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Abstract

In this work we demonstrate that a recently introduced
shape descriptor, the “shape context”, can be used to
quickly prune a search for similar shapes. Our represen-
tation for a shape is a discrete set ofn points sampled from
its internal and external contours. For each of these points,
the shape context is a histogram of the relative positions of
the n � 1 remaining points. We present two methods for
rapid shape retrieval: one that does comparisons based on
a small number of shape contexts and another that uses vec-
tor quantization in the space of shape contexts. We verify
the discriminative power of these methods with tests on the
Columbia (COIL-100) 3D object database and the Snod-
grass and Vanderwart line drawings. The shape context-
based methods are shown to quickly produce an accurate
shortlist of candidates suitable for a more exact matching
engine in spite of pose variation and occlusion.

1 Introduction

We are interested in the use of shape for recognizing 3D
objects, represented by a collection of multiple 2D views.
A satisfactory theory of shape representation would have a
number of desirable attributes:

1. It should support recognition based on exquisitely fine
differences e.g. distinguishing faces of twins.

2. At the same time, it should support making coarse dis-
criminations very quickly. Thorpe, Fize and Merlot
[22] showed that people, when presented with an im-
age, can answer coarse queries such as presence or ab-
sence of an animal in as little as 150ms.

3. The approach should scale to deal with a large number
of objects. Biederman[3] has argued that humans can
distinguish on the order of30000 different objects.

4. It should be possible to acquire a representation of an
object category from relatively few examples i.e. there
should be a good generalization ability.

In this paper we develop further an approach based on
the representation ofshape contexts, introduced in Be-
longie, Malik and Puzicha [2], which arguably satisfies cri-
teria (1), (2) and (4) above while (3) is yet only a distant
possibility1.

The basic idea of shape contexts is illustrated in Fig. 1. A
shape is represented by a discrete set of points sampled from
the internal or external contours on the shape. These can be
obtained as locations of edge pixels as found by an edge
detector, giving us a setP = fp1; : : : ; png, pi 2 R2, of n
points2. Consider the set of vectors originating from a point
to all other sample points on a shape. Thesen � 1 vectors
express the configuration of the entire shape relative to the
reference point. One way to capture this information is as
the distribution of the relative positions of the remaining
n�1 points in a spatial histogram. Concretely, for a pointpi
on the shape, compute a coarse histogramhi of the relative
coordinates of the remainingn� 1 points,

hi(k) = # fq 6= pi : (q � pi) 2 bin(k)g :

This histogram is defined to be theshape contextof pi. We
use bins that are uniform in log-polar space, making the de-
scriptor more sensitive to positions of nearby sample points
than to those of points farther away. All radial distances
are first normalized by the mean distance� between then2

point pairs in the shape, thus ensuring that the shape context
of a point on a shape is invariant under uniform scaling of
the shape as a whole.

As illustrated in Fig. 1, shape contexts will be differ-
ent for different points on a single shapeS; however cor-
responding (homologous) points on similar shapesS and
S0 will tend to have similar shape contexts. By construc-
tion, the shape context at a given point on a shape is in-
variant under translation and scaling. Shape contexts are
not invariant under arbitrary affine transforms, but the log-
polar binning ensures that for small locally affine distortions
due to pose change, intra-category variation etc., the change
in the shape context is correspondingly small. In addition,

1At least it is not provably impossible!
2They need not, and typically will not, correspond to key-points such

as maxima of curvature or inflection points.
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Figure 1: Shape contexts. (a,b) Sampled edge points of two
shapes. (c) Diagram of log-polar histogram bins used in
computing the shape contexts. We use 5 bins forlog r and
12 bins for�. (d-f) Example shape contexts for reference
samples marked byÆ; �; / in (a,b). Each shape context is
a log-polar histogram of the coordinates of the rest of the
point set measured using the reference point as the origin.
(Dark=large value.) Note the visual similarity of the shape
contexts forÆ and�, which were computed for relatively
similar points on the two shapes. By contrast, the shape
context for/ is quite different.

the richness of the shape context descriptor makes it robust
to noise and occlusion, as indicated by the experiments re-
ported in [2].

