The Bivariate Contouring Problem *

Thomas Grandirie Bogdan Craciuh  Noel Heitmanh  Brian Ingalld
Quoc Thong Le GiA  Miao-jung Ou*  Yen-hsi Richard Tséi

July 28, 2000

Abstract

An algorithm is presented for determining a connected camapbof the zero level set of
afunctionf : O — R*2, whereQ is a bounded subset &". Two different numerical
methods are employed and an error estimate procedure @tadi Some examples that
suggest possible applications are presented.

1 Problem Description

The problem of finding the zero level set of a functibn R* — R™ (with m < n) frequently
occurs in practice. The case = n — 1 has been extensively studied numerically (see [2] or
[3]), while the study of other cases is still in an incipiehigge.

The present report is concerned with the case= n — 2. There are several motivations
for studying this problem, such as the problem of finding titersection of hypersurfaces in
R?* (which could be trajectories in time of evolving three dirsiemal surfaces) or generating
a parametric representation of an implicitly defined mddifoAnother possible motivation
comes from the need to determine the surface envelope of @t seleime, which is defined in
the following way: assume that we are given a surface thabsamg or deforming in time

S: D x[0,7] — R* whereD € R?is bounded
the surface envelope is the boundary of the set

{r e R :3t €0, T] with z € S(D,t)}.
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Before describing the problem, it should be mentioned sl simplifying assumptions
have to be made to ensure an attainable goal due to the tiniaicarof this workshop. For
this reason, we assume solutions to other problems thaWmutontained in a fully realized
algorithm, as will be noted in the following. These problesins mathematically interesting and
will surely be the subject of future research.

In mathematical terms, our problem can be set as follows.eiGar smooth functiorf :

Q — R 2 (wheref is a bounded subset &*), we wish to parametrically represent the set
{zr € R" : f(x) = 0} as the image of a function : [0, 1]> — R (for simplicity, we have
chosen our parametric domain to oe1]? here).

In addition to this, we need boundary conditions. Desigrapgropriate boundary condi-
tions could be accomplished by an algorithm similar to the dascribed in [3] for the codi-
mension equals one case. We will simply assume that we aga gioper boundary conditions,
i.e. the prescribed data lie on a connected subset of thdeaerset off and that a consistent
solution exists.

Another difficult matter is uniqueness. Lack of uniquenesy mesult from two different
sources. One is the possibility of several manifolds inetlish the zero level set gfsharing the
same (given) boundary. Such cases are often met in praaticejggested by simple examples
such as

fi[=2,2P = R, flz,y,2) = (@ +> + 22— 1) 22> + > + 22 - 1).

We will assume that this is not the case (being avoidable lmycehof appropriate boundary
conditions). This and the assumption made in the previotegpaph ensure uniqueness of the
manifold solution.

However, non-uniqueness ofwill automatically follow from the fact that genericallyith
manifold has an infinite number of parametrizations. To lgirmyt a unique one, we need to
impose additional conditions. Among many possibilities,ensidered the following two:

1. isoparms traversed with constant velocity
lell, = exw), llzll, = ca(w). 1)

2. area elementA is constant
|zy X x| = €.

For the purpose of our numerical study of the problem, we ehoswvork with the first set
of conditions. Although the second case is more natural g&acally, our choice is easier to
implement and certainly mathematically sound.

A direct consequence of (1) is

Ty Ty = c;(v)

Ty -1, = ca(u).
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Differentiating the first equation with respect 4oand the second equation with respect:to
eliminates the unknown functions andc, and leaves us with

Ty Tyu = 0

Ty Ty =

The result is a complete nonlinear partial differentialedgaic system of. equations im
unknowns:

flz) =0
Ty Ty = 0 (2)
Ty Ty = 0,

with the solution made unique by the prescribed boundary dat

z(u,0) = ™) VYu e 0,1]
v(u,1) = 2"P(u) Vu € [0,1]
z(0,v) = 2" (v) Vo € [0,1]
z(l,v) = 2" () Vo € [0, 1]

Two numerical approaches for obtaining the solution to limisndary value problem were
followed. The first used finite differences to approximatepthartial differential equations in (2).
The second used the finite element method to approximate déiméfatd, with collocation en-
forced at Gaussian points for the sake of faster convergascaiggested by [1]). In both cases,
Newton’s method was used to find a solution to the resultinginear system of equations.

In the following sections we will consider only the = 3 case. The techniques used,
however, work equally well in higher dimensions.

2 TheFinite Difference Approach

This approach relies on approximating the partial denrestin (2) in the interior of0, 1]* by
finite differences.

We impose a uniform gridu;, v;},i = 0,..., Ny + 1,5 = 0,..., N» + 1 on the unit square,
with wg, un, 11,70 anduy, 1 lying on the boundary. We make use of the central difference
schemes for both the first and second partial derivatives:

2 (uiy1,v5) — o(ui1,v5)
2hy
I(ui—&—la 1)]-) — 21’(UZ, Uj) + ZL’(Uz’—la Uj)

hi

xU(ub Uj) =

zuu(uia 'Uj) -

whereh; = 1/N; (with analogous equations far, andz,,).
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The partial differential equations in (2) then become

(I(ui—&—lavj) - l’(uz'—l,vj)) . ($(Uz'+lavj) - QI(“%W) + Z’(Ui_l,vj)) =

(@(ui, vj41) — @ (i, vj-1)) - (@(ui, vj41) — 22 (ui, v5) + 2 (Ui, V1))
fori=0,..,N+1,j=0,..,M+1.

