function is somewhat generic and is used for recovery of argv and env
recov_vector returns a fully allocated vector or NULL in case of failure
\param xmsg the message as string

\param identifier number of entry to recover

\return a vector or NULL in case of a failure

*/

char sxrecov_vector(char s*msg, int identifier);

/3 sk ok ok ok ok ok ok sk ok ok sk ok ook ok ok ok sk sk ok ok ook ok ok ok sk sk ok ok ok ok ok k sk sk ok ok ok ok oKk sk sk ok ook ok ook oKk ok K ok ok ok Kok ok ok ok ok

176




211

213

215

217

219

221

223

225

227

229

231

233

235

237

239

241

243

245

247

249

251

253

255

257

259

261

263

265

267

269

271

A.3. Sources code listings

* *
x recov_uid *
* *

*******************************************************************************/
/%!

\fn int recov_uid(char xmsg)

\brief function recovers user id from TRANSIS message

function recover the user identifier of a message (not the string but an

uid_t identifier), using the identifier approporiate action can be taken
recov_uid returns a uid_t on success or —1 in case of a failure

\param xmsg the message as string

\return the user id in msg or —1 in case of failure

*/

/* see define section for prototype x/
/*******************************************************************************

* *
* recov_gid *
* *

*******************************************************************************/
//! function recovers group id from TRANSIS message

/%!

\fn int recov_gid(char xmsg)

\brief function recovers group id from TRANSIS message

function recover the group identifier of a message (not the string but an
uid_t identifier), using the identifier approporiate action can be taken
recov_uid returns a gid_t on success or —1 in case of a failure

\param xmsg the message as string

\return the group in msg or —1 in case of failure

*/

/* see define section for prototype */
/*******************************************************************************

* *
* recov_jid *
* *

*******************************************************************************/
//! function recovers job id from TRANSIS message

/!

\fn int recov_jid (char =xmsg)

\brief function recovers group id from TRANSIS message

function recover the job identifier of a message (not the string but an
integer identifier), using the identifier approporiate action can be taken
recov_uid returns an int on success or —1 in case of a failure

\param xmsg the message as string

\return the group in msg or —1 in case of failure

*/

/* see define section for prototype x/
/*******************************************************************************

* *
* recov_stdin *
* *

*******************************************************************************/
/x!

\fn char *recov_stdin(char xmsg)

\brief function recovers stdin from TRANSIS message

function recovers the standard input from a message as a string, using
it , the stdin approporiate action can be taken

recov_stdin returns a string or NULL in case of a failure or empty stdin
\param xmsg the message as string

\return fully allocated string containing the STDIN of NULL when failure

177




273

275

277

279

281

283

285

287

289

291

293

295

297

299

301

303

305

307

309

311

313

315

317

319

321

323

325

327

329

331

333

335

A.3. Sources code listings

*/
/* see define section for prototype */
/*******************************************************************************

* *
* recov_argv *
* *

*******************************************************************************/
/%!

\fn char sxrecov_argv(char xmsg)

\brief function recovers the argument vector from TRANSIS message

function recovers the argument vector from a message as a string list, using
it , the argv approporiate action can be taken

recov_argv returns a string list or NULL in case of a failure

\param xmsg the message as string

\return the argument vector in a string list or NULL in case of a failure

*/

/% see define section for prototype x*/
/***>(<***********************************************>(<***************************

* *
* recov_env *
* *

*******************************************************************************/
/*!

\fn char sxrecov_env(char xmsg);

\brief function recovers the enironment from TRANSIS message

function recovers the environment from a message as a string list, using

the environment approporiate action can be taken

recov_env returns a string list or NULL in case of a failure

\param xmsg the message as string

\return the environment vector in a string list or NULL in case of a failure
*/

/% see define section for prototype */
/*******************************************************************************

* *
* recov_sender %
* *

*******************************************************************************/
/!

\fn char sxrecov_sender(char xmsg);

\brief function recovers the sender from TRANSIS message

function recovers the sender from a message as a string, using

recov_sender returns a string or NULL in case of a failure

\param xmsg the message as string

\return the sender in a string list or NULL in case of a failure

*/

/% see define section for prototype x/
/*******************************************************************************

* *
* mkrspmsg *
* *

sk sk o sk s ok sk sk sk o sk o ok s o sk sk sk ok ok s ok sk sk sk o ok sk ok sk sk sk o ks ok sk sk ks sk sk ok sk sk ks stk ok sk ok sk stk sk ok ok sk ok sk sk ok /
/x!

\fn char smkrspmsg(char xout, char serr);

\brief function creates response messgage to deliver stdout/stderr to client

function creates response messgage to redirect stdout/stderr to client needed
for transparent gateway like execution of client commands

mkrspmsg returns a fully allocated vector or NULL in case of failure

\param xout stdout string

\param xerr stderr string

178




337

339

341

343

345

347

349

351

353

355

357

359

361

363

365

367

369

371

373

10

12

14

16

18

20

A.3. Sources code listings

\return a string or NULL in case of a failure

*/

char smkrspmsg(char *out, char xerr);
/*******************************************************************************

* *
* mkjutexmsg *
* *

ok ok ok ok ok oK ok K oKk K ok R K ok oKk K oKk oK ok koK ok oKk K ok koK ok oKk K ok ko ok koK ok oKk o ok koK ok koK ok ok ko ok koK ok K oKk K ok ok ok R Kok Rk ok /)
/!

\fn char smkjutexmsg(int jid , char xsender, int identifier);

\brief function creates mutex messgage

function creates mutex messgage to realize cluster mutual exclusion

mkjutexmsg returns a fully allocated vector or NULL in case of failure

\param jid job identifier

\param xsender sender of message

\param identifier message identifier

\return a string or NULL in case of a failure

*/

char smkjutexmsg(int jid , char *sender, int identifier);
/*******************************************************************************

* *
* mkjoinmsg *
* *

*******************************************************************************/
/%!

\fn char smkjoinmsg(int Isub, int ldone, int gensub, int gendone);

\brief function creates join messgage

function creates join messgage to send important server values
mkjoinmsg returns a fully allocated vector or NULL in case of failure
\param ldone last job done

\param lIsub last job submitted

\param gendone generation counter for jobs done

\param gensub generation counter for jobs submitted

\return a string or NULL in case of a failure

*/

char smkjoinmsg(int lsub, int ldone, int gensub, int gendone);

msg.c

/*************>|<******************>|<**********************************************

* Project: JOSHUA *
* Description: message related functions for joshua and jemd *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
* 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "Y88888 "Y888888 *
* .d88P *
* .d8spP" 2006 Kai Uhlemann *
* 888P" *
* *
x Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—686—smp on i686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *

179




22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

A.3. Sources code listings

* *
*******************************************************************************/
/*******************************************************************************

* *
+ Headers *
* *

*******************************************************************************/
#include "utils.h"
/*******************************************************************************

* *
* packlist *
* *

*******************************************************************************/
char spacklist(char *xlistvec)
{

/*

% local data

*/

int entries=0, length=0;

char =flatlist=NULL, xentry=NULL, entlen [ENTLEN+1];

