
CHAPTER 14

Drawing surfaces in 3D

Only in mathematics books do spheres look like the thing on the left below, rather than the one on the right.

What your eye sees in reality are fragments of surfaces, or rather the light reflected from them. In computer

graphics, a surface is an assembly of flat plates , each of which is a 2D polygon moved into location in space,

together with a specification of one of its two sides. One difference between surfaces drawn by computer and
those in the real world is that in the real world surfaces possess detail down to microscopic size, including

the appearance of smooth curvature. Surfaces drawn by a computer can only be an approximation of these.

Sometimes the plates making up a surface will have some extra data added to them to help make the illusion of
reality stronger.

PostScript is not efficient enough to do very realistic 3D rendering. Among other things, it does not have access
to specialized 3D hardware, and in particular has little comprehension of depth. But it is efficient enough to do a

reasonable job on mathematical images.

14.1. Faces

A surface fragment or sometimes face will be an oriented polygon made up of 3D points all lying in some single

plane. The orientation means a choice of side to the polygon—a top as opposed to a bottom, or an outside as

opposed to an inside. The orientation in practice means that the vertices of the polygon are arranged in an array
going around the edges of the polygon according to the right hand rule—so that if the right hand curls around in

the direction the vertices are numbered, the thumb points towards the side chosen. In other words, if the polygon

is on a plane in front of you and the vertices are arranged in a counterclockwise direction, your eye is on the
outside.
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Associated to an oriented polygon in 3D is what I call its normal function , the unique linear function Ax + By +
Cz + D with these three properties:

• All points in the polygon lie on the plane Ax + By + Cz + D = 0;
• the outside of the face is where Ax + By + Cz + D is positive;

• the length of the vector [A, B, C] is 1.

The normal function can be computed from the oriented polygon each time it is to be drawn, but it is more

efficient in designing a face to be drawn to compute the normal function once right when the array is determined,

and then carry it along as part of the structure of the face. Suppose the vertices of the face are P0, P1, P2, . . . We
shall always assume that the edges of a face are non-degenerate in the sense that none of its edges have length 0,

and that no two successive edges lie in a straight line. In practice this sometimes takes a little work to guarantee,
as we shall see later on. At any rate, under this assumption the vector crossproduct

(P1 − P0) × (P2 − P1)

will be nonzero and perpendicular to the polygon, facing outwards. Let [A, B, C] be this vector normalized by

dividing it by its length. The value of Ax + By + Cz will be the same on all vertices of the polygon, and if we set
D to be the negative of this common value then Ax + By + Cz + D will be the normal function.

In the simplest of our methods of drawing surfaces, a face will be by convention an array of two other arrays,
the first being the oriented array of points making up the oriented polygon, the second an array of 4 numbers

making up the normal function. Thus

[[[0 0 0] [1 0 0] [1 1 0] [0 1 0]] [0 0 1 0]]

is the face representing a unit square in the (x, y) plane facing out along the positive zaxis, whose normal function
is z.

In the code in ps3d there is a procedure normal-function with one argument, an oriented array of 3D points,
which returns the array [A B C D] corresponding to its normal function. It implements exactly the calculation

described above. If the crossproduct is 0, it returns an empty array, which is useful, as we shall see.

14.2. Polyhedra

A polyhedron in 3D is a collection of (flat) faces, each of which is a surface fragment whose orientation points
outward, making up the boundary of a 3D region with inside and outside. Cubes, for examples, are polyhedra.

According to our convention, a polyhedron will be an array of faces, where a face is what is prescribed in the
previous section. The following, for example, defines a complete unit cube, centered at (1/2, 1/2, 1/2) with edges

aligned parallel to the coordinate axes:

/cube [
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[[[0 0 1] [1 0 1] [1 1 1] [0 1 1]] [0 0 1 -1]]

[[[0 1 0] [1 1 0] [1 0 0] [0 0 0]] [0 0 -1 0]]

[[[0 0 0] [0 0 1] [0 1 1] [0 1 0]] [0 -1 0 0]]

[[[1 1 0] [1 1 1] [1 0 1] [1 0 0]] [1 0 0 -1]]

[[[0 1 0] [0 1 1] [1 1 1] [1 1 0]] [0 1 0 -1]]

[[[1 0 0] [1 0 1] [0 0 1] [0 0 0]] [0 -1 0 0]]

