Lattice Perspective on Strangeness and Quasi-Quarks

Rajiv V. Gavai T. I. F. R., Mumbai, India

Lattice Perspective on Strangeness and Quasi-Quarks

Rajiv V. Gavai T. I. F. R., Mumbai, India

Introduction

The Wróblewski Parameter

Quasi-quarks

Screening Lengths

Summary

- Fluctuations in conserved charges, *B*, *Q*, as promising signals of QGP (Asakawa-Heinz-Müller, PRL '00, Jeon-Koch PRL '00).
- Quark Number Susceptibilities (QNS) measure these fluctuations. Lattice approach yields these directly from QCD. (Gottlieb et al, '86,'87, ..., Gavai et al. '89...)
- Ratios of the susceptibilities, $C_{K/L} \equiv \frac{\chi_K}{\chi_L} = \frac{\sigma_K^2}{\sigma_L^2}$ are robust variables in high T Phase: both theoretically and experimentally.
- Many aspects studied of QGP can be studied using these, e.g., the Wróblewski Parameter.

- Fluctuations in conserved charges, *B*, *Q*, as promising signals of QGP (Asakawa-Heinz-Müller, PRL '00, Jeon-Koch PRL '00).
- Quark Number Susceptibilities (QNS) measure these fluctuations. Lattice approach yields these directly from QCD. (Gottlieb et al, '86,'87, ..., Gavai et al. '89...)
- Ratios of the susceptibilities, $C_{K/L} \equiv \frac{\chi_K}{\chi_L} = \frac{\sigma_K^2}{\sigma_L^2}$ are robust variables in high T Phase: both theoretically and experimentally.
- Many aspects studied of QGP can be studied using these, e.g., the Wróblewski Parameter.

- Fluctuations in conserved charges, *B*, *Q*, as promising signals of QGP (Asakawa-Heinz-Müller, PRL '00, Jeon-Koch PRL '00).
- Quark Number Susceptibilities (QNS) measure these fluctuations. Lattice approach yields these directly from QCD. (Gottlieb et al, '86,'87, ..., Gavai et al. '89...)
- Ratios of the susceptibilities, $C_{K/L} \equiv \frac{\chi_K}{\chi_L} = \frac{\sigma_K^2}{\sigma_L^2}$ are robust variables in high T Phase: both theoretically and experimentally.
- Many aspects studied of QGP can be studied using these, e.g., the Wróblewski Parameter.

- Fluctuations in conserved charges, *B*, *Q*, as promising signals of QGP (Asakawa-Heinz-Müller, PRL '00, Jeon-Koch PRL '00).
- Quark Number Susceptibilities (QNS) measure these fluctuations. Lattice approach yields these directly from QCD. (Gottlieb et al, '86,'87, ..., Gavai et al. '89...)
- Ratios of the susceptibilities, $C_{K/L} \equiv \frac{\chi_K}{\chi_L} = \frac{\sigma_K^2}{\sigma_L^2}$ are robust variables in high T Phase: both theoretically and experimentally.
- Many aspects studied of QGP can be studied using these, e.g., the Wróblewski Parameter.

- Outstanding question in spite of long history of several investigations:
 - Equation of State : $T \ge 3 5T_c$ agrees with weak coupling schemes.
 - Quark Number Susceptibilities : Successful check on them.
- We address this directly using $C_{(KL)/L} = \frac{\langle KL \rangle \langle K \rangle \langle L \rangle}{\langle L^2 \rangle \langle L \rangle^2}$. Physically, create an excitation of quantum number K and ask what else (like L) does it carry.
- Screening Masses : $T \ge 2T_c \Leftrightarrow$ Fermi gas of quarks? We explore continuum limit using overlap quarks.

- Outstanding question in spite of long history of several investigations:
 - Equation of State : $T \ge 3 5T_c$ agrees with weak coupling schemes.
 - Quark Number Susceptibilities : Successful check on them.
- We address this directly using $C_{(KL)/L} = \frac{\langle KL \rangle \langle K \rangle \langle L \rangle}{\langle L^2 \rangle \langle L \rangle^2}$. Physically, create an excitation of quantum number K and ask what else (like L) does it carry.
- Screening Masses : $T \ge 2T_c \Leftrightarrow$ Fermi gas of quarks? We explore continuum limit using overlap quarks.

- Outstanding question in spite of long history of several investigations:
 - Equation of State : $T \ge 3 5T_c$ agrees with weak coupling schemes.
 - Quark Number Susceptibilities : Successful check on them.
- We address this directly using $C_{(KL)/L} = \frac{\langle KL \rangle \langle K \rangle \langle L \rangle}{\langle L^2 \rangle \langle L \rangle^2}$. Physically, create an excitation of quantum number K and ask what else (like L) does it carry.
- Screening Masses : $T \ge 2T_c \Leftrightarrow$ Fermi gas of quarks? We explore continuum limit using overlap quarks.