/% set the memory of entlen x/
memset(entlen, ’\0’, ENTLEN+1);

/% count all entries and calculate length x*/
if (listvec !=NULL) {
while(listvec[entries ] !=NULL)
{

)
}
/* for every entry additional ENTLEN bytes are needed x/
length+=entries+«ENTLEN;

length+=strlen (listvec[entries++]);

/* start allocating =/
flatlist = (char *)malloc(sizeof(char)*length+1);
if (flatlist==NULL)
{
log_err("malloc %s\n", strerror(errno));
}
/* start generating the flatened list x/
entries=0;

/% initialize string =/
memset( flatlist , °\0’, length+1);

/x fill the flatlist with items x/
if (listvec !=NULL)
{
while ((entry=listvec[entries])!=NULL)
{
sprintf (entlen ,PRTLEN, strlen (listvec[entries]));
strncat(flatlist ,entlen, ENTLEN);
strncat(flatlist ,entry,strlen(listvec[entries++]));
}
}
return flatlist;

}

/*******************************************************************************

* *
x rebuildvector *
* *

*******************************************************************************/

180




A.3. Sources code listings

char sxrebuildvector (char *xflatlist)

86 {
/*

88 * local data
*/

90 int entries=0,length=0;
char xlistptr=flatlist , entlen[ENTLEN+1], xentity=NULL;
92 char *xrebuild=NULL;

94 /* intit used char fields x/
memset(entlen, ’\0’, ENTLEN+1);
9
/* if flatlist empty return NU */
98 if (flatlist==NULL)
{
100 return NULL;
}

102

/% go through the string to get the number of entriesx/
104 while (strlen (listptr)>0)

{

106 strncpy (entlen , listptr ,ENTLEN) ;

/* get the length of the next entry and check if it could be fetched =/
108 if (sscanf (entlen ,PRTLEN,&length)==0)

{
110 log_warn("Vector rebuilt failed.\n");

return NULL;

112 }

entries++;
114 /* jump to next entry x/

listptr+=length+ENTLEN;
116 }

118 /% allocate space for the new list x/
rebuild = (char *x)malloc(sizeof(charx)*(entries+1));
120 if (rebuild==NULL)
{
122 log_err("malloc %s\n",strerror(errno));
}
124
/* go through the string again a put the strings into the list =/
126 listptr=flatlist;
entries=0;

128
while (strlen (listptr)>0)

130 {

strncpy (entlen , listptr ,ENTLEN) ;
132 /* get the length of the next entry and check if it could be fetched =/

if (sscanf (entlen ,PRTLEN,&length)==0)
134 {

log_warn("Vector rebuilt failed.\n");

136 return NULL;

}
138

/% start allocating =/
140 entity = (char x)malloc(sizeof(char)«(length+1));
if (entity==NULL)

142 {

log_err("malloc %s\n",strerror(errno));
144 }
146 /+ intit used char fields =/

memset(entity , *\0’, length+1);

181



A.3. Sources code listings

148
/* jump to string entry x/

150 listptr+=ENTLEN;

152 /* copy the list entity =/
strncpy (entity ,listptr ,length);

154 /* put the entity into the list */
rebuild [ entries++]=entity;

156 /* jump to next length entry x/
listptr+=length;

158

}

160 /% last entity is set to NULL x/
rebuild [ entries |=NULL;

162 return rebuild;

164 }

166 /*******************************************************************************

* *
168 * mkmsg *
* *

170 *******************************************************************************/

char smkmsg(char xxmsg, char xappend)

172 |
/*

174 % local data
*/

176 int length=0;
char sstrptr=+msg;
178 char entlen [ENTLEN+1] ;
char snewmsg=NULL;
180
/% set the memory of entlen x/
182 memset(entlen, ’\0’, ENTLEN+1);

184 /% check sanity of append =/
if (append!=NULL)
{

186
/* get string length x/

188 length+=strlen (append) ;
/* print length into entlen field =/

190 sprintf (entlen , PRTLEN, strlen (append));
length+=ENTLEN;

192

}

194 /+ if append was not sane/empty x/

else
196 i
/* add zero length field return the msg x/
198 /* print length into entlen field =/
sprintf (entlen, PRTLEN, 0);
200 length+=ENTLEN;
}
202

/* if this is an empty msg */
204 if (strptr==NULL)
{

206

/* if append was empty */
208 if (append==NULL)

{
210 return strptr;

182



A.3. Sources code listings

}

212 /% else create a new msg */
else
214 {
/* alloc the space for the string =/
216 newmsg = (char x)malloc(sizeof (char)*length+1);
if (newmsg==NULL)
218 {
log_err("malloc %s\n", strerror(errno));
220 }
/% empty memory s/
222 memset(newmsg, ’\0’, length+1);
224 /* add the length field =/
strncat (newmsg, entlen, ENTLEN) ;
226 /% append content x/
strncat (newmsg, append, strlen (append));
228
/* reset msg pointer =/
230 *MSZ=Newmsg ;
232 /% return newmsg x/
return newmsg;
234
}
236

}

238 /* if there has been alread some msg add the append x*/

else
240 {
/* get newmsg length =/
242 length+=strlen (strptr);
244 /* if append was empty */
if (append==NULL)
246 {
/* return the msg with an empty length field appended =/
248 /% realloc for the the new msg size x/
newmsg=(char x)realloc(strptr, length+1);
250 if (newmsg==NULL)
{
252 log_err("malloc %s\n",strerror(errno));
}
254 /* set pointers x/
strptr=newmsg;
256
/% append the empty length field =/
258 strncat (strptr , entlen, ENTLEN);
260 /+ make sure the new msg is terminated =/
strptr[length]="\0";
262
/* reset msg pointer x/
264 *smsg=strptr;
266 /* return strptr x/
return strptr;
268 }
/* append msgfield to existing msg x/
270 else
{
272 /* return the msg with an length field appended and msgfield x/

/* realloc for the the new msg size x/

183



A.3. Sources code listings

274 newmsg=(char x)realloc(strptr, length+1);
if (newmsg==NULL)
276 {
log_err("malloc %s\n", strerror(errno));
278 }
/% set pointers x/
280 strptr=newmsg;
282 /* append the length field =/
strncat(strptr , entlen, ENTLEN);
284
/* append content x/
286 strncat (strptr , append, strlen (append));
288 /* make sure the new msg is terminated x/
strptr[length]="\0";
290
/* reset msg pointer x/
292 *smsg=strptr;
294 /* return strptr =/
return strptr;
296
}
298

}
300 return NULL;

}

302 /*******************************************************************************

* *
304 * mkcmdmsg *
* *

306 *******************************************************************************/
char smkemdmsg(uid_t uid, gid_t gid, char xin, char sxargvec, char xxenvvec,

308 char xsender, char xpath, int identifier)
{

310 /*
x local data

312 %/

char xuidstr=NULL, *xgidstr=NULL, xargstr=NULL, xenvstr=NULL, xmsg=NULL;
314

316  /* get the string size for the uid and allocate space */
if ((uidstr=(char*)malloc ((snprintf (NULL, 0, "%d",

