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Abstract

An algorithm is presented for determining a connected component of the zero level set of
a functionf : 
 ! R

n�2 , where
 is a bounded subset ofRn . Two different numerical
methods are employed and an error estimate procedure is indicated. Some examples that
suggest possible applications are presented.

1 Problem Description

The problem of finding the zero level set of a functionf : R

n

! R

m (with m < n) frequently
occurs in practice. The casem = n � 1 has been extensively studied numerically (see [2] or
[3]), while the study of other cases is still in an incipient phase.

The present report is concerned with the casem = n � 2. There are several motivations
for studying this problem, such as the problem of finding the intersection of hypersurfaces in
R

4 (which could be trajectories in time of evolving three dimensional surfaces) or generating
a parametric representation of an implicitly defined manifold. Another possible motivation
comes from the need to determine the surface envelope of a swept volume, which is defined in
the following way: assume that we are given a surface that is moving or deforming in time

S : D � [0; T ℄ ! R

3 whereD 2 R

2 is bounded;

the surface envelope is the boundary of the set

fx 2 R

3

: 9t 2 [0; T ℄ with x 2 S(D; t)g:
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Before describing the problem, it should be mentioned that several simplifying assumptions
have to be made to ensure an attainable goal due to the time contraint of this workshop. For
this reason, we assume solutions to other problems that would be contained in a fully realized
algorithm, as will be noted in the following. These problemsare mathematically interesting and
will surely be the subject of future research.

In mathematical terms, our problem can be set as follows. Given a smooth functionf :


 ! R

n�2 (where
 is a bounded subset ofRn ), we wish to parametrically represent the set
fx 2 R

n

: f(x) = 0g as the image of a functionx : [0; 1℄

2

! R

n (for simplicity, we have
chosen our parametric domain to be[0; 1℄

2 here).
In addition to this, we need boundary conditions. Designingappropriate boundary condi-

tions could be accomplished by an algorithm similar to the one described in [3] for the codi-
mension equals one case. We will simply assume that we are given proper boundary conditions,
i.e. the prescribed data lie on a connected subset of the zerolevel set off and that a consistent
solution exists.

Another difficult matter is uniqueness. Lack of uniqueness may result from two different
sources. One is the possibility of several manifolds included in the zero level set off sharing the
same (given) boundary. Such cases are often met in practice,as suggested by simple examples
such as

f : [�2; 2℄

3

! R; f(x; y; z) = (x

2

+ y

2

+ z

2

� 1)(2x

2

+ y

2

+ z

2

� 1):

We will assume that this is not the case (being avoidable by choice of appropriate boundary
conditions). This and the assumption made in the previous paragraph ensure uniqueness of the
manifold solution.

However, non-uniqueness ofx will automatically follow from the fact that generically this
manifold has an infinite number of parametrizations. To single out a unique one, we need to
impose additional conditions. Among many possibilities, we considered the following two:

1. isoparms traversed with constant velocity

kxk

u

= 


1

(v); kxk

v

= 


2

(u): (1)

2. area elementdA is constant
kx

u

� x

v

k = 
:

For the purpose of our numerical study of the problem, we chose to work with the first set
of conditions. Although the second case is more natural geometrically, our choice is easier to
implement and certainly mathematically sound.

A direct consequence of (1) is

x

u

� x

u

= 


2

1

(v)

x

v

� x

v

= 


2

2

(u):
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Differentiating the first equation with respect tou and the second equation with respect tov

eliminates the unknown functions

1

and

2

and leaves us with

x

u

� x

uu

= 0

x

v

� x

vv

= 0:

The result is a complete nonlinear partial differential algebraic system ofn equations inn
unknowns:

f(x) = 0

x

u

� x

uu

= 0 (2)

x

v

� x

vv

= 0;

with the solution made unique by the prescribed boundary data

x(u; 0) = x

bottom

(u) 8u 2 [0; 1℄

x(u; 1) = x

top

(u) 8u 2 [0; 1℄

x(0; v) = x

left

(v) 8v 2 [0; 1℄

x(1; v) = x

right

(v) 8v 2 [0; 1℄:

Two numerical approaches for obtaining the solution to thisboundary value problem were
followed. The first used finite differences to approximate the partial differential equations in (2).
The second used the finite element method to approximate the manifold, with collocation en-
forced at Gaussian points for the sake of faster convergence(as suggested by [1]). In both cases,
Newton’s method was used to find a solution to the resulting nonlinear system of equations.

In the following sections we will consider only then = 3 case. The techniques used,
however, work equally well in higher dimensions.