- Outstanding question in spite of long history of several investigations:
 - Equation of State : $T \ge 3 5T_c$ agrees with weak coupling schemes.
 - Quark Number Susceptibilities : Successful check on them.
- We address this directly using $C_{(KL)/L} = \frac{\langle KL \rangle \langle K \rangle \langle L \rangle}{\langle L^2 \rangle \langle L \rangle^2}$. Physically, create an excitation of quantum number K and ask what else (like L) does it carry.
- Screening Masses : $T \ge 2T_c \Leftrightarrow$ Fermi gas of quarks? We explore continuum limit using overlap quarks.

Quark Number Susceptibility

Assuming three flavours, u, d, and s quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_{f=u,d,s} \operatorname{Det} M(m_f,\mu_f) \quad . \tag{1}$$

Quark Number Susceptibility

Assuming three flavours, u, d, and s quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_{f=u,d,s} \text{Det } M(m_f,\mu_f) \quad . \tag{1}$$

Defining $\mu_B = \mu_u + \mu_d + \mu_s$ and $\mu_3 = \mu_u - \mu_d$, baryon and isospin density/susceptibilities can be obtained as : (Gottlieb et al. '87, '96, '97, Gavai et al. '89)

Quark Number Susceptibility

Assuming three flavours, u, d, and s quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_{f=u,d,s} \operatorname{Det} M(m_f,\mu_f)$$
 .

Defining $\mu_B = \mu_u + \mu_d + \mu_s$ and $\mu_3 = \mu_u - \mu_d$, baryon and isospin density/susceptibilities can be obtained as : (Gottlieb et al. '87, '96, '97, Gavai et al. '89)

$$m_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}, \qquad \chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}, \qquad i, j = 0, 3, u, d, s$$

QCD in Extreme Conditions, RBRC, BNL, Upton, USA, August 1, 2006

(1)

$$\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots} .$$
 (2)

(3)

$$\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots} .$$
 (2)

These are Taylor coefficients of the pressure P in its expansion in μ . All of these can be written as traces of products of M^{-1} and various derivatives of M; Evaluated using Gaussian Noise.

$$\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots} .$$
 (2)

These are Taylor coefficients of the pressure P in its expansion in μ . All of these can be written as traces of products of M^{-1} and various derivatives of M; Evaluated using Gaussian Noise.

Finite Density Results by Taylor Expansion in μ (Bielefeld-Swansea, Gavai-Gupta, BI-RBC)

$$\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots} .$$
 (2)

These are Taylor coefficients of the pressure P in its expansion in μ . All of these can be written as traces of products of M^{-1} and various derivatives of M; Evaluated using Gaussian Noise.

Finite Density Results by Taylor Expansion in μ (Bielefeld-Swansea, Gavai-Gupta, BI-RBC)

Theoretical Checks : Resummed Perturbation expansions, Dimensional Reduction, Models of (s)QGP, ...

(3)

$$\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots} .$$
 (2)

These are Taylor coefficients of the pressure P in its expansion in μ . All of these can be written as traces of products of M^{-1} and various derivatives of M; Evaluated using Gaussian Noise.

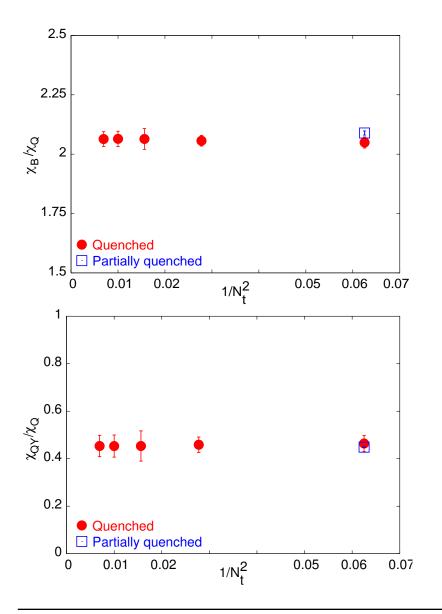
Finite Density Results by Taylor Expansion in μ (Bielefeld-Swansea, Gavai-Gupta, BI-RBC)

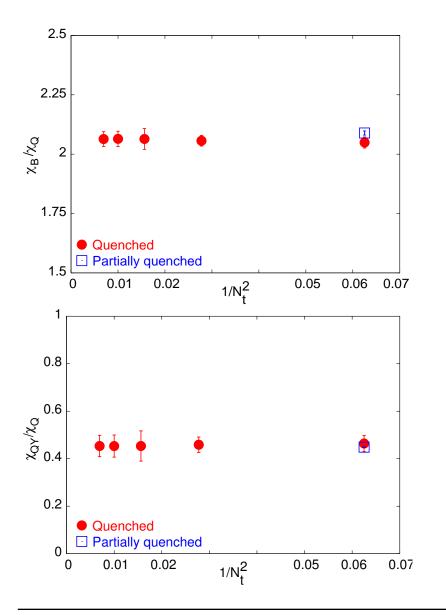
♠ Theoretical Checks : Resummed Perturbation expansions, Dimensional Reduction, Models of (s)QGP, ..