318 (int)uid)+1)*sizeof (char)))==NULL)
{

320 fprintf(stderr, "malloc %s\n", strerror(errno));
exit (EXIT_FAILURE) ;
322 }

324 /* create the uidstr */
snprintf(uidstr, snprintf (NULL, 0, "%d", (int)uid)+1, "%d",
326 (int)uid);

328 /* get the string size for the gid and allocate space x/
if ((gidstr=(char*)malloc((snprintf (NULL, 0, "%d",
330 (int)gid)+1)*sizeof(char)))==NULL)
{
332 fprintf (stderr, "malloc %s\n", strerror(errno));
exit (EXIT_FAILURE) ;
334 }

336 /* create the gidstr x/

184



A.3. Sources code listings

snprintf(gidstr, snprintf (NULL, 0, "%d", (int)gid)+1, "%d",

338 (int)gid);

340

342

344

346

348

350

352

354

356

358

360

362

364

366

368

370

372

374

376

378

380

382

384

386

388

390

392

394

396

398

}

/* create argument string =/
argstr=packlist (argvec);

/* create environment string */
envstr=packlist (envvec);

/* append all the strings to an add/submit message x/
switch(identifier)
{
case (ADDMSGDD) :
msg=mkmsg (&msg , ADDMSG) ;
break;
case (STAMSGID) :
msg=mkmsg (&msg ,STAMSG) ;
break;
case (DELMSGID) :
msg=mkmsg (&msg , DELMSG) ;
break;
default:
fprintf (stderr, "Request to built unknown message format. Exiting.\n");
exit (EXIT_FAILURE) ;
break;
}

msg=mkmsg (&msg, uidstr) ;
msg=mkmsg (&msg, gidstr) ;
msg=mkmsg (&msg, in ) ;
msg=mkmsg(&msg, argstr) ;
msg=mkmsg (&msg, envstr) ;
msg=mkmsg (&msg, sender) ;
msg=mkmsg (&msg, path) ;

/* free temporary buffers =/
destroystring (&uidstr);
destroystring (&gidstr);
destroystring (&argstr);
destroystring (&envstr) ;

return msg;

/*******************************************************************************

*
*
*

recov_msgentry

*
*
*

*******************************************************************************/
char xrecov_msgentry(char smsg, int entryno)

{

/*

* local data

*/

char entlen [ENTLEN+1] ;
char xentry=NULL;

int length=0, i=0;
char xstrptr=msg;

/% set the memory of entlen x/
memset(entlen, ’\0’, ENTLEN+1);

185




400

402

404

406

408

410

412

414

416

418

420

422

424

426

428

430

432

434

436

438

440

442

444

446

448

450

452

454

456

458

460

462

A.3. Sources code listings

/* if there is no msg, i call it unknown x/
if (strptr==NULL)

{

}

log_warn("Message recognition failed.\n");
return NULL;

/* is entryno sane x*/
if (entryno<=0)

{

}

log_warn("Message recognition failed.\n");
return NULL;

for(i=0; i<entryno; i++)

{

/%
if
{

}

get the next entry length x/
(strlen (strptr)>=ENTLEN)

strncpy (entlen, strptr , ENTLEN) ;

else

{

}

/* get the length of the next entry and check if it could be fetched =/

if
{

}

log_warn("Message recognition failed.\n");

return NULL;

(sscanf (entlen ,PRTLEN,&length)==0)

log_warn("Message recognition failed.\n");

return NULL;

/* move strptr forward to next length entry =/
strptr+=length+ENTLEN;

/*

jump back to where the entry starts x/

strptr —=length ;

/%
if
{

}

/* if there was anything allocate the space for the string =/
entry = (char x)malloc(sizeof(char)x*(length+1));

if
{

}
/*

check if any entry was in msg, if not
(length<=0)

return QULL,'

(entry==NULL)

log_err("malloc %s\n",strerror(errno));

intit used char fields x/

memset(entry, \0’, length+1);

if
{

}

(strlen(strptr)>=length)

strncpy (entry , strptr, length);

else

{

return NULL */

log_warn("Message recognition failed.\n");

destroystring (&entry);

186




A.3. Sources code listings

return NULL;
464 }

466 return entry;

468 '}

470
/*******************************************************************************

472 * *
x recov_id *

474 * *

*******************************************************************************/
476 int recov_id (char =xmsg)

{

478 /*
% local data
480 */

char *msgid=NULL;
482
/* recover only if msg is sane x/
484 if (msg==NULL)
{
486 log_warn("Message could not be recognized\n");
return UNKNOAMMSG;
488 }

490 /% get the id string =/
msgid=recov_str_header (msg) ;
492
/% work only further when string is sane x/
494 if (msgid==NULL)
{

49 log_warn("Message could not be recognized\n");
destroystring (&msgid) ;
498 return UNKNOAMMSG;
}
500

502 /* check which msg arrived =/
if (strnecmp (msgid, ADDMSG, strlen (msgid))==0)

504 {
destroystring (&msgid) ;
506 return ADDMSGID;
}
508

/* check which msg arrived =/
510 if (strncmp (msgid, DELMSG, strlen (msgid))==0)
{
512 destroystring (&msgid) ;
return DELMSGID;
514 }

516 /* check which msg arrived =/
if (strncmp (msgid, STAMSG, strlen (msgid))==0)

518 {
destroystring (&msgid) ;
520 return STAMSGID;
}
522

/* check which msg arrived =/
524 if (strncmp (msgid, STRMSG, strlen (msgid))==0)
{

187



A.3. Sources code listings

526 destroystring (&msgid) ;
return STRMSGID;
528 }
/% check which msg arrived =/
530 if (strnecmp (msgid, FNSMSG, strlen (msgid))==0)
{
532 destroystring (&msgid) ;
return FNSMSGID;
534 }

536 /% check which msg arrived =/
if (strncmp (msgid, RSPMSG, strlen (msgid))==0)

538 {
destroystring (&msgid) ;
540 return RSPMSGID;
}
542

/* check which msg arrived =/
544 if (strnecmp (msgid, JOIMSG, strlen (msgid))==0)
{
546 destroystring (&msgid) ;
return JOIMSGID;
548 }

550  destroystring (&msgid) ;
return UNKNOWNMSG;

552}
/*******************************************************************************

554 *
x recov_ids *

556 *

*******************************************************************************/
558 int recov_ids(char smsg, int identifier)

{

560 /%
* local data
562 */

char xmsgid=NULL;
564 int id=0;

566 /% recover only if msg is sane x*/

if (msg==NULL)
568 {
log_warn("Message could not be recognized\n");
570 return —1;
}
572

/% recover appropriate string x/
574 switch(identifier)

{

576 case IDUID:
msgid=recov_str_uid (msg) ;
578 break;
case IDGID:
580 msgid=recov_str_gid (msg) ;
break;
582 case IDJID:
msgid=recov_str_jid (msg) ;
584 break;
case IDLSU:
586 msgid=recov_str_lsub (msg) ;
break;
588 case IDLDO:

188



A.3. Sources code listings

msgid=recov_str_ldone (msg) ;

590 break;
case IDGSU:
592 msgid=recov_str_gensub (msg) ;
break;
594 case IDGDO:
msgid=recov_str_gendone (msg) ;
596 break;
default:
598 return —1;
}
600