2 The Finite Difference Approach

This approach relies on approximating the partial derivatives in (2) in the interior of[0; 1℄2 by
finite differences.

We impose a uniform gridfu
i

; v

j

g, i = 0; :::; N

1

+ 1; j = 0; :::; N

2

+ 1 on the unit square,
with u

0

; u

N

1

+1

; v

0

andv
N

2

+1

lying on the boundary. We make use of the central difference
schemes for both the first and second partial derivatives:

x

u

(u

i

; v

j

) =

x(u

i+1

; v

j

)� x(u

i�1

; v

j

)

2h

1

x

uu

(u

i

; v

j

) =

x(u

i+1

; v

j

)� 2x(u

i

; v

j

) + x(u

i�1

; v

j

)

h

2

1

whereh
1

= 1=N

1

(with analogous equations forx
v

andx
vv

).
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The partial differential equations in (2) then become

(x(u

i+1

; v

j

)� x(u

i�1

; v

j

)) � (x(u

i+1

; v

j

)� 2x(u

i

; v

j

) + x(u

i�1

; v

j

)) = 0

(x(u

i

; v

j+1

)� x(u

i

; v

j�1

)) � (x(u

i

; v

j+1

)� 2x(u

i

; v

j

) + x(u

i

; v

j�1

)) = 0

for i = 0; :::; N + 1; j = 0; :::;M + 1.
From now on, we will writex

i;j

for x(u
i

; v

j

). We introduce the difference operators

Du(x

i;j

) = (x

i+1;j

� x

i�1;j

) � (x

i+1;j

� 2x

i;j

+ x

i�1;j

)

Dv(x

i;j

) = (x

i;j+1

� x

i;j�1

) � (x

i;j+1

� 2x

i;j

+ x

i;j�1

):

and define the functionF : R

3MN

! R

3MN by

F

0

B

B

B

B

B

B

B

B

B

B

B

�

x

1;1

x

1;2

x

1;3

...
x

1;M

x

2;1

...
x

N;M

1

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

f(x

1;1

)

Du(x

1;1

)

Dv(x

1;1

)

f(x

1;2

)

Du(x

1;2

)

Dv(x

1;2

)

...
f(x

1;M

)

Du(x

1;M

)

Dv(x

1;M

)

f(x

2;1

)

Du(x

2;1

)

Dv(x

2;1

)

...
f(x

N;M

)

Du(x

N;M

)

Dv(x

N;M

)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

where the domain of the functionF is arranged to provide a nicely banded Jacobian.
We use Newton’s method to solve the nonlinear equationF = 0. As known, this procedure

is sensitive to a good initial estimatex
0

for the vectorx 2 R

3MN at the grid points. In our
examples, we used thex

0

outcome from Coons’ patch, which is the surfaceS

0

obtained by
interpolating the given boundary data:

S

0

(u; v) = (1� v)x

bottom

(u) + vx

top

(u) + (1� u)x

left

(v) + ux

right

(v)

�(1� u)(1� v)x

bottom

(0)� uvx

top

(1)� u(1� v)x

bottom

(1)� (1� u)vx

top

(0):

Finally, we iteratively solve

x

n+1

= x

n

� [J

F

(x

n

)℄

�1

F (x

n

);
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whereJ
F

is the Jacobian ofF . This Jacobian is a3MN by3MN banded matrix with bandwidth
of about6N . Its structure is of the form

0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 4545

It is of interest to note that the band width ofJ
F

is dependent only onh
1

. This may allow
a significant improvement of resolution for some problems without the addition of commonly
expected computational expense.

3 The Finite Element Approach

The finite element approach attempts to compute the projection of the solution onto a chosen
finite dimensional function space. We chose this space to be the one spanned by the tensor
product of fourth order B-splines built on the sets of knots

f0; 0; 0; 0; u

1

; u

1

; u

2

; u

2

; :::; u

N

1

; u

N

1

; 1; 1; 1; 1g

and
f0; 0; 0; 0; v

1

; v

1

; v

2

; v

2

; :::; v

N

2

; v

N

2

; 1; 1; 1; 1g;

where allu
i

’s andv
i

’s have the same meaning as in the previous section.
If y 2 R

3(2N

1

+4)(2N

2

+4) denotes the vector formed by all the coefficients of the solution in
this function space, we have that

x

s

(u; v) =

X

M

1

i=1

X

M

2

j=1

y

3((i�1)M

2

+j�1)+s

C

i

(u)D

j

(v);
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whereM
1

= 2N

1

+ 4 andM
2

= 2N

2

+ 4 are the dimensions of the B-spline function spaces in
theu andv directions, respectively.