We (Gavai & Gupta, PR D '02) have argued that

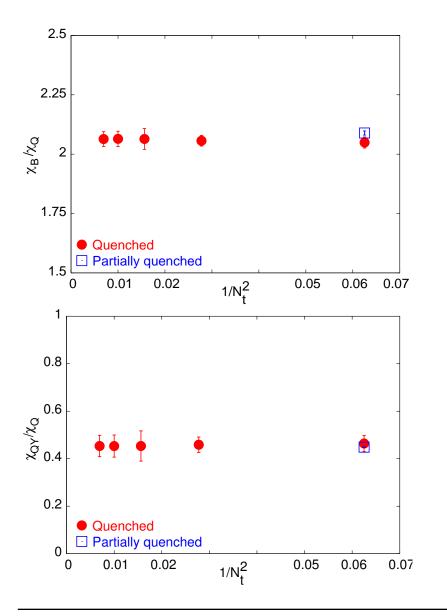
$$\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d} \,. \tag{3}$$

Robustness of Ratios C



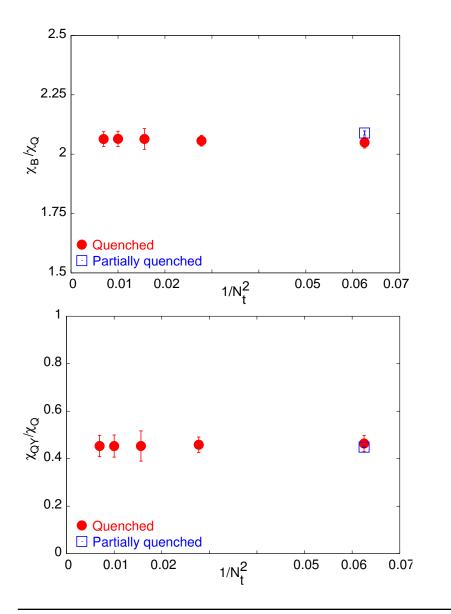


Here 1) $C_{B/Q}$ and $C_{(QY)/Q}$ at $T = 2T_c$ exhibited as a function of lattice spacing.



Here 1) $C_{B/Q}$ and $C_{(QY)/Q}$ at $T = 2T_c$ exhibited as a function of lattice spacing.

2) Partially Quenched \Leftrightarrow Dynamical quarks of mass $0.1T_c$ on $16^3 \times 4$, corresponding to $m_{\rho}/T_c = 5.4$ and $m_{\pi}/m_{\rho} = 0.3$



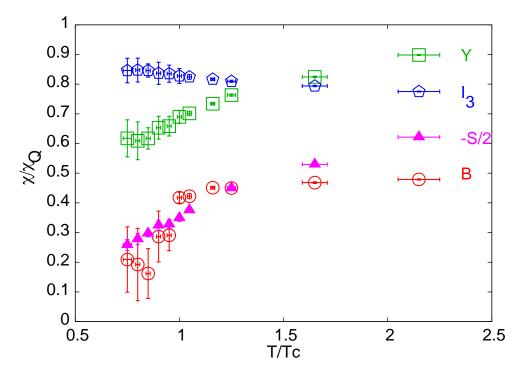
Here 1) $C_{B/Q}$ and $C_{(QY)/Q}$ at $T = 2T_c$ exhibited as a function of lattice spacing.

2) Partially Quenched \Leftrightarrow Dynamical quarks of mass $0.1T_c$ on $16^3 \times 4$, corresponding to $m_{\rho}/T_c = 5.4$ and $m_{\pi}/m_{\rho} = 0.3$

3) Valence light and strange quark masses : $m_v^{up}/T_c = 0.03$ and $m_v^{strange}/T_c \simeq 0.75$ -1.0.