/* was the recered string sane? x/
602 if (msgid==NULL)
{

604 log_warn("Message could not be recognized\n");
destroystring (&msgid) ;
606 return —1;
}
608

610 /* check which msg arrived =/
if (sscanf(msgid, "%d", &id)==1)

612 {
614 destroystring (&msgid) ;
return id;
616 }
618 log_warn("Message could not be recognized\n");

destroystring (&msgid) ;
620 return —1;

}

622 /*******************************************************************************

* *
624 * recov_vector *
* *

626 sk sk sk sk sk sk sk sk kst sk sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk R R KRR R Kk ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok /
char sxrecov_vector(char xmsg, int identifier)

628 |
/*

630 % local data
*/

632 char *1ist=NULL;
char *xvector=NULL;
634
/* recover when msg was sane x/
636 if (msg==NULL)
{
638 log_warn("Message could not be recognized\n");
return NULL;
640 }

642  /+ recover appropriate list x/
switch(identifier)

644 {
case IDARGV:
646 list=recov_str_argv(msg);
break;
648 case IDENV:
list=recov_str_env(msg) ;
650 break;
default:

189



652

654

656

658

660

662

664

666

668

670

672

674

676

678

680

682

684

686

688

690

692

694

696

698

700

702

704

706

708

710

712

714

A.3. Sources code listings

return NULL;
}
/+ check whether list is sane x/
if (list==NULL)
{
log_warn("Message could not be recognized\n");
destroystring (&list);
return NULL;
}

/* create vector from list =/
vector=rebuildvector(list);

if (vector !=NULL)
{

destroystring (&list);
return vector;

}

log_warn("Message could not be recognized\n");
destroystring (&list);
return NULL;

}

/*******************************************************************************

* *
* mkrspmsg *
* *

*******************************************************************************/
char smkrspmsg(char *out, char xerr)
{
/*
x local data
*/
char *msg=NULL;

/% append all the strings to an add/submit message x/
msg=mkmsg (&msg , RSPMSG) ;

msg=mkmsg (&msg, out) ;

msg=mkmsg (&msg, err ) ;

return msg;

}

/*******************************************************************************

* *
* mkjutexmsg *
* *

*******************************************************************************/
char smkjutexmsg(int jid , char *sender, int identifier)
{
/*
* local data
*/
char *msg=NULL;
char xjidstr=NULL;

/* get the string size for the jid and allocate space x/

if ((jidstr=(charx)malloc((snprintf (NULL, 0, "%d",
(int)jid)+1)*sizeof (char)))==NULL)

{

fprintf (stderr, "malloc %s\n", strerror(errno));

190




A.3. Sources code listings

}
716
/* create the jidstr =/
718 snprintf(jidstr , snprintf (NULL, 0, "%d", (int)jid)+1, "%d",
(int)jid);
720
/* append all the strings to an start/finish message =/
722 switch(identifier)

{

724 case (STRMSGID) :
msg=mkmsg (&msg, STRMSG) ;
726 break;
case (FNSMSGID) :
728 msg=mkmsg (&msg , FNSMSG) ;
break;
730 default:
fprintf(stderr, "Request to built unknown message format. Exiting.\n");
73 exit (EXIT_FAILURE) ;
break;
734 }

736 msg=mkmsg(&msg, jidstr);
msg=mkmsg (&msg, sender) ;
738
/% free temporary buffers =/
740  destroystring (&jidstr);

742 return msg;

744}
746
/*******************************************************************************
748 *
* mkjoinmsg *
750 *

*******************************************************************************/
752 char xmkjoinmsg(int lsub, int ldone, int gensub, int gendone)
{
754 /%
x local data
756 s/
char +msg=NULL;
758 char *1lsubstr=NULL;
char xldonestr=NULL;
760  char xgensubstr=NULL;
char xgendonestr=NULL;
762
/* get the string size for lsub and allocate space x/
764 if ((Isubstr=(char*)malloc ((snprintf (NULL, 0, "%d",
(int)lsub)+1)xsizeof (char)))==NULL)
766 {
log_err("malloc %s\n", strerror(errno));
768 }

770 /x create the lsubstr x/
snprintf(lsubstr , snprintf(NULL, 0, "%d", (int)lsub)+1, "%d",
772 (int)lsub);

774 /* get the string size for ldone and allocate space */
if ((1donestr=(char*)malloc ((snprintf (NULL, 0, "%d",
776 (int)ldone)+1)*sizeof (char)))==NULL)
{

191



778

780

782

784

786

788

790

792

794

796

798

800

802

804

806

808

810

812

814

816

818

820

822

10

12

A.3. Sources code listings

log_err("malloc %s\n", strerror(errno));

}

/* create the ldonestr */
snprintf(ldonestr , snprintf(NULL, 0, "%d", (int)ldone)+1, "%d",
(int)ldone);

/% get the string size for gensub and allocate space x*/

if ((gensubstr=(char*)malloc ((snprintf (NULL, 0, "%d",
(int)gensub)+1)*sizeof (char)))==NULL)

{

log_err("malloc %s\n", strerror(errno));

}

/% create the gensubstr x/
snprintf (gensubstr, snprintf(NULL, 0, "/%d", (int)gensub)+1, "%d",
(int)gensub);

/* get the string size for gendone and allocate space x/

if ((gendonestr=(char=*)malloc ((snprintf (NULL, 0, "%d",
(int)gendone)+1)*sizeof (char)))==NULL)

{

}

log_err("malloc %s\n", strerror(errno));

/* create the gendonestr =/
snprintf (gendonestr, snprintf (NULL, 0, "%d", (int)gendone)+1, "%d",
(int)gendone) ;

/* append all the strings to an start/finish message */
msg=mkmsg (&msg, JOIMSG) ;

msg=mkmsg (&msg, Isubstr) ;

msg=mkmsg(&msg, ldonestr) ;

msg=mkmsg (&msg, gensubstr) ;

msg=mkmsg (&msg, gendonestr) ;

/* free temporary buffers x/
destroystring (&lsubstr);
destroystring (&ldonestr) ;
destroystring (&gensubstr) ;
destroystring (&gendonestr) ;

return msg;

utils.h

/*******************************************************************************

* Project: JOSHUA

* Description: utilitiy functions for all JOSHUA components
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org>

*

* 888888 888

* "88b 888

* 888 888

* 888 .d88b. .d8888b 88888b. 888 888 8888b.
* 888 d88""88b 88K 888 "88b 888 888 "88b
* 888 888 888 "Y8888b. 888 888 888 888 .d888888
* 88P Y88..88P X88 888 888 Y88b 888 888 888
* 888  "Y88P" 88888P" 888 888 "Y88888 "Y888888

192

* X X X X X X X X X X ¥




14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

A.3. Sources code listings

* .d88P *
* .d8sp” 2006 Kai Uhlemann *
* 888P" *
* *
* Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—-686—smp on 1686 *
* *
* Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *
* *
*******************************************************************************/

/x!
\file wutils.h
\brief utility functions used by client and/or server

This wutility module contains a lot of functions which are used
by both client and server. Since most of the functionality will
be implemented into the client due to performance issues most of
the function will actually not be used by the server.