] def

Assembling cubes by hand takes some care in order to get all the orientations correctly, even for this simplest of

polyhedra. The faces here come in pairs which one might call back and front; the array on a back face is almost
the same as that on the front, but in reversed order and a shift in one coordinate. The face

[[[0 0 1] [1 0 1] [1 1 1] [0 1 1]] [0 0 1 -1]]

is the front face of the cube where z = 1, and

[[[0 1 0] [1 1 0] [1 0 0] [0 0 0]] [0 0 -1 0]]

is the back face corresponding to it, where z = 0. There are ways to use the symmetry of the cube to generate all

its faces automatically, which will be explored in the Chapter on regular polyhedra. In fact, one rarely constructs
a polyhedron without some sort of organizational scheme in mind to generate it.

One thing that will make polyhedra more efficient is to first write out in a single array all of its vertices, then
refer to this array in listing the faces. It is also a good idea to record the the normalfunctions of the faces before

drawing begins. For the cube, for example, it would be better to include the following code in your program

rather than the stuff written above:

0 1

23

4 5

67

/V [

[0 0 0] [1 0 0] [1 1 0] [0 1 0]

[0 0 1] [1 0 1] [1 1 1] [0 1 1]

] def

/cube [

[[V 4 get V 5 get V 6 get V 7 get] dup normal-function]

[[V 3 get V 2 get V 1 get V 0 get] dup normal-function]

[[V 0 get V 4 get V 7 get V 3 get] dup normal-function]

[[V 5 get V 1 get V 2 get V 6 get] dup normal-function]

[[V 0 get V 1 get V 5 get V 4 get] dup normal-function]

[[V 7 get V 6 get V 2 get V 3 get] dup normal-function]

] def

It’s easier to use this numbering in seeing how to get the face arrays oriented correctly, too.

One interesting exercise is now to write out the arrays representing the triangles of the faces of a regular
tetrahedron , which is a 3D figure with 4 vertices and 4 faces, all of which are equilateral triangles. The hard part
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is to find its vertices, and there are several ways to do this. The first is to take a suitable selection of 4 vertices
from a cube—a selection of cube vertices with the property that any two are separated by a diagonal on a face of

the cube. I’ll leave that construction as an exercise without further comment. The trouble with it is that you aren’t

quite sure where you are, so to speak—the tetrahedron you get has an orientation in space that also requires some
calculation to work conveniently with. More convenient ultimately, but more difficult to design in the first place,

is one with a fixed radius and orientation, for example one such that

• the center is at (0, 0, 0);

• the top is placed at (0, 0, 1);

• this leaves us free to rotate the tetrahedron around the zaxis; but now fix it by specifying one vertex of the
bottom is at (0, y, z) for some suitable values of y > 0 and z.

Exercise 14.1. Figure out what the vertices of this tetrahedron have to be in order to make all faces equilateral.
Compose PostScript code as was done above for the cube.

Exercise 14.2. Draw a regular tetrahedron by hand, including vertex numbers, and write a code fragment
analogous to that above.

Exercise 14.3. A regular octahedron has eight sides, all equilateral triangles. Find the vertices of some regular
octahedron. Write PostScript code to draw it.

14.3. Visibility for convex polyhedra

Usually when you draw objects in 3D they are solid—i.e. a face blocks off the faces behind it. Now in some

circumstances this can be quite difficult to deal with, but there is a large class of objects for which it is easy—
polyhedra which are convex and closed . ‘Closed’ means it has no holes. ‘Convex’ means it bulges out at all

points, or at least never bulges in. For example, a sphere is convex, but the surface of a doughnut is not, since it
has that hole in the middle. The difference, for drawing purposes, is this: if a closed object is not convex, then

in some views you will have two faces pointing towards the eye, one at least partly obscured by the other. This

means that you have to draw them in the correct order, so that the one behind is covered over by the one in front.
If an object has holes, the plates making it up should be considered to have two sides, literally an inside and an

outside, and it will not be convex. We’ll look at the problems of drawing nonconvex bodies later on.

A convex surface will lie entirely on one side of the plane spanned by each of its faces. (This is actually the

technical definition of convexity.) To draw a convex surface, therefore, we can just check visibility of each face

separately, without worrying about other faces. To check visibility for a single face, we have to check whether
the eye lies in the region of visibility of that face. There is something subtle involved in this—in constructing a

face we calculate its normal function, say f = Ax+By +Cz +D, and to check visibility for that original face we

just have to evaluate that function on the eye. The eye is usefully expressed in homogeneous or 4D coordinates
as [xe, ye, ze, we]. To check visibility we therefore just check the condition

[xe, ye, ze, we] • [A, B, C, D] = Axe + Bye + Cze + Dwe ≥ 0 .