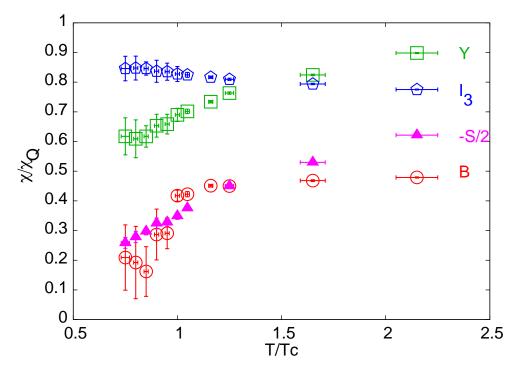
Some Robust Predictions for various fluctuations thus are :

Some Robust Predictions for various fluctuations thus are :



 $\heartsuit C_{X/Q}$ as a function of T/T_c for X = B, S, Y and I_3 ; For X = S, C/2 shown.

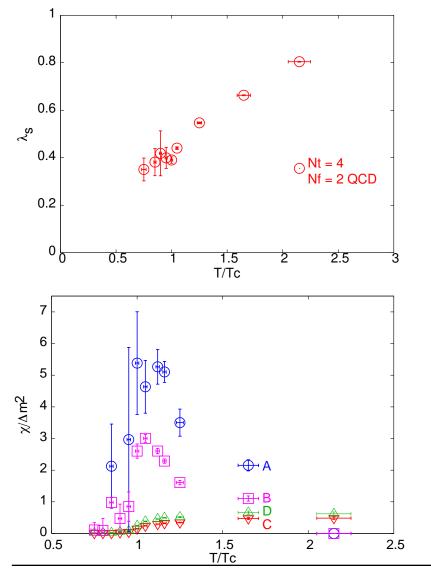
Some Robust Predictions for various fluctuations thus are :



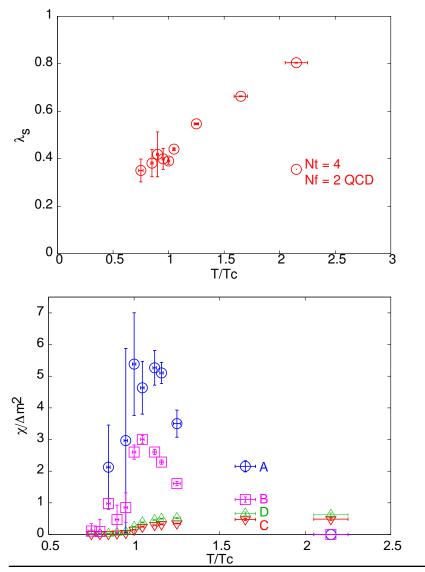
 $\heartsuit C_{X/Q}$ as a function of T/T_c for X = B, S, Y and I_3 ; For X = S, C/2 shown.

 $\heartsuit C_{S/Q}$ and $C_{B/Q}$ exhibit a large change in going from Hadronic phase to QGP.

Wróblewski Parameter

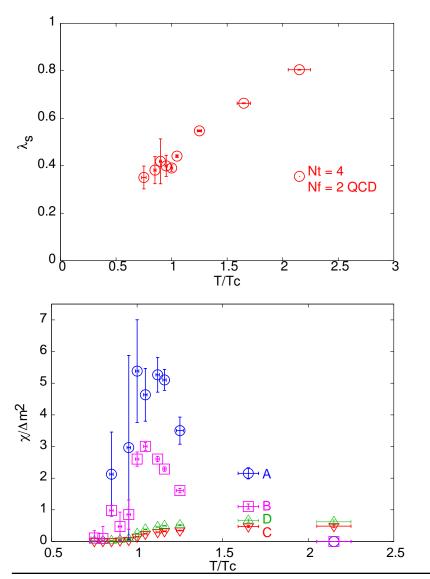


QCD in Extreme Conditions, RBRC, BNL, Upton, USA, August 1, 2006



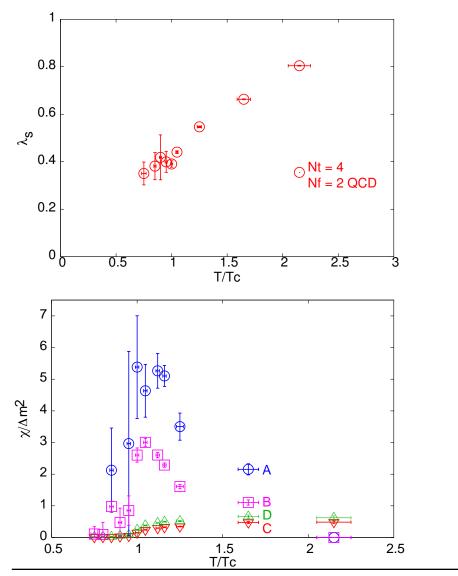
• Fluctuation-Dissipation Theorem, Kramers - Krönig relation & a relaxation time approximation \implies robust observable $C_{s/u} \equiv \lambda_s$.