We force the equations in (2) to hold on the collocation points(~u
p

; ~v

q

) (1 � p � M

1

�2; 1 �

M

2

� 2); where~u

p

and~v

q

are the roots of the quadratic Legendre polynomial, appropriately
translated and scaled in the[u

i

; u

i+1

℄ and[v
j

; v

j+1

℄ intervals. This has proven successful in the
one dimensional case, as mentioned in the first section.

The functional equalities in (2), evaluated on these points, yield the following sets of non-
linear algebraic equations iny:

f(

X

M

1

i=1

X

M

2

j=1

Y

3((i�1)M

2

+j�1)

C

i

(~u

p

)D

j

(~v

q

)) = 0; (3)

81 � p �M

1

� 2; 81 � q �M

2

� 2;

X

M

1

i=1

X

M

2

j=1

X

M

1

l=1

X

M

2

m=1

Y

3((i�1)M

2

+j�1)

� Y

3((l�1)M

2

+m�1)

C

0

i

(~u

p

)C

00

l

(~u

p

)D

j

(~v

q

)D

m

(~v

q

) = 0;

81 � p �M

1

� 2; 81 � q �M

2

� 2 (4)

and
X

M

1

i=1

X

M

2

j=1

X

M

1

l=1

X

M

2

m=1

Y

3((i�1)M

2

+j�1)

� Y

3(l�1)M

2

+m�1)

C

i

(~u

p

)C

l

(~u

p

)D

0

j

(~v

q

)D

00

m

(~v

q

) = 0;

81 � p �M

1

� 2; 81 � q �M

2

� 2; (5)

whereY
k

= (y

k+1

; y

k+2

; y

k+3

) 2 R

3 .
To these3(M

1

�2)(M

2

�2) equations we add the equations which result from the boundary
conditions:

X

M

1

i=1

X

M

2

j=1

y

3((i�1)M

2

+j�1)+s

C

i

(0)D

j

(~v

q

)� x

left

s

(~v

q

) = 0; (6)

80 � q �M

2

� 1; 81 � s � 3;

X

M

1

i=1

X

M

2

j=1

y

3((i�1)M

2

+j�1)+s

C

i

(1)D

j

(~v

q

)� x

right

s

(~v

q

) = 0; (7)

80 � q �M

2

� 1; 81 � s � 3;

X

M

1

i=1

X

M

2

j=1

y

3((i�1)M

2

+j�1)+s

C

i

(~u

p

)D

j

(0)� x

bottom

s

(~u

p

) = 0; (8)

81 � p �M

1

� 2; 81 � s � 3;

X

M

1

i=1

X

M

2

j=1

y

3((i�1)M

2

+j�1)+s

C

i

(~u

p

)D

j

(1)� x

top

s

(~u

p

) = 0; (9)

81 � p �M

1

� 2; 81 � s � 3;
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where~u
0

= ~v

0

= 0 and~u
M

1

�1

= ~v

M

2

�2

= 0. This is now a closed system of3M
1

M

2

equations
with as many variables.

As in the previous section, we attempt to solve this system with Newton’s method. For this,
we first need to compute the derivatives of the left-hand sideof the system with respect toy

k

;

k = 1 � � � 3M

1

M

2

.
Differentiation of the left hand side of (3), (4), (5), (6), (7), (8) and (9) with respect to

y

3((i�1)M

2

+j�1)+t

respectively yields

C

i

(~u

p

)D

j

(~v

q

)f

;t

(

X

M

1

l=1

X

M

2

m=1

Y

3((l�1)M

2

+m�1)

C

l

(~u

p

)D

m

(~v

q

))

for 1 � p �M

1

� 2; 1 � q �M

2

� 2; 1 � t � 3

X

M

1

l=1

X

M

2

m=1

y

3((l�1)M

2

+m�1)+t

(C

0

i

(~u

p

)C

00

l

(~u

p

) + C

0

l

(~u

p

)C

00

i

(~u

p

))D

j

(~v

q

)D

m

(~v

q

)

for 1 � p �M

1

� 2; 1 � q � M

2

� 2; 1 � t � 3

X

M

1

l=1

X

M

2

m=1

y

3((l�1)M

2

+m�1)+t

C

i

(~u

p

)C

l

(~u

p

)(D

0

j

(~v

q

)D

00

m

(~v

q

) +D

0

m

(~v

q

)D

00

j

(~v

q

))

for 1 � p �M

1

� 2; 1 � q �M

2

� 2; 1 � t � 3

Æ

ts

C

i

(0)D

j

(~v

q

) for 0 � q �M

2

� 1; 1 � s � 3;