*/
/*******************************************************************************
* *
x Headers *
* *

*******************************************************************************/
#include <stdio.h>

#include <stdlib .h>

#include <stdarg.h>

#include <errno.h>

#include <string.h>

#include <unistd.h>

#include <ctype.h>

#include <signal.h>

#include <arpa/inet.h>
#include <netdb.h>

#include <netinet/in.h>
#include <sys/socket.h>
#include <wait.h>

#include <sys/stat.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <fcntl.h>

#include <dirent.h>

#include <setjmp.h>

#include <time.h>

#include <getopt.h>

#include <confuse.h>

#include <transis/events.h>
#include <transis/zzz_layer .h>
#include <transis/sim_layer .h>
//#include <pbs_ifl .h>
//#include <pbs_error.h>
#include <sys/time.h>
#include "data.h"

#include "list.h"

#include "log.h"

#include "msg.h"
/*******************************************************************************

* *
x Macro functions *
* *

ok ok o KK KR K R R R R KRR K R KR KR KR SR K K R KR R K R K R KR KR R K K SR KR R K R K R KR KR KRR KR %/
#define STRINGIFY (x) #x
#define EXPAND(x) STRINGIFY (x)

193




78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

A.3. Sources code listings

#define getstdin() readfd (STDIN_FILENO)

/****>k>k>k*>)<*****>k*>k******>k*>k>k*************************>k>k>k************************

* *
x getstdin *
* *

stk ok ok ok ok sk ok ok ok sk ko ok ok sk ok kK ok ok ok sk ok ok Kk ok ok ok sk sk ok kK sk ok ok ok sk ok ok ks ok ok sk sk sk ok Kk sk ok ok sk ok ok ok sk ok ok ok ok ok ok ok Kk ok ok ok ok ok Kk /
/%!

\fn char xgetstdin ()

\brief simple function to get user input into a dynamic string

function to read the stdin from command line into a buffer

getstdin returns a fully allocated string containing STDIN

\return fully allocated string containing STDIN

*/

/* see define section for prototype x/
/*********************************>k*********************************************

* *
x readfd *
* *

*******************************************************************************/
/x|

\fn char x*readfd(int fd)

\brief simple function to get fd content into a dynamic string

function to get the content from a file descriptor into a buffer
getstdin returns a fully allocated string

\param fd filedescriptor to read data from

\return fully allocated string containing content of fd

*/

char *readfd (int fd);

/3 sk sk s ok sk sk ok sk ok ok sk sk ok ok K ok ok ok ok ok ok sk ok ok K sk ok ok ok ok ok Sk ok ok K ok ok sk ok sk ok R ok K ok K sk ok sk ok Sk ok ok Kk ok sk ok sk ok ok K ok K ok ok sk ok K ok ok ok

* *
* writefd *
* *

******************************************>(<************************************/
/%!

\fn char writefd (int fd)

\brief simple function to write buffer into fd

function to write the content of buffer into a file descriptor

getstdin returns 0 on success or —1 on failure

\param fd filedescriptor to write data to

\param xbuffer the buffer holding the content

\param length the size of the buffer

\return 0 on success or —1 on failure

*/

int writefd (int fd, char xbuffer, unsigned int length);
/*******************************************************************************

* *
x chkstdin %
* *

Sk ok ok Kk koK KOk ok Kk ok oKk ok K koK ok ok K koK Ok ok K R ok oK Kk ok K ok oK Kk ok K KOk ok Kk ok ok Ok oK K ok oKk ok KR koK Ok ok KR ok oK ok ok ok /
/!

\fn int chkstdin ()

\brief simple function to whether there is something waiting on stdin

function to check whether input is waiting on stdin to be fetched

getstdin returns 0 on success or —1 on failure

\return 0 on success or —1 on failure

*/

int chkstdin();
/*******************************************************************************
* *

194




140

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

176

178

180

182

184

186

188

190

192

194

196

198

200

202

A.3. Sources code listings

* destroystring *
* *
*******************************************************************************/
/x!

\fn int destroystring(char sxstr)

\brief function to destroy a dynamic string

function destroys a dynamic string by freeing the allocated memory and

sets the pointer to NULL

destroystring returns a EXIT_SUCCESS on success or EXIT_FAILURE

\param #*str reference to the string

\return EXIT_SUCCESS on success or EXIT_FAILURE

*/

int destroystring(char #xstr);

[ 3 3k sk ok sk stk KoK K K R K K R K K R KK SR R KK R KK R K SR R KK R K K R K K SR K K R KK K SR R K K R K K R K K R KK KK KK KK R K

* *
* destroylist *
* *

*******************************************************************************/
/x!

\fn int destroylist(char *xxlistvec)

\brief function to destroy a dynamic string list

function destroys a dynamic list by freeing the allocated memory and

sets the pointer to NULL

destroylist returns a EXIT_SUCCESS on success or EXIT_FAILURE

\param x#xlistvec reference to the string vector

\return EXIT_SUCCESS on success or EXIT_FAILURE

*/

int destroylist(char sxxlistvec);

/3 3k sk o sk stk sk ok K oK R K K R K oK R K SR K K KK R K SR R K K SR K K R K K SR K K K K K SR R KK R K K R K K R KKK KK K K o KK R K

* *
* jidget %
* *

*************>(<*****************************************>k***********************/
/!

\fn int jidget(int value)

\brief function to get the job id of the pbs_server to a specific value

function to get the job id of the pbs_server for the next submitted job
to a specified value. The value is changed in the serverdb of pbs_server.
To access the file, parts of the file structure have been extracted from
the torque 2.0pl source code.

packall returns 0 on success or —1 on failure

\param value the job id for the next job

\return 0 on SUCCESS or —1 onm failure

*/

int jidget(char xfile);

int jidset(char =file, int jid);
/**********************>|<********************************************************

* *
* chkregfile *
* *

sk o ok ok o o K Sk oK o o K K sk ok o S K ok ok o KK ok o o KK Sk ok o S Kok ok o KK sk ok o K K Sk ok o o K Kok sk ok K sk ok ok K KK ok ok o Kk sk ok ok ok /
/x!

\fn int chkregfile (const charx file)

\brief function checks wheather file is regular file

function to check the file whether it is a regular one, being used for
joshua command line tools e.g. to prevent STDIN input mode

packall returns REGFILE if file was regulat or NREGFILE if not a file
or iregular

\param xfile the filename of the file to check

195




204

206

208

210

212

214

216

218

220

222

224

226

228

230

232

234

236

238

240

10

12

14

16

18

20

A.3. Sources code listings

\return REGFILE if file was regulat or NREGFILE if not a file

*/

int chkregfile(const charx file);
/*******************************************************************************

* *
* gewd *
* *

S ok o o o o KoK K K S KK K o K S o oK K o o o K K o K o o K sk K o ko K o K K o Ko K s R s K Kok K ok ok ok
/%!