QCD in Extreme Conditions, RBRC, BNL, Upton, USA, August 1, 2006



- Fluctuation-Dissipation Theorem, Kramers - Krönig relation & a relaxation time approximation \implies robust observable $C_{s/u} \equiv \lambda_s$.
- $\lambda_s \simeq 0.4$ close to T_c , in agreement with extractions from experiment (See, e.g., Cleymans, JPG 28 (2002) 1575.) and our own earlier result in Quenched QCD. Goes down at lower temperature.

QCD in Extreme Conditions, RBRC, BNL, Upton, USA, August 1, 2006



- Fluctuation-Dissipation Theorem, Kramers - Krönig relation & a relaxation time approximation \implies robust observable $C_{s/u} \equiv \lambda_s$.
- $\lambda_s \simeq 0.4$ close to T_c , in agreement with extractions from experiment (See, e.g., Cleymans, JPG 28 (2002) 1575.) and our own earlier result in Quenched QCD. Goes down at lower temperature.
- Strongly dependent on m_s for $T \leq T_c$. χ_{BY}/Δ_{us}^2 , curves A, D and C with $m_s/T_c = 0.1$, 0.75 and 1, hint at kinematic effects in the shape of λ_s .

Flavour Carriers : Quasi-quarks ?

Flavour in quark sector assists in identification of relevant degrees of freedom.
Excite one quantum number and look for magnitude of another.

Flavour Carriers : Quasi-quarks ?

Flavour in quark sector assists in identification of relevant degrees of freedom.
Excite one quantum number and look for magnitude of another.

♠ Koch, Majumder and Randrup (PRL 95,182301(2005)) introduced

$$C_{BS} = -3C_{(BS)/S} = 1 + \frac{\chi_{us} + \chi_{ds}}{\chi_s}$$
 ,

to distinguish models of QGP excitations : $C_{BS} \approx 2/3$ for sQGP and unity for (ideal) quarks.

Flavour Carriers : Quasi-quarks ?

Flavour in quark sector assists in identification of relevant degrees of freedom.
Excite one quantum number and look for magnitude of another.

♠ Koch, Majumder and Randrup (PRL 95,182301(2005)) introduced

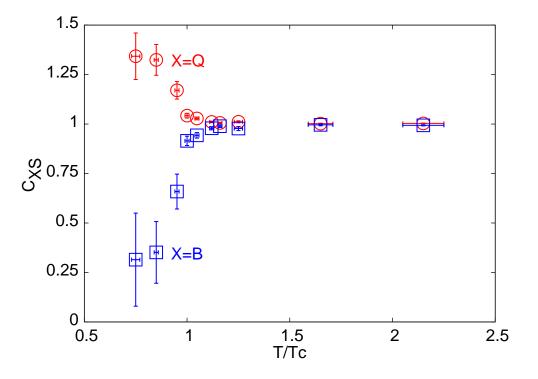
$$C_{BS} = -3C_{(BS)/S} = 1 + \frac{\chi_{us} + \chi_{ds}}{\chi_s}$$
 ,

to distinguish models of QGP excitations : $C_{BS} \approx 2/3$ for sQGP and unity for (ideal) quarks.

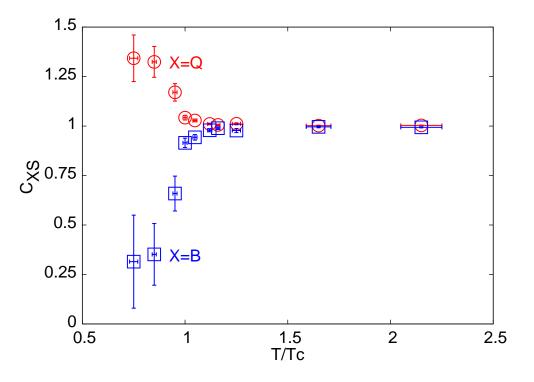
Charge and Strangeness Correlation offers another similar possibility of being unity, if strangeness is carried by quarks :

$$C_{QS} = 3C_{(QS)/S} = 1 - \frac{2\chi_{us} - \chi_{ds}}{\chi_s}$$
.

• First Results on C_{BS} and C_{QS} :



• First Results on C_{BS} and C_{QS} :



• Note that while both are different from unity below T_c , they become close to unity immediately above T_c : \implies Unit strangeness is carried by objects with baryon number -1/3 and charge 1/3 near T_c . • Variation of m_s/T_c between 0.1 and 1.0 does not alter the value for $T \ge T_c$, ≈ 1 , or the *T*-independence.

• Variation of m_s/T_c between 0.1 and 1.0 does not alter the value for $T \ge T_c$, ≈ 1 , or the *T*-independence.

• Natural Explanation of T-behaviour if Strange Excitations with Baryon Number become lighter at T_c .