There is a natural way to measure the similarity between
two shape contexts. As shown in [2], this facilitates algo-
rithms for solving the correspondence problem between two
similar but not identical shapes such as seen in 1(a) and
(b). Consider a pointpi on the first shape and a pointqj
on the second shape. LetCij = C(pi; qj) denote the cost
of matching these two points. As shape contexts are distri-
butions represented as histograms, it is natural to use the�2

distance:

Cij =
1

2

KX

k=1

[hi(k)� hj(k)]
2

hi(k) + hj(k)

wherehi(k) andhj(k) denote theK-bin normalized his-
togram atpi and qj , respectively. Given the set of costs
Cij between all pairs of pointsi on the first shape andj
on the second shape we want to minimize the total cost of
matching subject to the constraint that the matching be one-
to-one. This is an instance of the square assignment (or
weighted bipartite matching) problem, which can be solved
in O(n3) time using the Hungarian method.

We turn now to the use of shape contexts as part of a
theory of object recognition based on shape matching. As
stated earlier, it is desirable for such a theory to support
both accurate fine discrimination, as well as rapid coarse
discrimination. This suggests a two stage approach to shape
matching, namely:

1. Fast pruning:Given an unknown 2D query shape, we
should be able to quickly retrieve a small set of likely
candidate shapes from a potentially very large collec-
tion of stored shapes. The present paper will introduce
two algorithms for this problem.

2. Detailed matching:Once we have a small set of can-
didate shapes, we can perform a more expensive and
more accurate matching procedure to find the best
matching shape to the query shape. An algorithm to
achieve this, in a deformable template matching frame-
work, was presented in [2]. This process is computa-
tionally expensive (about 200 ms to match two shapes
on a 500 MHz Pentium), but very accurate as shown
by the experimental results in several domains such as
handwritten digit recognition, tests on the Columbia
3D object database [18], and the MPEG-7 shape sil-
houette database.

The thrust of this paper is in Section 3 where we de-
velop two different algorithms for fast pruning based on
shape contexts, resulting in a shortlist of likely candidate
shapes to be evaluated later by the more accurate and ex-
pensive procedure in [2]. This is preceded by Section 2 on
past work and followed by a discussion of scaling to very
large collections in Section 4. In Section 5, we show ex-
perimental results on the Columbia (COIL-100) 3D object
database [19] and the Snodgrass and Vanderwart drawings
[21]. We conclude in Section 6.

2 Past Work

An extensive survey of shape matching in computer vision
can be found in [23]. Broadly speaking, there are two ap-
proaches: (1) feature-based, and (2) brightness-based.

Feature-based approaches involve the use of spatial ar-
rangements of extracted features such as edges or junc-
tions. Silhouettes have been described (and compared) us-
ing Fourier descriptors, e.g. [24], skeletons derived using
Blum’s medial axis transform [20], or directly matched us-
ing dynamic programming. Although silhouettes are sim-
ple and efficient to compare, they are limited as shape de-
scriptors for general 3D objects because they ignore internal
contours and are difficult to extract from real images. Other
approaches [10, 9] treat the shape as a set of points in the
2D image, extracted using, say, an edge detector. Lamdan et
al. [15] use geometric hashing in a voting scheme. Carlsson



[6] usesorder structureto compute correspondences. Amit
and Geman [1] find key points or landmarks, and recognize
objects using the spatial arrangements of point sets. How-
ever not all objects have distinguished key points (think of
a circle for instance), and using key points alone sacrifices
the shape information available in smooth portions of ob-
ject contours. Other approaches to finding correspondences
between points sets include [12] and [7].

Brightness-based approaches make more direct use of
pixel brightness values. Several approaches[14, 8] first at-
tempt to find correspondences between the two images, be-
fore doing the comparison. This turns out to be quite a
challenge as differential optical flow techniques do not cope
well with the large distortions that must be handled due to
pose/illumination variations. Errors in finding correspon-
dence will cause downstream processing errors in the recog-
nition stage. As an alternative, there are a number of meth-
ods that build classifiers without explicitly finding corre-
spondences. In such approaches, one relies on a learning al-
gorithm having enough examples to acquire the appropriate
invariances. Some examples include [16, 5] for handwritten
digit recognition, [17] for face recognition, and isolated 3D
object recognition [18].

3 Fast Pruning using Shape Contexts

Given a large set of known shapes the problem is to deter-
mine which of these shapes is most similar to a query shape.
From this set of shapes, we wish to quickly construct a short
list of candidate shapes which includes the best matching
shape. After completing this coarse comparison step one
can then apply a more time consuming, and more accurate,
comparison technique to only the shortlist. We leverage
the descriptive power of shape contexts towards this goal
of quick pruning.