\fn char sgewd() ;

\brief function to get current path

\return fully allocated string containing current path

*/

char xgewd() ;

/*******************************************************************************

* *
* cpystr *
* *

*******************************************************************************/
/x!

\fn char scpystr(char *orig);

\brief make a copy of string

\param xorig string to copy

\return fully allocated string containing a copy of original

*/

char xcpystr(char xorig);
/***************************************************>|<***************************

* *
* Sleep *
* *

ok ok ok ok oK ok K oKk K ok koK ok oKk K oKk K ok koK ok oKk K ok koK ok oKk K oKk ok ok koK ok oKk K ok koK ok koK ok oKk K ok koK ok R oKk K ok ok ok R Kok Rk ok /)
/x!

\fn void Sleep(int sec_dlay, int usec_dlay);

\brief alternative for sleepusiongh select

\param sec_dlay wait for seconds

\param usec_dlay wait for micro seconds

*/

void Sleep(int sec_dlay, int usec_dlay);

utils.c

/*******************************************************************************

* Project: JOSHUA *
* Description: utilitiy functions for all JOSHUA components *
* Author: Kai Uhlemann, <kai.uhlemann@nextq.org> *
* *
s 888888 888 *
* "88b 888 *
* 888 888 *
* 888 .d88b. .d8888b 88888b. 888 888 8888b. *
* 888 d88""88b 88K 888 "88b 888 888 "88b *
* 888 888 888 "Y8888b. 888 888 888 888 .d888888 *
* 88P Y88..88P X88 888 888 Y88b 888 888 888 *
* 888 "Y88P" 88888P" 888 888 "Y88888 "Y888888 *
* .d88P *
* .d8spP" 2006 Kai Uhlemann *
* 888P" *
* *
x Created at: Mon Nov 7 10:58:14 EST 2005 *
* System: Linux 2.6.8-2—686—smp on i686 *
* *
x Copyright (c) 2006 Oakridge National Laboratory All rights reserved. *

196




22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

A.3. Sources code listings

* *
*******************************************************************************/
/*******************************************************************************

* *
+ Headers *
* *

*******************************************************************************/
#include "utils.h"
/*******************************************************************************

* *
x chkregfile *
* *

*******************************************************************************/
int chkregfile (const char =file)
{

/*

% local data

*/

struct stat fbuf;

/* ckeck for regular file using stat =/
if (stat(file , &fbuf)==-1)
{
/x if file does not exist, doesnt matter =/
if (errno ! =ENOENT)
{
fprintf (stderr ,"Error: stat %s\n",strerror (errno));
exit (EXIT_FAILURE) ;
}
return NREGFILE;
}
if (S_ISREG( fbuf.st_mode))
{

}

else

{

return REGFILE;

return NREGFILE;

}

/*******************************************************************************

* *
x readfd *
* *

stk ok ok ok ok sk ok ok ok sk ko ok ok sk ok ok Kk ok ok ok sk ok ok K Kk ok ok sk sk ok kK sk o ok sk sk ok ok Kk ok ok ok sk ok ok Kk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok Kk ok ok ok ok ok kK k /

char *readfd (int fd)

{

/*

x local data

*/
int bytes=0;
unsigned int index=0;
char buffer [MAX MSG_SIZE] ;
int length=MAX MSG_SIZE-1;
char *content=NULL;

/% set memory s/
memset(buffer, °\0’, length+1);

for (index = 0; index < length;)
{
/+ Read some data. =/
switch (bytes = read(fd, buffer + index, length — index))

197




A.3. Sources code listings

86 case —1:
{
88 switch (errno)
{
90 case EINTR:
{
92 break;
}
94 case EAGAIN:
{
9% break;
}
98 default:
{
100 fprintf(stderr, "Warning: Unable to read from filedescriptor\n");
return NULL;
102 }
}
104 break;
}
106 case 0:
{
108 errno = EPIPE;
if (0 == index)
110 {
fprintf (stderr, "Warning: Unable to read from closed file descriptor\n");
112 return NULL;
}
114 length=0;
break;
116 }
default:
118 {
index += bytes;
120 }
}
122 }

124 if (index!=0)

{

126 /* start allocating x/

content = (char =x)malloc(sizeof (char)x*(index+1));
128 if (content==NULL)

{
130 fprintf(stderr, "Error: malloc %s\n",strerror(errno));

}
132 /% set memory x/

memset(content, ’\0’, index+1);
134

strncpy (content, buffer, index);
136

return content;
138

}
140
return NULL;
142}
/*******************************************************************************
144 % *
* writefd *

146 * *

*******************************************************************************/

198



A.3. Sources code listings

148 int writefd (int fd, char sbuffer, unsigned int length) ({
/*
150 = local data
*/
152 int bytes=0;
unsigned int index=0;
154
/% check sanity x/
156 if (buffer==NULL)
{

158 return —1;
}
160
for (index = 0; index < length;) {
162 /* Write some data. */
switch (bytes = write(fd, buffer + index, length — index)) {
164 case —1: {
switch (errno) {
166 case EINTR:
case EAGAIN: {
168 break;
}
170 case EPIPE: ({
if (0 != index) {
172 log_warn("Unable to write to closed file descriptor\n");
}
174 return —2;
}
176 default: {
log_warn("Unable to write to file descriptor\n");
178 return —1;
}
180 }
break;
182 }
default: {
184 index += bytes;
}
186 }

}

188 return 0;

}

190 /*******************************************************************************

* *
192 % chkstdin *
* *

194 *******************************************************************************/
196 int chkstdin () {

198 /+ data for select =/
fd_set fdset;
200 struct timeval tv;
int ret;
202
/* decide which output to read x*/
204 /% empty fdset =/
FD_ZERO(&fdset) ;
206 FD_SET (STDIN_FILENO, &fdset);
/* dont wait for input */
208 tv.tv_sec = 0;
tv.tv_usec = 100;
210

199



212

214

216

218

220

222

224

226

228

230

232

234

236

238

240

242

244

246

248

250

252

254

256

258

260

262

264

266

268

270

272

A.3. Sources code listings

/% seclect file descriptor =/
ret=select (STDIN_FILENO+1 ,&fdset ,NULL,NULL, &tV ) ;
if (ret==—1)
{
fprintf (stderr, "Error: select %s\n", strerror(errno));
return —1;
}
else
{
if (ret>0)
{
if (FD_ISSET (STDIN_FILENO,&fdset))
{

}

}

else

{
/* no warning whatsoever x/
return —1;

}

return 0;

}

return —1;

}

/*******************************************************************************

* *
* destroystring *
* *

*******************************************************************************/
int destroystring(char sxstr)

{

if (% str==NULL)
{

}

free(xstr);
*str=NULL;

return EXIT_SUCCESS;

return EXIT_FAILURE;

}

/*******************************************************************************

* *
* destroylist *
* *

*******************************************************************************/
int destroylist(char xxxlistvec)

/ *

* local data

*/

int entries=0;

if (xlistvec !=NULL)

{
while ((xlistvec)[entries]!=NULL)
{

destroystring (&(xlistvec)[entries++]);

}

200




A.3. Sources code listings

274 /x free the list vector x*/
free (xlistvec);

276 *listvec=NULL;
return EXIT_SUCCESS;

278

}

280 /*******************************************************************************