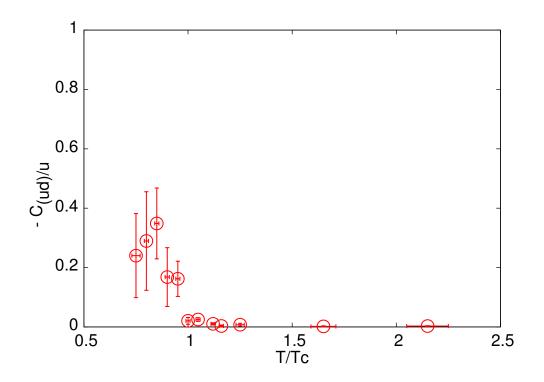
• *T*-independence suggests existence of a single one.

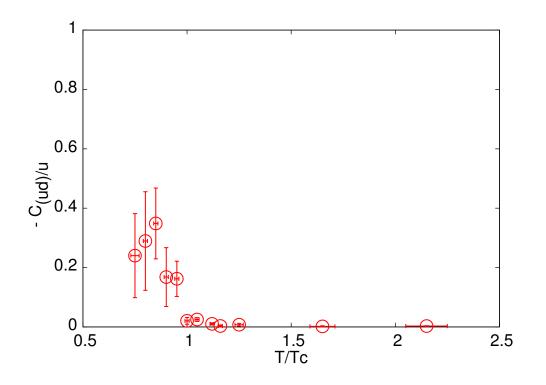
• Variation of m_s/T_c between 0.1 and 1.0 does not alter the value for $T \ge T_c$, ≈ 1 , or the *T*-independence.

• Natural Explanation of T-behaviour if Strange Excitations with Baryon Number become lighter at T_c .

• *T*-independence suggests existence of a single one.

• Similar results in the light quark sector: From e.g., $C_{(BU)/U}$ and $C_{(QU)/U}$, or $C_{(BD)/D}$ and $C_{(QD)/D}$, $\Rightarrow u$ (d)-flavour is carried by B = 1/3 and Q = 2/3 (-1/3) objects.





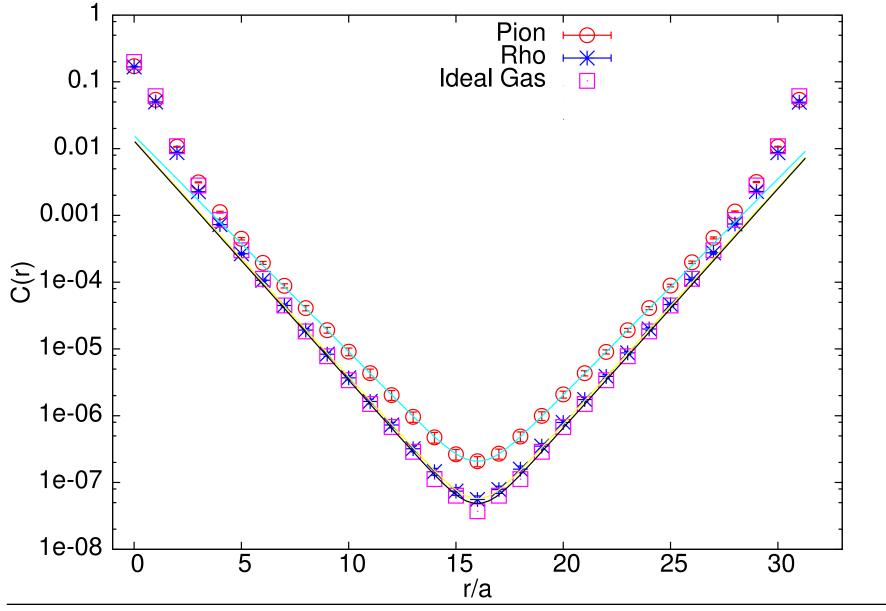
• Interactions dress up quarks. Close to T_c the coupling is presumably not weak, but these flavour linkages seem to persist \Rightarrow quasi-quarks.

