Shape contexts enable efficient retrieval of similar shapes
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Abstract In this paper we develop further an approach based on
the representation ofhape contextsintroduced in Be-

In this work we demonstrate that a recently introduced longie, Malik and Puzicha [2], which arguably satisfies cri-
shape descriptor, the “shape context”, can be used to teria (1), (2) and (4) above while (3) is yet only a distant
quickly prune a search for similar shapes. Our represen- possibility'.
tation for a shape is a discrete setiopoints sampled from The basic idea of shape contexts is illustrated in Fig. 1. A
its internal and external contours. For each of these points, shape is represented by a discrete set of points sampled from
the shape context is a histogram of the relative positions ofthe internal or external contours on the shape. These can be
then — 1 remaining points. We present two methods for obtained as locations of edge pixels as found by an edge
rapid shape retrieval: one that does comparisons based ondetector, giving us a st = {p1,...,pn}, pi € R?, of n
a small number of shape contexts and another that uses vecpoints’. Consider the set of vectors originating from a point
tor quantization in the space of shape contexts. We verifyto all other sample points on a shape. These 1 vectors
the discriminative power of these methods with tests on theexpress the configuration of the entire shape relative to the
Columbia (COIL-100) 3D object database and the Snod- reference point. One way to capture this information is as
grass and Vanderwart line drawings. The shape context-the distribution of the relative positions of the remaining
based methods are shown to quickly produce an accuraten —1 points in a spatial histogram. Concretely, for a pgint
shortlist of candidates suitable for a more exact matching on the shape, compute a coarse histoghawf the relative
engine in spite of pose variation and occlusion. coordinates of the remaining— 1 points,

hi(k) =#{q#pi : (¢—pi)€bin(k)} .

This histogram is defined to be tkbape contexf p;. We
We are interested in the use of shape for recognizing 3Duse bins that are uniform in log-polar space, making the de-
objects, represented by a collection of multiple 2D views. scriptor more sensitive to positions of nearby sample points
A satisfactory theory of shape representation would have athan to those of points farther away. All radial distances
number of desirable attributes: are first normalized by the mean distarncbetween the:?
point pairs in the shape, thus ensuring that the shape context
1. It should support recognition based on exquisitely fine of a point on a shape is invariant under uniform scaling of
differences e.g. distinguishing faces of twins. the shape as a whole.
As illustrated in Fig. 1, shape contexts will be differ-
ent for different points on a single shafe however cor-

czrgmnr?tlonz ;’ﬁ?’ qU|cI|<Iy. ;I}'horpe, F'Zte danc_ithMerlpt responding (homologous) points on similar shafeand
[22] showed that people, when presented with an im- g, will tend to have similar shape contexts. By construc-

n answer r ri h r n r ap- . . .
age, can answer coarse queries such as presence ora on, the shape context at a given point on a shape is in-
sence of an animal in as little as 150ms.

variant under translation and scaling. Shape contexts are

3. The approach should scale to deal with a large numbefot invariant under arbitrary affine transforms, but the log-
of objects. Biederman[3] has argued that humans canPolar binning ensures that for small locally affine distortions

distinguish on the order &f0000 different objects. due to pose change, intra-category variation etc., the change
in the shape context is correspondingly small. In addition,

1 Introduction

2. Atthe same time, it should support making coarse dis-

4. It should be possible to acquire a representation of an LAt least itis not provably impossible!

object category from relativel)_’ few 9>_<amples i.e. there  2they need not, and typically will not, correspond to key-points such
should be a good generalization ability. as maxima of curvature or inflection points.
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Figure 1: Shape contexts. (a,b) Sampled edge points of two

shapes. (c) Diagram of log-polar histogram bins used in
computing the shape contexts. We use 5 binddgr and

12 bins forf. (d-f) Example shape contexts for reference
samples marked by, ¢, < in (a,b). Each shape context is
a log-polar histogram of the coordinates of the rest of the

We turn now to the use of shape contexts as part of a
theory of object recognition based on shape matching. As
stated earlier, it is desirable for such a theory to support
both accurate fine discrimination, as well as rapid coarse
discrimination. This suggests a two stage approach to shape
matching, namely:

1. Fast pruning:Given an unknown 2D query shape, we
should be able to quickly retrieve a small set of likely
candidate shapes from a potentially very large collec-
tion of stored shapes. The present paper will introduce
two algorithms for this problem.