But now in the course of making our program we have probably performed some transformations— for example,
rotations—on the surface. This changes the points we draw, and changes also the normal function of the face.

In principle we can recover the coordinates of the transformed face, and calculate also its new normal function.

We can do this because one of the data structures in ps3d is the current 3D transform matrix T which transforms
from the coordinates we are currently working with to the original default 3D coordinates. But there is something

more efficient to do. As far as visibility is concerned, rotating an object in one direction is equivalent to rotating
the eye in the opposite direction, and similarly moving an object away from you is equivalent to translating the

eye away from the object in the opposite direction. In other words, if we want to check visibility of a face, we can

either evaluate the visibility of the transformed face at the true eye, or evaluate the original normal function at
the eyeequivalent obtained by applying the inverses of the coordinate changes. For the first method, we would

apply the current 3D transform matrix T to the original face. But the ps3d mechanism also holds the inverse of
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this matrix T−1. So applying T−1 to the eye will tell us where the ‘virtualeye’ is at any moment. The matrix T
is item 0 in the array you get by calling cgfx3d, and T −1 is item 1 in it. Therefore the code

/E get-eye cgfx3d 1 get transform3d def

defines E to be the virtualeye; the procedure get-virtual-eye in ps3d does exactly the same. The command

sequence cim3d is also a shorter replacement defined in ps3d for cgfx3d 1 get. Here is a fragment of program

that, given the fragment above defining a cube and the usual 2D stuff setting the scale, will draw only the visible
faces of a cube.

[0 0 4 1] set-eye

[1 1 1 ] 60 rotate3d

-0.5 -0.5 0 translate3d

/E get-virtual-eye def

cube {

aload pop

/f exch def % f = normal function

/p exch def % p = array of vertices on the face

f E dot-product 0 ge {

newpath

% move to last point first

p p length 1 sub get aload pop moveto3d

p {

aload pop

lineto3d

} forall

stroke

} if

} forall

14.4. Shading

Checking visibility of faces will contribute to an illusion of solidity, especially if the object is shown in a sequence
of successive positions in a kind of animation. Another technique for creating an illusion of solidity is that of

shading faces according to where they are located relative to an imaginary light source.

The light source will usually be a direction in 3D, therefore a 4vector whose last coordinate is 0. A light source

straight overhead would be [0 1 0 0], for example. Conventionally, a light source from overhead, slightly

behind, and slightly to the left seems to be what the human eye is comfortable with, which would make the vector
[-0.25 1 0.25 0]. It is best to normalize the light source so it has total length 1.

The shade of a face will then be a function of the angle between the light source and the vector perpendicular to
the face. If it is 0◦ the face will be towards the light, and bright. If it is 180◦ it will be away from the light, and

dark. The angle is a function of the dotproduct of the two vectors, and in fact there is no need to work with the

angle itself, just the dotproduct.

With our normalizations of the normal function and the light source, the dotproduct will lie between −1 and

1. If −1 dark, if 1 bright. The simplest way to assign a shade is to let d be the dotproduct, and assign a color
(d + 1)/2 in PostScript. So −1 becomes black, 1 white.

As with the eye, it is best to use a lightsourceequivalent. So possible code for shading is this:

/light-source [-0.25 1 0.25 0] normalized def

/L light-source ctm3d 1 get transform3d def
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cube {

aload pop

/f exch def % f = normal function

/p exch def % p = array of vertices on the face

f E dot-product 0 ge {

newpath

% move to last point first

p p length 1 sub get aload pop moveto3d

p {

aload pop

lineto3d

} forall

gsave

/s L f dot-product 1 add 2 div def

s setgray

fill

grestore

stroke

} if

} forall

This is not yet ideal. Relying on a straight linear translation from dotproduct to shade produces lighting that
seems a bit harsh to the eye. For one thing, in the real world even the darkest places usually have a bit of reflected

light from the environment, so the darkest shade allowable shouldn’t actually be black. And often you won’t

want the brightest to be 1, which will make a face invisible against a white background. It is best to allow more
control over the translation, to allow a more general function to do the job. We’ll think of this in the following

way: we first calculate the linear translation (d + 1)/2 just as above, but then we fudge things a bit by translating

the result, which lies between 0 and 1, to some other number between 0 and 1. We want to be able to specify a
function from the interval [0, 1] to itself. The best way to understand what is going on is to look at the graph of

our fudge function. We can put it all in a unit box. For example, here is the default translation, with no fudging
(recall, we are looking at the translation after we have moved [−1, 1] into [0, 1]):