* *
282 x jidget *
* *

284 *******************************************************************************/

int jidget(char =file)

286 {
/*

288 % local data
*/

290 int fd=0,i=0;

292 if (file==NULL)
{

294 return —1;
}
296
/* open file x/
298 if ((fd=open(file , O_RDONLY,0) )== —1)
{
300 fprintf (stderr ,"Error: open %s\n",strerror (errno));
exit (EXIT_FAILURE) ;
302 }

304 /x read file into struct x/
if ((i=read(fd, (char #*)&sv_qs, sizeof(struct server_qs)))!=sizeof(struct
306 server_dgs))

{

308 fprintf (stderr ,"Error: read %s\n",strerror(errno));
exit (EXIT_FAILURE) ;
310 }
close (fd);
312
return sv_gs.sv_jobidnumber;
314
}
316
/*******************************************************************************
318 * *
* jidset *
320 * *

*******************************************************************************/
322 int jidset(char *file , int jid)

{

324 /%

% local data
326 */

int fd=0,i=0;
328

if (file==NULL)
330 {

return —1;

332 }

334 /* open file x/
if ((fd=open(file , O.RDWR,0))== —1)
336 {

201



338

340

342

344

346

348

350

352

354

356

358

360

362

364

366

368

370

372

374

376

378

380

382

384

386

388

390

392

394

396

398

A.3. Sources code listings

fprintf (stderr ,"Error: open %s\n",strerror(errno));
exit (EXIT_FAILURE) ;
}

/* read file into struct =/
if ((i=read(fd, (char #)&sv_qs, sizeof(struct server_qs)))!=sizeof(struct
server_qs))
{
fprintf (stderr ,"Error: read %s\n",strerror(errno));
exit (EXIT_FAILURE) ;
}

/% set the gid =/
sv_qs.sv_jobidnumber=jid ;

if (1seek (fd, 0, SEEK_SET) <0)
{

fprintf (stderr ,"Error: seek %s\n",strerror (errno));
exit (EXIT_FAILURE) ;
}

/* write struct back to file x/
if ((i=write(fd, &sv_qgs, sizeof(struct server_qs)))!=sizeof(struct
server_qs))

fprintf (stderr ,"Error: write %s\n",strerror(errno));
exit (EXIT_FAILURE) ;
}

close (fd);

return 0;

}

/*******************************************************************************

* *
* gewd *
* *

>|<******************************************************************************/

char xgewd () {

#ifdef PATH_MAX
static int pathmax = PATH MAX;

#else

static int pathmax = 0;
#endif
#define PATH MAX GUESS 1024

/x if PATH_MAX is indeterminate x*/
/* we’re not guaranteed this is adequate */
char xpath;

if (pathmax == 0)

{

/% first time through =/

errno = 0;

if ( (pathmax = pathconf("/", _PC_PATH MAX)) < 0)

{

if (errno == 0)
{

pathmax = PATH_MAX GUESS; /#+ it’s indeterminate x/
}

else

202




A.3. Sources code listings

400 {
fprintf (stderr, "Error: pathconf for _PC_PATH_MAX\n");
402 exit (EXIT_FAILURE) ;
}
404 }
else
406 pathmax++; /* add one since it’s relative to root */
}
408

path=(char *)malloc(sizeof (char)(pathmax+1));
410 if (path== NULL)
{

412 fprintf(stderr, "Error: malloc %s\n",6strerror(errno));
exit (EXIT_SUCCESS) ;
414 }
if (getcwd (path, pathmax+1)==NULL)
416 {
fprintf (stderr, "Error: getcwd %s\n",6strerror (errno));
418 exit (EXIT_SUCCESS) ;
}
420
return path;
422 }
/*******************************************************************************
424 * *
* Ccpystr *
426 % *

*******************************************************************************/
428 char xcpystr(char xorig)
{

430  char xcopy=NULL;

int length=0;
432

/* check sanity of input string =*/
434 if (orig==NULL)

{
436 return NULL;

}
438  /* get the length of the input string =/

length=strlen (orig);
440

/* start allocating x/
42 copy = (char =x)malloc(sizeof(char)x*(length+1));

if (copy==NULL)
444 {

log_err("malloc %s\n", strerror (errno));

446 }

/% set memory s/
48  memset(copy, ’\0’, length+1);

450  strncpy(copy, orig, length);
452 return copy;

}

454 /*******************************************************************************

* *
456 * Sleep *
* *

458 *******************************************************************************/
void Sleep(int sec_dlay, int usec_dlay)
460 |
struct timeval tv;
462 if (sec_dlay > 0)

203



464

466

468

470

472

474

476

478

480

11

13

15

17

19

2

=

23

25

27

29

31

33

35

A.3. Sources code listings

time_t start = time(0);
for (;;)
{
tv.tv_sec = sec_dlay — (time(0) — start);
if (tv.tv_sec <= 0) break;
tv.tv_usec = 0;
(void)select(0, 0, 0, 0, &tv);
}
}
if (usec_dlay > 0)
{
tv.tv_sec = 0;
tv.tv_usec = usec_dlay;
(void)select(0, 0, 0, 0, &tv);

A.3.5 misc

configure.ac

Package GNU autoconf templatefile
Copyright (c) 2005 Kai Uhlemann <kai.uhlemann@nextq.org>

— README for general package information.
— INSTALL  for package install information.
— COPYING  for package license information and copying conditions.
— AUTHORS  for package authors information.
ChangeLog for package changes information.

’ ’

Process the ’“.am’ file with autogen.sh or the ’.in’ file with ‘configure’ from

’

the distribution top—level directory to create the ’.in’ or the target file.

H o3 o o H M H H o HH

Initialize autoconf.

Define and substitute package name, version and bug report e—mail. Require
autoconf 2.57 or higher, mark top—level source directory and config directory,
and include copyright information in configure.

AC_INIT([joshua], [0.1], [kai.uhlemann@nextq.org])

AC_PREREQ([2.57])

AC_CONHG_SRCDIR ( [ ChangeLog])

AC_CONFIG_AUX_DIR( [ config])

AC_COPYRIGHT ([ Copyright (c) 2005 Kai Uhlemann <kai.uhlemann@nextq.org>])

H o o H*

# Initialize automake.

# Require automake 1.7.2 or higher, use recursive make process and compress
# source distributions with bzip2.

AM_INIT_AUIOMAKE([1.7.2 subdir—objects dist—bzip2])

AM_MAINTAINER_MODE

# Initialize rpm specific specs.

AC_SUBST ( [SUMMARY] , [""])

AC_SUBST( [DESCRIPTION], [""])

AC_SUBST ([GROUP] , [Development])
[

AC_SUBST ([LICENSE] , [GPL])

204



37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

A.3. Sources code listings

AC_SUBST([REQUIRES] , [])

# Define GNU source and check for C compiler, libtool, install, rpmbuild and
# mdSsum.

AC_GNU_SOURCE

AC_PROG_CC

AM PROG_CC_C O

AC_DISABLE_SHARED

AC_PROG_LIBTOOL

AC_PROG_INSTALL

AC_CHECK_PROG( [HAVE_RPMBUILD] , [rpmbuild], [yes], [no])
AC_CHECK_PROG( [HAVE_MD&SUM] , [md5sum] , [yes], [no])
AM_CONDITIONAL( [HAVE_RPMBUILD] , [test "$HAVE_RPMBUILD" = "yes"])
AM_CONDITIONAL ( [HAVE MD5SUM] , [test "$HAVE_MDESUM" = "yes"])