. Detailed matching:Once we have a small set of can-
didate shapes, we can perform a more expensive and
more accurate matching procedure to find the best
matching shape to the query shape. An algorithm to
achieve this, in a deformable template matching frame-
work, was presented in [2]. This process is computa-
tionally expensive (about 200 ms to match two shapes
on a 500 MHz Pentium), but very accurate as shown
by the experimental results in several domains such as
handwritten digit recognition, tests on the Columbia
3D object database [18], and the MPEG-7 shape sil-
houette database.

point set measured using the reference point as the origin.

(Dark=large value.) Note the visual similarity of the shape
contexts foro and ¢, which were computed for relatively

The thrust of this paper is in Section 3 where we de-
velop two different algorithms for fast pruning based on

similar points on the two shapes. By contrast, the shapeshape contexts, resulting in a shortlist of likely candidate

context for« is quite different.

the richness of the shape context descriptor makes it robusF

to noise and occlusion, as indicated by the experiments re
ported in [2].

shapes to be evaluated later by the more accurate and ex-
pensive procedure in [2]. This is preceded by Section 2 on
ast work and followed by a discussion of scaling to very
arge collections in Section 4. In Section 5, we show ex-
perimental results on the Columbia (COIL-100) 3D object
database [19] and the Snodgrass and Vanderwart drawings

There is a natural way to measure the similarity between [21]. We conclude in Section 6.

two shape contexts. As shown in [2], this facilitates algo-

rithms for solving the correspondence problem between two

similar but not identical shapes such as seen in 1(a) and2 Past Work

(b). Consider a poinp; on the first shape and a poiiqf
on the second shape. L€t; = C(p;, ¢;) denote the cost

of matching these two points. As shape contexts are distri-

butions represented as histograms, it is natural to usg’he
distance:

Lo [hak) = by (R)]?
Cy=52 hi(k) + by (k)
k=1 " J
whereh; (k) andh;(k) denote theK'-bin normalized his-
togram atp; andg;, respectively. Given the set of costs
C;; between all pairs of points on the first shape ang

An extensive survey of shape matching in computer vision
can be found in [23]. Broadly speaking, there are two ap-
proaches: (1) feature-based, and (2) brightness-based.
Feature-based approaches involve the use of spatial ar-
rangements of extracted features such as edges or junc-
tions. Silhouettes have been described (and compared) us-
ing Fourier descriptors, e.g. [24], skeletons derived using
Blum’s medial axis transform [20], or directly matched us-
ing dynamic programming. Although silhouettes are sim-
ple and efficient to compare, they are limited as shape de-

on the second shape we want to minimize the total cost ofscriptors for general 3D objects because they ignore internal
matching subject to the constraint that the matching be one-contours and are difficult to extract from real images. Other
to-one. This is an instance of the square assignment (orapproaches [10, 9] treat the shape as a set of points in the
weighted bipartite matching) problem, which can be solved 2D image, extracted using, say, an edge detector. Lamdan et
in O(n?) time using the Hungarian method. al. [15] use geometric hashing in a voting scheme. Carlsson



[6] usesorder structureto compute correspondences. Amit
and Geman [1] find key points or landmarks, and recognize
objects using the spatial arrangements of point sets. How-
ever not all objects have distinguished key points (think of
a circle for instance), and using key points alone sacrifices
the shape information available in smooth portions of ob-
ject contours. Other approaches to finding correspondences
between points sets include [12] and [7].

Brightness-based approaches make more direct use of
pixel brightness values. Several approaches[14, 8] first at-
tempt to find correspondences between the two images, be-
fore doing the comparison. This turns out to be quite a
challenge as differential optical flow techniques do not cope
well with the large distortions that must be handled due to Figure 2: Matching individual shape contexts. Three points
pose/illumination variations. Errors in finding correspon- on the query shape (left) are connected via arrows to their
dence will cause downstream processing errors in the recogbest matches on two known shapg$.distances are given
nition stage. As an alternative, there are a number of meth-with each matching.
ods that build classifiers without explicitly finding corre-
spondences. In such approaches, one relies on a learning al-
gorithm having enough examples to acquire the appropriated
invariances. Some examples include [16, 5] for handwritten
digit recognition, [17] for face recognition, and isolated 3D
object recognition [18].

ifferent. When trying to match the dissimilar fish and bicy-
cle, none of the shape contexts from the bicycle have good
matches on the fish — it is immediately obvious that they are
different shapes. Figure 2 demonstrates this process.