We propose two matching methods that address these
issues. In the first method,representative shape contexts,
we compute a few shape contexts for the query shape and
attempt to match using only those. The second method,
shapemes, uses vector quantization to reduce the complex-
ity of the shape contexts from 60-dimensional histograms
to quantized classes of shape pieces.

A key component to both of these methods is the solv-
ing of nearest neighbour problems. We will denote by
�(np; nd) the time required to solve a nearest neighbour
problem withnp points in and-dimensional space.

3.1 Representative Shape Contexts

Given two easily discriminable shapes, such as the outlines
of a fish and a bicycle, we do not need to compare every
pair of shape contexts on the objects to know that they are

Figure 2: Matching individual shape contexts. Three points
on the query shape (left) are connected via arrows to their
best matches on two known shapes.�2 distances are given
with each matching.

different. When trying to match the dissimilar fish and bicy-
cle, none of the shape contexts from the bicycle have good
matches on the fish – it is immediately obvious that they are
different shapes. Figure 2 demonstrates this process.

In concrete terms, the matching process proceeds in the
following manner. For each of the known shapesSi, we
precompute a large numbers (about 100) of shape contexts
fSCj

i : j = 1; 2; : : : ; sg. But for the query shape, we only
compute a small numberr (r = 5 in experiments) of shape
contexts. To compute theser shape contexts we randomly
selectr sample points from the shape. We use all the sample
points on the shape to fill the histogram bins for the shape
contexts corresponding to theser points. We then do com-
parisons with each of the known shapes using only these
shape contexts.

To compute the distance between a query shape and a
known shape, we find the best matches for each of the
r shape contexts. This involves performingr nearest-
neighbour searches. The distance to a known view is de-
fined to be the sum of theser distances. Distances are com-
puted using the�2 distance.

dist(Squery ; Si) =

rX

j=1

�2(SCj
query ; SC

�

i )

whereSC�

i = argminu�
2(SCj

query ; SC
u
i )

We then find the closest matches by comparing these dis-
tances.

Pseudocode for Representative Shape Context method:

PRE- PROCE S SI N G:
% Compute shape contexts for known shapes

PRUNING:
SCquery = shape contexts for r random points



foreach known shape Si

for j = 1 : r
dist(Squery; Si)+ = minu(�

2(SCj
query; SC

u
i ))

% Sort dist and truncate to return a
% shortlist.

The pruning phase requiresO(rN � �(s; d)) time, where
N is the number of known shape views.

3.2 Shapemes

The second matching method uses vector quantization on
the shape contexts. The full set of shape contexts for the
known shapes consists ofN � s d-dim vectors. A stan-
dard technique in compression for dealing with such a large
amount of data is vector quantization. Vector quantization
involves clustering the vectors and then representing each
vector by the index of the cluster that it belongs to. We
call these clustersshapemes– canonical shape pieces. Fig-
ure 3 shows the representation of sample points as shapeme
labels.

To derive these shapemes, once again all of the shape
contexts from the known set are considered as points in a
d-dimensional space. We dok-means clustering to obtaink
shapemes.

We represent each known view as a collection of
shapemes. Eachd bin shape context is quantized to its near-
est shapeme, and replaced by the shapeme label (an inte-
ger inf1; : : : ; kg). A known view is then simplified into a
histogram of shapeme frequencies. No spatial information
amongst the shapemes is stored. We have reduced each col-
lection of s shape contexts (d bin histograms) to a single
histogram withk bins.

In order to match a query shape, we simply perform this
same vector quantization and histogram creation operation
on the shape contexts from the query shape. We then find
nearest neighbours in the space of histograms of shapemes.

Pseudocode for the Shapeme method:

% Vector Quantize and Bin: Replace each
% shape context by closest cluster center.
% Compute frequencies of centers.
VQANDBIN ( Shapemes, SC)

ShapemeCounts = zeros (k,1)
foreach shape context SCj

c = argmini�
2(SCj ; Shapemesi)

ShapemeCounts(c) + +
return ShapemeCounts

PRE- PROCES S I N G:
SCall = Shape contexts of all known shapes
% KMEANS clusters the vectors in SCall

% into k clusters, returns the centers of
% those clusters.
Shapemes = KMEANS(SCall; k)
foreach known shape Si
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Figure 3: (a)Line drawing, (b)sampled points with shapeme
labels.k = 100 shapemes were extracted from a known set
of 260 shapes (26000 shape contexts). Note the similarities
in shapeme labels (31,21,5 on left side, 45 on right side)
between similar portions of the shapes.