From now on, we will writer; ; for z(u,, v;). We introduce the difference operators
Du(wi;) = (Tip1; = Tic1g) - (Tisaj — 2005 + Tiory)

Du(zij) = (Tiger = @ig1) - @igar — 28i5 + Tij1)-

and define the functiof’ : R3MN — R3MN py

fz1)
D’LL(.I'Ll)
Dv (.1'1’1)

fz12)
DU(ZL’LQ)

Tl DU(ZL’LQ)

T1,2
13 .

. f(xl,M)
F T ' = DU(ZL’LM)
;’M DU(ZL’LM)

2! f(@2,)

D’LL(.I'QJ)
TNM Du(x2,)

f(xf.v,M)
DU(ZL’N,M)
DU(.%‘N’M)

where the domain of the functiafi is arranged to provide a nicely banded Jacobian.
We use Newton’s method to solve the nonlinear equatica 0. As known, this procedure
is sensitive to a good initial estimatg for the vectorr € R**¥ at the grid points. In our

examples, we used the outcome from Coons’ patch, which is the surfaggobtained by
interpolating the given boundary data:

So(u,v) = (1 — )2 (u) 4+ v2'P(u) + (1 — u)z" (v) + ua"" (v)
—(1 — u)(1 — v)z?™(0) — uva'P(1) — u(l — v)z®"™ (1) — (1 — u)vz™?(0).

Finally, we iteratively solve

Tpy1 = Ty — [JF(%)]_IF(%)’
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whereJy is the Jacobian of. This Jacobianisal N by 3M N banded matrix with bandwidth

of about6 V. Its structure is of the form
O T T T

100

200

300

400

500

600

(0] 160 260 360 460 560 660
nz = 4545
It is of interest to note that the band width &f is dependent only oh;. This may allow
a significant improvement of resolution for some problemthaut the addition of commonly

expected computational expense.

3 TheFinite Element Approach

The finite element approach attempts to compute the projecti the solution onto a chosen
finite dimensional function space. We chose this space thé®mne spanned by the tensor
product of fourth order B-splines built on the sets of knots

{07 070> 07u17u17u27u27 oy UN7, UNy, 1; 17 17 1}

and
{07 07 07 07 U1, V1, V2, V2, ...y UNy, UNy, 17 1; 17 1}7

where allu;’s andv;’s have the same meaning as in the previous section.
If y € R3ENi1+4(2N2+4) denotes the vector formed by all the coefficients of the smiuin
this function space, we have that

, My My
z*(u,v) = ZizlZj:1y3((i—1)M2+j—1)+$Ci(u)Dj(U)7
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whereM; = 2N; + 4 and M, = 2N, + 4 are the dimensions of the B-spline function spaces in
theu andv directions, respectively.

We force the equations in (2) to hold on the collocation piiiag, 7,) (1 <p < M;-2,1 <
M, — 2), whered, and, are the roots of the quadratic Legendre polynomial, apjately
translated and scaled in the, u; 1] and[v;, v;1,] intervals. This has proven successful in the
one dimensional case, as mentioned in the first section.

The functional equalities in (2), evaluated on these poinedd the following sets of non-
linear algebraic equations in

f(z Z Va5 Cility) Dj(00)) = 0, 3)

V1§p§M1—27V1§Q§M2—2>

Z Z Z Z YE& (i—1)Mz+j-1) ° Y3((lfl)M2+mfl)Cz{(ﬂp)cl”(ap)Dj(%)Dm(ﬁq) =0,
Vi<p< M -2Vi<qg< M, -2 (4)

and
Z Z Z Z (i=1)Matj—1) * Y3—1)My+m—1)Ci(tp) C1 (1) D} (04) Dy, (T4) = 0,
Vi<p< M —-2V1<qg<M~—2 (5

whereYy, = (Yk11, Yrt2, Yk+3) € R*.
To these3 (M, — 2)(M, —2) equations we add the equations which result from the boyndar
conditions:

Z Z (i—1)Ma+j— 1)+SCZ(0)Dj(77q) xleft( )207 (6)

VO0<g< M, —1,V1<s<3,

Z Z -1z 1+5Ci(1)D;(Bg) — 25 (1) = 0, (7)

VO<g< M,—1,Vl <s<3,

Z Z 3((—1)Maj—1)+5Ci (1) D3 (0) — 2boom (i7,) = 0, (8)
VI<p< M —2V1<s<3,

> Z s sg - 1sCilliy) Dy(1) — 21 (i) = 0, 9)

VI<p< M —2,Vl<s<3,
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wheret, = vy = 0 andu, —1 = Ua,—2 = 0. This is now a closed system 8/, M, equations
with as many variables.