0 Input 1
0

O
ut

pu
t

1

If we want to lighten the shadows and darken the bright spots, we want something like this:
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If we want to increase contrast, we want darks darker, lights lighter. If we want to increase contrast a lot, we

want an Sshaped curve like this:

0 Input 1
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The default method of fudging I have included in ps3d doesn’t allow the full range of these options. It uses a
procedure I call shade to translate from the dotproduct to a shade factor. There are two arguments to shade,

a single number between −1 and 1 and an array of 4 numbers. The first and last numbers in the array are the
minimum and maximum values of the shade factor, and the other two are more subtle parameters of the shade

function, ones that determine control nodes (1/3, s1) and (2/3, s2) for the graph. For the default shading, without

fudging, the array is [0 1/3 2/3 1]:

0 Input 1
0
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For an arbitrary straight line fudge function, choose the values in the array so that (0, s0), (1/3, s1), (2/3, s2),
(1, s3) all lie in a straight line.
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For nonlinear fudging, the control values s1 and s2 are chosen to force the fudge graph to lie close to the points

(1/3, s1) and (2/3, s2) without passing through them. There is a fault with this scheme, since the amount of
contrast it can achieve is limited:

0 Input 1
0
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In order to avoid unwelcome curiousities, the array numbers should satisfy 0 ≤ s0 ≤ s1 ≤ s2 ≤ 1, but anything

in that range should be acceptable.

For more control over shading, say with higher contrast, you can apply a Bernstein polynomial of degree higher

than 3. The disadvantage of doing this is that it requires more computational effort, the advantage is that you can

make arbitrarily strong contrast. Here, for example, are some fudge graphs you can get by using a cubic Bézier
curve (i.e. Bernstein polynomial of degree 3), and then Bernstein polynomials of degree 5 and 7.
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14.5. Smooth surfaces

In reality, most surfaces look essentially smooth, not at all like polyhedra. Nonetheless, computers can only

approximate them, usually as polyhedra together with some extra data. For a few surfaces like spheres there
are special ways to approximate them in this way, but for most surfaces the first step in drawing them is to

parametrize them—to find maps from 2D into 3D that describe them.

Let’s start with spheres. A sphere is determined completely by its center and its radius. In drawing, the center

might as well be taken to be the origin, since translate3d can just move a sphere around. Different radii can be

dealt with by scale3d, so I’ll assume the radius to be R = 1.

A point on the surface of a sphere has longitude θ and latitude ϕ as its coordinates. Longitude measures the

angular distance between it and a fixed meridian line, while latitude measures how far it is from an equator. If a
point on a sphere of radius R has longitude θ and latitude ϕ then its (x, y, z) coordinates are

S(θ, ϕ) = (R cos θ cosϕ, R sin θ cosϕ, R sinϕ) .

The parametrization must have the right orientation—these variables must look more or less like x and y
everywhere on the surface, as it does here. The parametrization procedure has two arguments θ and ϕ, and

returns the 3D point exhibited above.

% longitude latitude -> point on unit sphere

/P { 1 dict begin

/l exch def

/L exch def

% L=longitude l=latitude

[L cos l cos mul

L sin l cos mul

l sin ]

end } def

We want now to use this parametrization to approximate the sphere by an assembly of flat plates. That’s easy—a

plate will be what you get when you map a coordinate rectangle into 3D. As θ ranges from 0 to 360 and ϕ from
−90 to 90 (using degrees instead of radians, as is normal in PostScript) we cover the whole sphere. First we

assemble the vertices in a double array. We use a procedure with a single argument N that returns an N by 2N
array of grid points on the sphere, except that the poles are singletons. Each internal array is an array of points

laid out along a parallel of latitude.

% N -> latitudes in N+1 rows

/sphere-vertex { 1 dict begin

/N exch def

/dA 180 N div def

/dB 360 N div 2 div def

% A = latitude

[

[

[0 0 -1]

]

/A -90 dA add def

N 1 sub {

[

/B 0 def

% B = longitude
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2 N mul 1 add {

B A P

/B B dB add def

} repeat

]

/A A dA add def

} repeat

[

[0 0 1]

]

]

end } def

Finally, we assemble the vertices into faces.