# Extend header and library search path for non—system installation.

if ! test $prefix = NONE; then
CPPFLAGS="$CPPFLAGS —DSYSCONFDIR:\"$sysconfdir/joshua.conf\" -I$prefix/include"
LDFLAGS="$LDFLAGS -L$prefix/lib -Wl,-rpath -Wl,$prefix/1lib"

fi

#add library path
LDFLAGS="$LDFLAGS -L‘pwd‘/lib"
CPPFLAGS="$CPPFLAGS -DSYSCONFDIR=\"$sysconfdir/joshua.conf\""

#1ib dir
m —f —R lib ; mkdir lib
m —f —R include ; mkdir include

rm —f —R docs

#symlink

In —s ../libjutils/.libs/libjutils.a lib
In —s ../libjutils/utils .h include

In —s ../libjutils/list.h include

In —s ../libjutils/data.h include

In —s ../libjutils/log.h include

In —s ../libjutils /msg.h include

# List all subdirectories with Makefiles for recursive make process.
# All core subdirectories: m4.

# All individual binary subdirectories:

AC_SUBST([PKGDIRS] , ["libjutils jcmd joshua jmutex"])

# Check for library ’transis’
AC_CHECK _LIB([transis], [zzz_Connect], [AC _SUBST([TRANSIS_LIBS], [—ltransis])],
[AC_MSG_ERROR( [ Missing transis library.])])

# Check for library ’confuse’.
AC_CHECK_LIB([confuse], [cfg_getstr], [AC_SUBST([CONFUSE_LIBS], [-lconfuse])],
[AC_MSG_ERROR( [ Missing confuse library.])])

# Check for library ’transis’.
AC_CHECK_LIB([transis], [zzz_Connect], [AC_SUBST([TRANSIS_LIBS], [—ltransis])],
[AC_MSG_ERROR( [ Missing transis library.])])

A

# Produce output, i.e. process all ’.in’ files.

# Process all core files: install manual, RPM spec, central and m4 Makefile.

# Process all individual binary files , such as Makefiles.

AC_CONHG_FILES ([spec Makefile libjutils /Makefile jemd/Makefile joshua/Makefile jmutex/
Makefile])

AC_OUTPUT

205



1.1.

2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.7.
2.8.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

4.1.

List of Figures

High-end scientific computing[Rob0O5] . . . . ... ... ... ...... 1
Impact of head-node failure to job lifespan . . . .. ... ... ..... 15
Traditional Beowolf Architecture [LMLT05] . . . . ... ... ...... 18
PBS components overview [Cor00] . . . . ... ... ........... 21
HA-OSCAR cluster architecture using standby backup . . . . ... .. 23
Active/Active high availability architecture for services . . . . . . . .. 26
Active/Active cluster architecture using multiple head nodes . . . . . 28
Active/Active high availability using external replication . . . . . . . . 30
JOSHUA components overview . . . . . . . ... ... ... ....... 33
JOSHUA component implementation and integration overview . . .. 43
State chart diagram joinevent . . . . ... ... ... ... ... L. 47
Flow chart client commandevent . . . ... ... ............. 48
Flow chart client command execution . . ... ... ........... 50
Start order and signals for cooperation with external components . . . 54
Job submission performancetests . . . . . ... ... o0 63
User impacts on job submission . . . . ... ................ 72

206




1.1.
1.2.

2.1.
2.2.
2.2

3.1.
3.2
3.2.
3.2
3.3.
3.3.
3.3.
34.

Al

List of Tables

Models and levels of high availability . . . ... ............. 4
Requirements and milestones overview . . . .. ... ... ... .... 14
Access policy overview forMaui . . . . ... ... ... . ........ 20
Availability and downtime for different numbers of head nodes . . . . 35
Availability and downtime for different numbers of head nodes . . . . 36
Job submission performance testresults . . . .. ... ... ... 62
System test JOSHUA command linetools . . . . ... ... ....... 66
System test JOSHUA command linetools . . . . ... ... ....... 67
System test JOSHUA command linetools . . . .. ... ... ...... 68
System test JOSHUA server . . . . .. ... ... ... ......... 68
System test JOSHUA server . . . . ... ... .. ... ... ....... 69
System test JOSHUA server . . . ... ... ... ... ......... 70
System test JOSHUA clustermutex . . . . . ... ............. 70
User command examples. . . . .. ... ...... ... ... ..., 89

207




Declaration of Authorship

I certify that the work presented here is, to the best of my knowledge and belief, orig-
inal and the result of my own investigations, except as acknowledged, and has not

been submitted, either in part or whole, for a degree at this or any other University.

Reading, 14-March-2006

Kai Uhlemann

208



	Acknowledgment
	Abstract
	Contents
	1 Introduction
	1.1 Project overview
	1.1.1 The idea of High-end scientific computing
	1.1.2 Traditional cluster setup deficiencies
	1.1.3 High availability
	1.1.4 Project problem description

	1.2 Previous work
	1.2.1 Related research in high availability
	1.2.2 Group communication for virtual synchrony

	1.3 Key problems and specification
	1.4 Software system requirements and milestones

	2 Preliminary system design
	2.1 System design approach
	2.1.1 Traditional Beowulf cluster system architecture
	2.1.2 HA-OSCAR cluster system architecture
	2.1.3 Symmetric Active/Active HA for job-scheduler services
	2.1.4 Group communication system
	2.1.5 Multi-head node system architecture
	2.1.6 Scalable availability

	2.2 System design overview
	2.2.1 JOSHUA server daemon
	2.2.2 JOSHUA user commands
	2.2.3 JOSHUA cluster mutex


	3 Implementation Strategy
	3.1 System implementation approach
	3.1.1 JOSHUA server daemon
	3.1.2 JOSHUA user commands
	3.1.3 JOSHUA cluster mutex

	3.2 Integration of external components
	3.2.1 Runtime dependencies
	3.2.2 Group communication system
	3.2.3 Communication facilities
	3.2.4 Event-driven message operation
	3.2.5 Resource management system and job scheduler

	3.3 System tests
	3.3.1 Stress and performance test
	3.3.2 Memory allocation test
	3.3.3 System test


	4 Detailed Software Design
	4.1 Job submission
	4.2 Dynamic group reconfiguration
	4.3 Exchange of external components

	5 Conclusion
	5.1 Results
	5.2 Future Work

	References
	A Appendix
	A.1 Manual
	A.1.1 Installation
	A.1.2 Usage
	A.1.3 JOSHUA configuration file example

	A.2 Test output
	A.2.1 Memory allocation test output
	A.2.2 System tests

	A.3 Sources code listings
	A.3.1 jcmd
	A.3.2 jmutex
	A.3.3 joshua
	A.3.4 libjutils
	A.3.5 misc


	List of Figures
	List of Tables