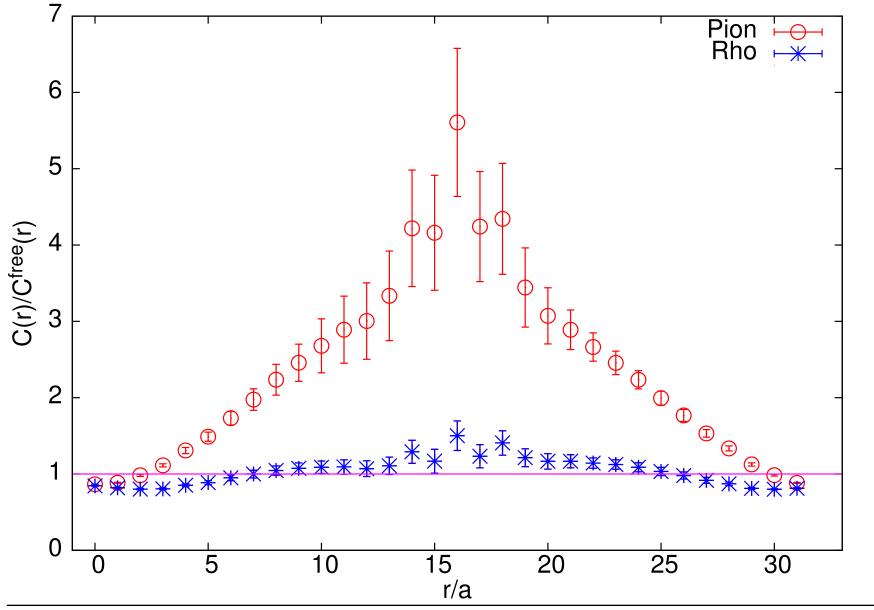
Screening Lengths

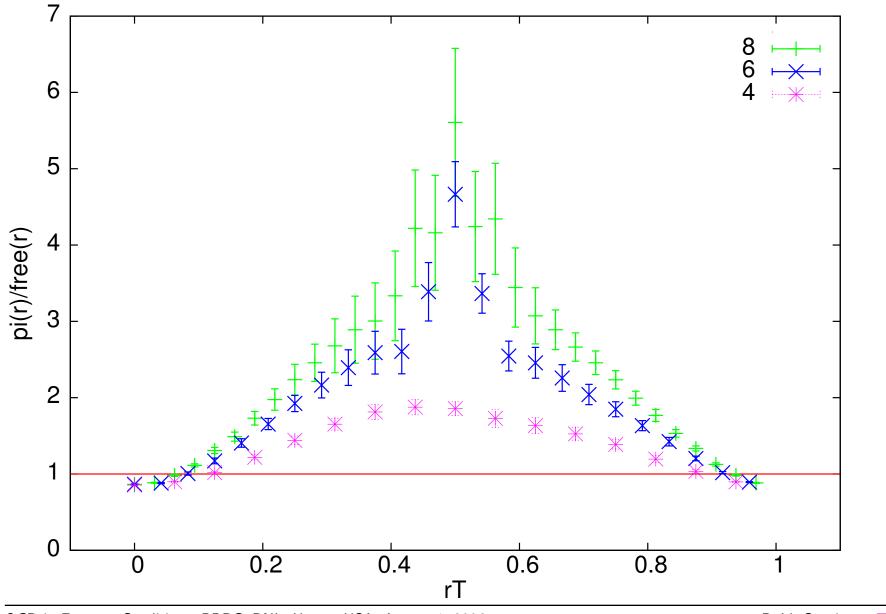
- Using overlap quarks, we obtained screening lengths for $T \ge 1.25T_c$ earlier for $N_t = 4$ & found better agreement for even π .
- Extend to larger N_t to check whether continuum limit improves it further and closer to ideal gas of quarks.

Screening Lengths

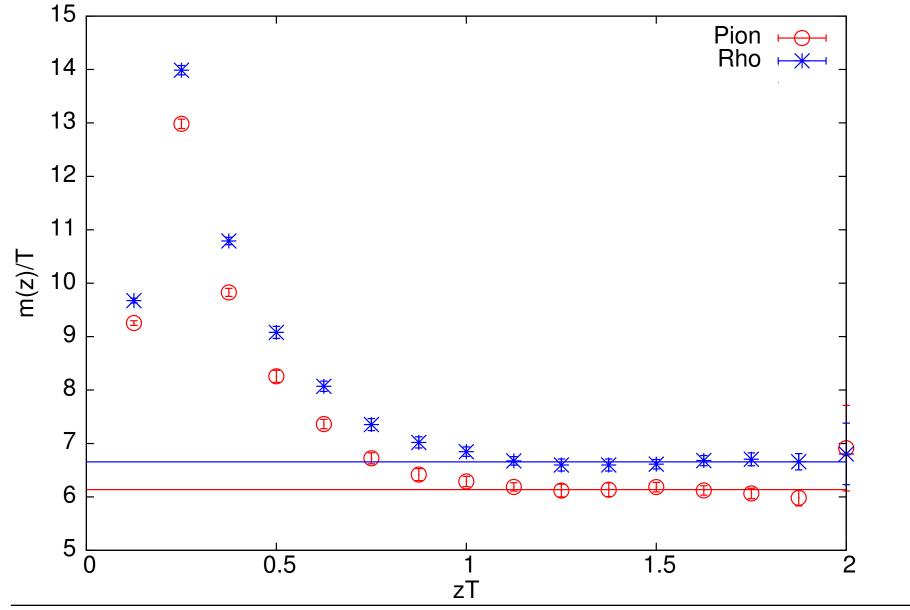
- Using overlap quarks, we obtained screening lengths for $T \ge 1.25T_c$ earlier for $N_t = 4$ & found better agreement for even π .
- Extend to larger N_t to check whether continuum limit improves it further and closer to ideal gas of quarks.
- Lattices used : $4 \times 10^2 \times 16$, $6 \times 14^2 \times 24$, $8 \times 18^2 \times 32$, 4×12^3 , and 6×14^3 .
- β values : 6.0625, 6.3384 and 6.55, β_c for $N_t = 8$, 12 and 16 respectively.
- Zolotarev Algorithm and Multi-Shift CG inversion used.