In concrete terms, the matching process proceeds in the
. . following manner. For each of the known shapggs we
3 Fast Prunlng using Shape Contexts precompute a large numbe(about 100) of shape contexts

{SC? :j =1,2,...,s}. Butfor the query shape, we only

Given a large set of known shapes the problem is to deter'compute a small number(r = 5 in experiments) of shape

mine which of these shapes is most similar to a query shape.gntexts. To compute theseshape contexts we randomly
From this set of shapes, we wish to quickly construct a short 4o sample points from the shape. We use all the sample
list of candidate shapes which includes the best matchingpomts on the shape to fill the histogram bins for the shape
shape. After completing this coarse comparison step oN€qniexts corresponding to thesgoints. We then do com-
can then apply a more time consuming, and more accuratep,aisons with each of the known shapes using only these
comparison technique to only the shortlist. We leverage shape contexts.
the d.escripti\./e power of shape contexts towards this goal 1, compute the distance between a query shape and a
of quick pruning. _ known shape, we find the best matches for each of the
We propose two matching methods that address thes€. shape contexts. This involves performingnearest-
issues. In the first methodepresentative shape contexts pejghbour searches. The distance to a known view is de-

we compute a few shape contexts for the query shape angined to be the sum of thesedistances. Distances are com-
attempt to match using only those. The second method,puted using the 2 distance.
shapemesuses vector quantization to reduce the complex-

ity of the shape contexts from 60-dimensional histograms ) ",
to quantized classes of shape pieces. dist(Squery, Si) = Z X

A key component to both of these methods is the solv- =1

ing of nearest neighbour problems. We will denote by whereSC; = argmingx(SCi,.,. ,SCY)
7(ny,nq) the time required to solve a nearest neighbour  \e then find the closest matches by comparing these dis-

Sc

query’

SCY)

problem withn,, points in ang-dimensional space. tances.
Pseudocode for Representative Shape Context method:
3.1 Representative Shape Contexts PRE PROCESSING

) S ] % Compute shape contexts for known shapes
Given two easily discriminable shapes, such as the outlines

of a fish and a bicycle, we do not need to compare everyprunING
pair of shape contexts on the objects to know that they are SCyuery = shape contexts for r random points



foreach  known shape S; w5

for j:127" 55°5 3?535340 18 60

diSt(SquET?n Sl)+ = minu (X2 (chuerya Sczu)) 312%1 s
% Sort dist and truncate to return a a B
% shortlist. ™ ol
1 3%0
82 30
The pruning phase requir€gr N - (s, d)) time, where H, 2%,

N is the number of known shape views.

3.2 Shapemes

The second matching method uses vector quantization on |4
the shape contexts. The full set of shape contexts for the
known shapes consists @f - s d-dim vectors. A stan-
dard technique in compression for dealing with such a large
amount of data is vector quantization. Vector quantization
involves clustering the vectors and then representing each
vector by the index of the cluster that it belongs to. We Figure 3: (a)Line drawing, (b)sampled points with shapeme
call these clustershapemes canonical shape pieces. Fig- |abels.k = 100 shapemes were extracted from a known set
ure 3 shows the representation of sample points as shapemgs 260 shapesZ6000 shape contexts). Note the similarities

labels. in shapeme labels (31,21,5 on left side, 45 on right side)
To derive these shapemes, once again all of the shap@etween similar portions of the shapes.

contexts from the known set are considered as points in a

d-dimensional space. We demeans clustering to obtain

shapemes. % ShCounts; is a histogram of shapeme
We represent each known view as a collection of % counts.

shapemes. Eachbin shape context is quantized to its near- ShCounts; = VQANDBIN (Shapemes, 5C;)

est shapeme, and replaced by the shapeme label (an inte-

14
100 g5 95 20 4247070 14
5252 202 2470

(b)

. . . . e . PRUNING
gerin{l,...,k}). A known view is then simplified into a ShCountsguery = VOANIBIN (Shapemes, SCyuery)
histogram of shapeme frequencies. No spatial information foreach  known shape S;
amongst the shapemes is stored. We have reduced each col- dist(Squery, Si) = x> (ShCountsguer,, ShCounts;)
lection of s shape contextsd(bin histograms) to a single % Sort dist and truncate to return a
histogram withk bins. % shortlist.

In order to match a query shape, we simply perform this _ . .
same vector quantization and histogram creation operation The pruning phase of this shapeme-based matching pro-

on the shape contexts from the query shape. We then find"©SS take®)(s - 7(k, )) time to do the vector quantization
éassigning the query shape’s shape contexts to shapemes,

collecting these shapeme frequencies into histograms) and
7(N, k) to do the final search amongst the histograms of
% Vector Quantize and Bin: Replace each shapemes.