Æ

ts

C

i

(1)D

j

(~v

q

) for 0 � q �M

2

� 1; 1 � s � 3;

Æ

ts

C

i

(~u

p

)D

j

(0) for 1 � p �M

1

� 2; 1 � s � 3

and
Æ

ts

C

i

(~u

p

)D

j

(1) for 1 � p �M

1

� 2; 1 � s � 3:

4 Creating Boundary Conditions

We have formulated a partial differential algebraic equation as a boundary value problem. In
addition, two numerical methods coupled with Newton’s method have been presented. In order
to generate the initial surface from Coons’ patch, we need tofind the boundary curves.

Let 
 be the bounded domain of interest and� : 
 ! R

2 defines�
 implicitly as its zero
level set. The boundary curves may be found by finding the intersection of theff = 0g and
f� = 0g: As mentioned in the earlier section, this can be formulated into a DAE and solved by
the method described in [2].
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Another approach follows from the observation that the boundary curves are tangent to the
normals of both surfaces. This condition can be written mathematically as

_x =

rf �r�

jrf �r�j

:

We can either formulate the above equation as a initial valueproblem or a boundary value
problem, and solve it with an appropriate ODE scheme.

5 Error Estimation

An appropriate criteria for error estimation is the distances from the points on the numerically
obtained surface to the zero level set off . This can be achieved by first calculating the distance
function� : 
 ! R to the zero level set off . We do so by using the results in [4].

Consider the partial differential equation

�

t

= sgn(f)(1� kr�k);

wheresgn(f) gives the sign off . Solving the above equation to steady state provides a function
� with the property thatkr�k = 1, since convergence occurs when the right hand side is zero.
The sign function controls the flow of information in the above; if � is negative, information
flows one way and if� is positive, then information flows the other way. The net effect is to
straighten out the level sets on either side of the zero levelset and produce a� function with
kr�k = 1 corresponding to the signed distance function.

We measure the error of our approximation surface~x(u; v) as
Z

[0;1℄

2

j�(~x(u; v))jdS;

wheredS is the surface element. Geometrically, the error measure theL1 distant between the
exact surface and the approximation.

6 Examples

We started with a simple example, for testing purposes. Consider

f : R

3

! R; f(x; y; z) = x

2

+ y

2

� 1;

along with the following boundary data:

x = 0; y = 1; z = v for v 2 [0; 1℄

x = 1; y = 0; z = v for v 2 [0; 1℄

x = 
os(

�

2

u); y = sin(

�

2

u); z = 0 for u 2 [0; 1℄

x = 
os(

�

2

u); y = sin(

�

2

u); z = 1 for u 2 [0; 1℄:
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f=x2+y2−1

The surface solution to this problem is a quarter cylinder ofradius one, between the planes
z = 0 andz = 1. By using code built on either the finite difference scheme orthe finite element
idea, we were able to find out approximations of the followingparameterization of this surface:

x = 
os(

�

2

u); y = sin(

�

2

u); z = v for u 2 [0; 1℄; v 2 [0; 1℄;

pictured in the figure above.
We next attempted calculating more difficult examples, like:

f : R

3

! R; f(x; y; z) = 1� 2x

2

� 50x(1� x)y(1� y)z(1� z):

In just a few iterations, our code calculated the parameterization pictured in the figure below.
In the initial running, we found damping was needed in the first few Newton iterations, in order
for the solution to converge.
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f = 1−2x2−50x(1−x)y(1−y)z(1−z)

Finally, we present a practical application, that of computing the surface envelopeE of a
swept surface, which is defined as the boundary of the set

fx 2 R

3

: 9t 2 [0; T ℄ with x 2 S(t)g;

whereS(t) is our time evolving surface. A characterization for all thepoints situated onE is
that the velocityS

t

should be perpendicular to the normal at the surface. Thus, if the surface
S(t) is given parametrically byu andv, the appropriate condition is

(S

u

� S

v

) � S

t

= 0:

This can be interpreted as the zero level set of a real function defined on the(u; v; t) space and
computed using either one of our codes.

Pictured below is the representation in the(u; v; t) space of a surface envelope for a certain
S(t) described by its spline coefficients. Using the results of our code, we were able to build up
a three dimensional movie (see attachedenvelope.wrl file), a snapshot of which is shown on the
last page.
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