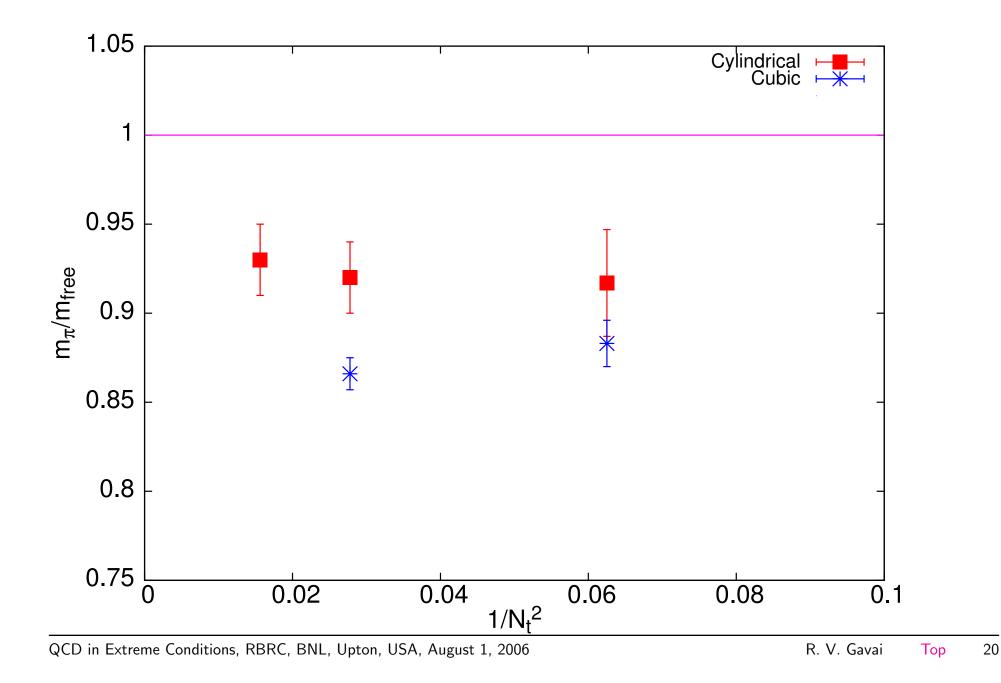




QCD in Extreme Conditions, RBRC, BNL, Upton, USA, August 1, 2006



QCD in Extreme Conditions, RBRC, BNL, Upton, USA, August 1, 2006



• Ratios of Quark Number Susceptibilities, $C_{A/B}$ are robust variables. : $C_{S/Q}$ and $C_{B/Q}$ exhibit a large change in going from Hadronic phase to QGP.

- Ratios of Quark Number Susceptibilities, $C_{A/B}$ are robust variables. : $C_{S/Q}$ and $C_{B/Q}$ exhibit a large change in going from Hadronic phase to QGP.
- Flavour linkages of excitations demonstrate that High Temperature phase of QCD essentially consists of quasi-quarks.

- Ratios of Quark Number Susceptibilities, $C_{A/B}$ are robust variables. : $C_{S/Q}$ and $C_{B/Q}$ exhibit a large change in going from Hadronic phase to QGP.
- Flavour linkages of excitations demonstrate that High Temperature phase of QCD essentially consists of quasi-quarks.
- First full QCD results for the Wróblewski Parameter λ_s are in agreement with RHIC and SPS results near T_c . Being robust observables, only small lattice cut-off effects expected.

- Ratios of Quark Number Susceptibilities, $C_{A/B}$ are robust variables. : $C_{S/Q}$ and $C_{B/Q}$ exhibit a large change in going from Hadronic phase to QGP.
- Flavour linkages of excitations demonstrate that High Temperature phase of QCD essentially consists of quasi-quarks.
- First full QCD results for the Wróblewski Parameter λ_s are in agreement with RHIC and SPS results near T_c . Being robust observables, only small lattice cut-off effects expected.
- Screening lengths exhibit excellent single cosh behaviour & very little a-dependence : π continues to be ~ 10 % below ideal gas value.