% shape context by closest cluster center.

% Compute frequencies of centers.

Pseudocode for the Shapeme method:

VQANDBIN ( Shapemes, SC) 4 Scalablllty
ShapemeCounts = zeros (k,1)
foreach  shape context sci The two matching methods we present require solving
¢ = argmin;x*(SC, Shapemes;) nearest-neighbour problems in soiledimensional space
ShapemeCounts(c) + + with O(NN) points (V is the number of known shapes). The

return  ShapemeCounts naive algorithm for doing such nearest-neighbour searches

costsT(O(N),D) = O(ND) time. This brute-force ap-

PRE PROCESING: . . .
proach is not viable a®v becomes large. If we wish to

SC.u = Shape contexts of all known shapes . .

% KMEANS clusters the vectors in SC.u design a system that can handle on the ordéndfobjects
% into k clusters, returns the centers of we must reduce th_'@(ND) complexity. .

% those clusters. Recent work in the theory community on the

Shapemes = KMEAN$SCy, k) approximate nearest neighbouesNN) problem can be ap-

foreach  known shape S; plied here. The-NN problem is to find a poinp € P



COIL: Shapemes
T

that is thee-nearest neighbour of the query point for 1 : : R
all p’ € P, d(p,q) < (1 + €)d(p',q). Indyk and Mot- ol gg;ggaw
wani [11] describe an algorithm for doirgNN queries in

7(N,D) = O(Dpolylog(N)) time that uses random pro- osr
jections and the Johnson-Lindenstrauss lemma [13]. Using o7t 1
an algorithm of this nature, we could perform our pruning
methods efficiently. Moreover, since we are constructing a
shortlist, and are not sensitive to sméll+ €) scalings in
distance, getting precise results from a nearest neighbour o4t

06 q

Error rate
o
5

algorithm is not critical. 0sl i
5 Results ]
We use the Columbia (COIL-100) 3D object database and i w Pmmngpagf, (og 5026 i '

the Snodgrass and Vanderwart line drawings as our test sets.

In the following subsections we present graphs showing theFigure 4: Error rate vs. pruning factor on COIL-100

performance of the two methods on these test sets. dataset using shapemes. Pruning factor is defined to be
The graphs plot error rate vs. pruning factor (olb@  N/length(Shortlist). For example, withV = 260 known

scale) for various degrees of distortion and occlusion. Theshapes, if the pruning factor is 26 then the shortlist has 10

error rate computation assumes a perfect detailed matchinghapes in it.

phase. Thatis, a query shape produces an error only if there

is no correctly matching shape in the shortlist produced by

the pruning method. The-axis on each of the graphs shows , )

the length of the shortlist. Pruning factor is defined to be  Figure 6 shows some of shortlists on the COIL-100

N/length(Shortlist). For example, withV = 260 known dataset using the sha}peme ma_tchlng method. Mapy gf .the

shapes, if the pruning factor is 26 then the shortlist has 10€7T0rS On thls dataset involve objects that are nearly indistin-

shapesiin it. guishable in terms of shape. For example, the shape match-
In general the representative shape contexts method peri"d Processes are readily confused by the toy cars of differ-

forms better — particularly when dealing with occlusions. €Nt colour. In addition, there are a few brands of pop and

Missing a couple of shape contexts won’t spoil the match- coffee mugs with different patterns on them in the COIL-

ing. Moreover, the shapemes are more easily corrupted by!00 dataset. Relying solely on shape, without cues such as

occluded points and distortions. However, the vector quar1_co|our and texture, it is difficult t_o differentiate between the

tization used in shapemes does buy us computational speed€mbers of these groups of objects.

5.1 COIL-100 5.2 Snodgrass & Vanderwart

The first experiment involves the COIL-100 database. The The second experiment uses the Snodgrass & Vanderwart
database consists of 100 unique objects. Each object wa$ine drawings [21]. This dataset contains line drawings of
placed on a turntable and photographed every 5 degree260 commonly occurring objects. They are a standard set of
for a total of 72 views per object. We prepared our sets objects that have been frequently used in the psychophysics
of known shapes by selecting a number of equally spacedcommunity for tests with human subjects. The only in-
views for each object and using the remaining views for formation available for object recognition in this dataset is
guerying. We use a Canny edge detector to extract line fea-shape — this makes it an excellent dataset on which to test
tures from the images. These edges are then sampled tour matching methods. Since the images are only line draw-

create point features for use in shape contexts. ings, no preprocessing phase of edge extraction is needed.
We ran experiments using 4, 8, and 12 (correspondingWe just sample points from the line drawings directly.
to 90°, 45°, and 30° spacing) known views per object. The Snodgrass & Vanderwart dataset has only one image