% ShCountsi is a histogram of shapeme
% counts.
ShCountsi = VQANDBIN (Shapemes;SCi)

PRUNING:
ShCountsquery = VQANDBIN (Shapemes;SCquery)
foreach known shape Si

dist(Squery; Si) = �2(ShCountsquery; ShCountsi)
% Sort dist and truncate to return a
% shortlist.

The pruning phase of this shapeme-based matching pro-
cess takesO(s � �(k; d)) time to do the vector quantization
(assigning the query shape’s shape contexts to shapemes,
collecting these shapeme frequencies into histograms) and
�(N; k) to do the final search amongst the histograms of
shapemes.

4 Scalability

The two matching methods we present require solving
nearest-neighbour problems in someD-dimensional space
with O(N) points (N is the number of known shapes). The
naive algorithm for doing such nearest-neighbour searches
costs�(O(N); D) = O(ND) time. This brute-force ap-
proach is not viable asN becomes large. If we wish to
design a system that can handle on the order of104 objects
we must reduce thisO(ND) complexity.

Recent work in the theory community on the�-
approximate nearest neighbours(�-NN) problem can be ap-
plied here. The�-NN problem is to find a pointp 2 P



that is the�-nearest neighbour of the query pointq: for
all p0 2 P; d(p; q) � (1 + �)d(p0; q). Indyk and Mot-
wani [11] describe an algorithm for doing�-NN queries in
�(N;D) = O(Dpolylog(N)) time that uses random pro-
jections and the Johnson-Lindenstrauss lemma [13]. Using
an algorithm of this nature, we could perform our pruning
methods efficiently. Moreover, since we are constructing a
shortlist, and are not sensitive to small(1 + �) scalings in
distance, getting precise results from a nearest neighbour
algorithm is not critical.

5 Results

We use the Columbia (COIL-100) 3D object database and
the Snodgrass and Vanderwart line drawings as our test sets.
In the following subsections we present graphs showing the
performance of the two methods on these test sets.

The graphs plot error rate vs. pruning factor (on alog
scale) for various degrees of distortion and occlusion. The
error rate computation assumes a perfect detailed matching
phase. That is, a query shape produces an error only if there
is no correctly matching shape in the shortlist produced by
the pruning method. Thex-axis on each of the graphs shows
the length of the shortlist. Pruning factor is defined to be
N=length(Shortlist). For example, withN = 260 known
shapes, if the pruning factor is 26 then the shortlist has 10
shapes in it.

In general the representative shape contexts method per-
forms better – particularly when dealing with occlusions.
Missing a couple of shape contexts won’t spoil the match-
ing. Moreover, the shapemes are more easily corrupted by
occluded points and distortions. However, the vector quan-
tization used in shapemes does buy us computational speed.

5.1 COIL-100

The first experiment involves the COIL-100 database. The
database consists of 100 unique objects. Each object was
placed on a turntable and photographed every 5 degrees
for a total of 72 views per object. We prepared our sets
of known shapes by selecting a number of equally spaced
views for each object and using the remaining views for
querying. We use a Canny edge detector to extract line fea-
tures from the images. These edges are then sampled to
create point features for use in shape contexts.

We ran experiments using 4, 8, and 12 (corresponding
to 90Æ, 45Æ, and 30Æ spacing) known views per object.
Figures 4 and 5 show the results for these tests. Both of
the pruning methods are successful: for example, with 12
known views per object a pruning factor of 100 (shortlist
of length 12) can be obtained with an error rate of 9% for
the representative shape contexts method, and 10% for the
shapeme method.
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Figure 4: Error rate vs. pruning factor on COIL-100
dataset using shapemes. Pruning factor is defined to be
N=length(Shortlist). For example, withN = 260 known
shapes, if the pruning factor is 26 then the shortlist has 10
shapes in it.

Figure 6 shows some of shortlists on the COIL-100
dataset using the shapeme matching method. Many of the
errors on this dataset involve objects that are nearly indistin-
guishable in terms of shape. For example, the shape match-
ing processes are readily confused by the toy cars of differ-
ent colour. In addition, there are a few brands of pop and
coffee mugs with different patterns on them in the COIL-
100 dataset. Relying solely on shape, without cues such as
colour and texture, it is difficult to differentiate between the
members of these groups of objects.