As in the previous section, we attempt to solve this systeth Newton’s method. For this,
we first need to compute the derivatives of the left-hand sfdbe system with respect tg,,
k=1---3M;Ms,.

Differentiation of the left hand side of (3), (4), (5), (6)/)( (8) and (9) with respect to
Ys((i—1)Mz+j—1)+¢ FESpectively yields

Oi(up)Dj(Uq)f,t(lelzmzlyé((lfl)Mﬁmfl)Ol(up)Dm(vq))
for 1<p<M—21<q<My—21<t<3

M, 1y~ 1"y~ 1/~ "o~ - N
Z Z (-1)Ms+m—1)+¢ (O (Up) C7 (1) + Cp () C5 (1)) D (0g) Drn ()
for 1<p<M —21<q<My-21<t<3

M.
Z Z 2 (=1)Ms+m—1)+:Ci(8p) Cr () (Dl (8¢) D (8) + D, (Uq)D”(Uq))
for 1<p<M —21<q¢g<My—21<¢<3

5tsCZ(O)D](6q) fOF 0 S q S M2 — 1, 1 S S S 3,
(5tSCZ(1)DJ(@q) fOF 0 S q S M2 — 1, 1 S S S 3,

and
5tsCZ(ﬂp)D](1) for 1 <p< M, — 2,1 <s<3.

4 Creating Boundary Conditions

We have formulated a partial differential algebraic equats a boundary value problem. In
addition, two numerical methods coupled with Newton’s noethave been presented. In order
to generate the initial surface from Coons’ patch, we neduhtbthe boundary curves.

Let Q be the bounded domain of interest ahd Q — R? definesd) implicitly as its zero
level set. The boundary curves may be found by finding thesetgion of the{ f = 0} and
{# = 0}. As mentioned in the earlier section, this can be formulatéala DAE and solved by
the method described in [2].
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Another approach follows from the observation that the loauy curves are tangent to the
normals of both surfaces. This condition can be written evaidtically as
i VfxVe
IVfx Vol

We can either formulate the above equation as a initial vahoblem or a boundary value
problem, and solve it with an appropriate ODE scheme.

5 Error Estimation

An appropriate criteria for error estimation is the dises&rom the points on the numerically
obtained surface to the zero level setfofThis can be achieved by first calculating the distance
functiong : 2 — R to the zero level set of. We do so by using the results in [4].

Consider the partial differential equation

¢ = sgn(f)(1 = [[Vel]),

wheresgn(f) gives the sign of . Solving the above equation to steady state provides aiumct
¢ with the property that V|| = 1, since convergence occurs when the right hand side is zero.
The sign function controls the flow of information in the aboVf ¢ is negative, information
flows one way and it is positive, then information flows the other way. The negefffis to
straighten out the level sets on either side of the zero le®eand produce a function with
IV#]|| = 1 corresponding to the signed distance function.

We measure the error of our approximation surfage v) as

. oG ias

wheredS is the surface element. Geometrically, the error measaré thlistant between the
exact surface and the approximation.

6 Examples

We started with a simple example, for testing purposes. @ens
fiR = R, fla,y,2) =2* +y° =1,

along with the following boundary data:

r=0y=1,2=v for v € [0, 1]
r=1y=0,z=v for v € [0, 1]
T = Cos(gu),y:sin(gu),z =0 for u € [0, 1]

T = Cos(gu),y = sin(gu), z=1 for u € [0, 1].



The Bivariate Contouring Problem 9

f:x2+y2—1
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The surface solution to this problem is a quarter cylindeadius one, between the planes

z = 0 andz = 1. By using code built on either the finite difference schemiherfinite element
idea, we were able to find out approximations of the followpagameterization of this surface:

r= cos(gu),y = sin(gu),z =v foruel0,1],v€]0,1],

pictured in the figure above.
We next attempted calculating more difficult examples,:like

R = R f(r,y,2)=1-22% —502(1 — 2)y(1 — y)z(1 — 2).

In just a few iterations, our code calculated the paranmetgan pictured in the figure below.
In the initial running, we found damping was needed in thé¢ faw Newton iterations, in order
for the solution to converge.
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f= 1—2x2—50x(1—x)y(1—y)z(1—z)

1 o075

Finally, we present a practical application, that of conmpythe surface envelopg of a
swept surface, which is defined as the boundary of the set

{x € R®: 3t €[0,T] with z € S(t)},

whereS(t) is our time evolving surface. A characterization for all ffwnts situated o is
that the velocityS; should be perpendicular to the normal at the surface. Thtise isurface
S(t) is given parametrically by andwv, the appropriate condition is

(Sy x Sy) - S = 0.

This can be interpreted as the zero level set of a real fundiédined on théu, v, t) space and
computed using either one of our codes.

Pictured below is the representation in fhewv, t) space of a surface envelope for a certain
S(t) described by its spline coefficients. Using the results ofoode, we were able to build up
a three dimensional movie (see attackaet opewrl file), a snapshot of which is shown on the
last page.
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