Figures 4 and 5 show the results for these tests. Both ofper object. We use these original images as the known set,
the pruning methods are successful: for example, with 12and create a synthetic distorted set of images for querying.
known views per object a pruning factor of 100 (shortlist The thin plate spline (TPS) model, which is commonly used
of length 12) can be obtained with an error rate of 9% for for representing flexible coordinate transformations [4], is
the representative shape contexts method, and 10% for theised to create these distortions. In a 2D view of a class of
shapeme method. 3D object there are two sources of variation: pose change
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Figure 5: Error rate vs. pruning factor on COIL-100 dataset
using representative shape contexts

and intra-class change. We use the non-linear TPS model
to simulate both of these types of variation simultaneously.
We apply a random TPS warp of fixed bending energy to
a reference grid, and use this warp to transform the edge
points of a line drawing. Figure 6: Some shortlists found for COIL-100 images. The
In addition to distortions, we test the ability of our prun- first column shows query objects. The remaining columns
ing methods to deal with occlusions. We take the set of Show the closest 4 matches to each query object using the
TPS-distorted objects and subject them to random occlu-representative shape contexts matching method. A query
sions. The occlusions are generated using a linear occludinds successful if there is at least one matching object on the
contour. The query objects in Figure 7 show some distortedshortlist.
and occluded Snodgrass & Vanderwart images. Note that
the occluding contour is included — we will sample points
from it when creating the shape contexts.
The 260 original Snodgrass & Vanderwart images were
used as the known set. We generated 5200 distorted images
(20 per originalimage) and 5200 distorted and occluded im-
ages for use as query sets. The occluded images were splié .
into levels of difficulty according to the percentage of edge Conclusion
pixels lost under occlusion. Figures 9 and 10 show the re-
sults for our two pruning methods. The pruning methods Previous work on shape matching via a deformable
are both very effective in dealing with the TPS-distorted template-based framework has been very successful for ob-
images. The shapeme method can achieve a pruning facject recognition. However, these methods are too expensive
tor of ~ 100 (a correct match in a shortlist of length 3 out computationally to be used on a large scale object database.
of 260 images) with an error rate of only 13%, while the We have shown how a shape context-based pruning ap-
representative shape contexts method only has an error ratgroach can assist by constructing an accurate shortlist in
of 2%. order to reduce this computational expense. We proposed
The power of the representative shape contexts methodwo methods of matching — one using a small number of
comes out in the occlusion tests. Even with extremely dif- representative shape contexts, and the other based on vec-
ficult levels of occlusion (20%-30% and 30%-40%) we can tor quantization of shape contexts into shapemes. Both
still obtain large amounts of pruning with reasonable error methods were shown to perform well as efficient pruning
rates. mechanisms on the COIL-100 and Snodgrass & Vanderwart
Figures 7 and 8 show some example shortlists on thedatasets, and deal robustly with occlusion and pose or intra-
Snodgrass & Vanderwart dataset using the representativelass variation.
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F|gu re 7: Some shortlists for the distorted and occluded Snodgrass & Vanderwart dataset using the repre- F|gu re 8: Some shortlists for the distorted Snodgrass & Vanderwart dataset using the representative shape
sentative shape contexts method. The first column is the query object. Remaining 4 columns show closest matches tacontexts method. The first column is the query object. Remaining 4 columns show closest mathels qouery

each query object. An example of a successful query iSth& row. The query object is a foot with the top portion object. Theat" row shows a successful query. The query object is a distorted version of the camel. All 4 objects in
occluded (note the presence of the occluding contour). The first entry in the shortlist is a correct match, followed by @ the shortiist are similar shapes (animals). &% row shows a failure. The query object is a distorted round button.
sock (similar shape), and a lock (has a straight edge similar to the occluding contour in the query imagel: drhe The shortlist contains other round objects, but no button.

row shows a failure. The query object is a partially occluded garbage can. None of the objects on the shortlist correctly

match, but they do share some similarity (vertical edges).
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Figure 9: Error rate vs. pruning factor on Snodgrass datasefrigure 10: Error rate vs.

using shapemes
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