5.2 Snodgrass & Vanderwart

The second experiment uses the Snodgrass & Vanderwart
line drawings [21]. This dataset contains line drawings of
260 commonly occurring objects. They are a standard set of
objects that have been frequently used in the psychophysics
community for tests with human subjects. The only in-
formation available for object recognition in this dataset is
shape – this makes it an excellent dataset on which to test
our matching methods. Since the images are only line draw-
ings, no preprocessing phase of edge extraction is needed.
We just sample points from the line drawings directly.

The Snodgrass & Vanderwart dataset has only one image
per object. We use these original images as the known set,
and create a synthetic distorted set of images for querying.
The thin plate spline (TPS) model, which is commonly used
for representing flexible coordinate transformations [4], is
used to create these distortions. In a 2D view of a class of
3D object there are two sources of variation: pose change
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Figure 5: Error rate vs. pruning factor on COIL-100 dataset
using representative shape contexts

and intra-class change. We use the non-linear TPS model
to simulate both of these types of variation simultaneously.
We apply a random TPS warp of fixed bending energy to
a reference grid, and use this warp to transform the edge
points of a line drawing.

In addition to distortions, we test the ability of our prun-
ing methods to deal with occlusions. We take the set of
TPS-distorted objects and subject them to random occlu-
sions. The occlusions are generated using a linear occluding
contour. The query objects in Figure 7 show some distorted
and occluded Snodgrass & Vanderwart images. Note that
the occluding contour is included – we will sample points
from it when creating the shape contexts.

The 260 original Snodgrass & Vanderwart images were
used as the known set. We generated 5200 distorted images
(20 per original image) and 5200 distorted and occluded im-
ages for use as query sets. The occluded images were split
into levels of difficulty according to the percentage of edge
pixels lost under occlusion. Figures 9 and 10 show the re-
sults for our two pruning methods. The pruning methods
are both very effective in dealing with the TPS-distorted
images. The shapeme method can achieve a pruning fac-
tor of � 100 (a correct match in a shortlist of length 3 out
of 260 images) with an error rate of only 13%, while the
representative shape contexts method only has an error rate
of 2%.

The power of the representative shape contexts method
comes out in the occlusion tests. Even with extremely dif-
ficult levels of occlusion (20%-30% and 30%-40%) we can
still obtain large amounts of pruning with reasonable error
rates.

Figures 7 and 8 show some example shortlists on the
Snodgrass & Vanderwart dataset using the representative

Figure 6: Some shortlists found for COIL-100 images. The
first column shows query objects. The remaining columns
show the closest 4 matches to each query object using the
representative shape contexts matching method. A query
is successful if there is at least one matching object on the
shortlist.

shape contexts method.

6 Conclusion

Previous work on shape matching via a deformable
template-based framework has been very successful for ob-
ject recognition. However, these methods are too expensive
computationally to be used on a large scale object database.
We have shown how a shape context-based pruning ap-
proach can assist by constructing an accurate shortlist in
order to reduce this computational expense. We proposed
two methods of matching – one using a small number of
representative shape contexts, and the other based on vec-
tor quantization of shape contexts into shapemes. Both
methods were shown to perform well as efficient pruning
mechanisms on the COIL-100 and Snodgrass & Vanderwart
datasets, and deal robustly with occlusion and pose or intra-
class variation.



Figure 7: Some shortlists for the distorted and occluded Snodgrass & Vanderwart dataset using the repre-
sentative shape contexts method. The first column is the query object. Remaining 4 columns show closest matches to

each query object. An example of a successful query is the3
rd row. The query object is a foot with the top portion

occluded (note the presence of the occluding contour). The first entry in the shortlist is a correct match, followed by a

sock (similar shape), and a lock (has a straight edge similar to the occluding contour in the query image). The2
nd

row shows a failure. The query object is a partially occluded garbage can. None of the objects on the shortlist correctly
match, but they do share some similarity (vertical edges).

Figure 8: Some shortlists for the distorted Snodgrass & Vanderwart dataset using the representative shape
contexts method. The first column is the query object. Remaining 4 columns show closest matches toeach query

object. The4th row shows a successful query. The query object is a distorted version of the camel. All 4 objects in

the shortlist are similar shapes (animals). The2
nd row shows a failure. The query object is a distorted round button.

The shortlist contains other round objects, but no button.
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