% N -> array of faces

/sphere { 1 dict begin

/N exch def

/S N sphere-vertex def

% S now is an array of vertices, arranged in latitudes

[

% the triangles at the south pole

0 1 2 N mul 1 sub { /j exch def

[

[ S 0 get 0 get

S 1 get j 1 add get

S 1 get j get

] dup normal-function

]

} for

% the rectangular regions in the middle

1 1 N 2 sub { /i exch def

0 1 2 N mul 1 sub { /j exch def

[

[

S i get j get

S i get j 1 add get

S i 1 add get j 1 add get

S i 1 add get j get

] dup normal-function

]

} for

} for

% the triangles at the north pole

0 1 2 N mul 1 sub { /j exch def

[

[ S N 1 sub get j get

S N 1 sub get j 1 add get

S N get 0 get

] dup normal-function

]

} for
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]

end } def

To draw the regions on the sphere that we have constructed, we can just plug in the array of faces of a sphere

where we dealt with the faces of a cube in earlier code.

/S 18 sphere def

/E get-eye cim3d transform3d def

/L light-source cim3d transform3d def

S {

aload pop

/f exch def % f = normal function

/p exch def % p = array of vertices on the face

f E dot-product 0 ge {

newpath

% move to last point first

p p length 1 sub get aload pop moveto3d

p {

aload pop

lineto3d

} forall

gsave

L f dot-product [ 0.2 0.2 0.9 0.9 ] shade

setgray

fill

grestore

stroke

} if

} forall

Here is what we see with N = 16, in one version stroking the rectangle boundaries, in the other not.

In the following figure, N = 32. I would have liked to have included a picture with N = 64, but that would mean
drawing—well, making an attempt to draw—roughly 8, 192 rectangles in 3D. I am afraid that my printer freezes

up at the prospect, just contemplating this task. We’ll see in the next section that this is unnecessary, anyway.



Chapter 14. Drawing surfaces in 3D 12

14.6. Smoother surfaces

Version 3 of PostScript introduced high quality shading. In earlier versions, if you wanted to show a gradient of

color across a region you had to fill in all the separate colors in small regions, or maybe draw zillions of lines of

different colors. This was almost always painful or slow or both. In the new scheme, you set colors at certain
points and PostScript fills in between these points by interpolating the specified colors. There are several different

methods for doing this—seven in all, to be exact—but we shall look here at one which nicely balances simplicity
against quality, called free-form Gouraud shading . It fits in quite well with surface parametrization. There is

one extra requirement now, however—the parametrization must specify not only location, but also the normal

function at each point of the surface. We’ll see why in a moment. At any rate, this is easy enough to obtain from
the parametrization, by calculus. If the parametrization is

(s, t) 7−→ (x(s, t), y(s, t), z(s, t))

then the vectors
[∂x/∂s, ∂y/∂s, ∂z/∂s] , [∂x/∂t, ∂y/∂t, ∂z/∂t]

span the tangent plane to the surface, and their cross product will be perpendicular to it and facing out—as

long as the orientation of the parametrization is correct, so that (s, t) have the same orientation as (x, y) on the
surface. Normalize this cross product to get [A, B, C]. For Gouraud shading, the parametrization should return

this normal vector as well as the location. For the sphere, the following procedure will do, since the normal vector

is the same as the location vector:

% longitude latitude -> [ point on unit sphere, normal vector ]

/P { 1 dict begin

/l exch def

/L exch def

% L=longitude l=latitude

/x L cos l cos mul def

/y L sin l cos mul def

/z l sin def

[[x y z] [x y z 0]]

end } def

The way PostScript does shading of any kind is through a special data structure called a shading dictionary . All

you have to know is that the code that produces the shading looks like this:

<<

/ShadingType 4

/ColorSpace [ /DeviceGray ]

/DataSource [ 0 x y g ... ]
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>>

shfill

or this:

<<

/ShadingType 4

/ColorSpace [ /DeviceRGB ]

/DataSource [ 0 x y r g b ... ]

>>

shfill

Here shfill is a command, a ‘shading fill,’ with the dictionary << ... >> as argument. A dictionary is a list of

key and value entries, associating a value with each key word listed. In the dictionary /ShadingType 4 specifies
what kind of a shading dictionary (freeform Gouraud) this is. Another kind that you might want to look into is

Type 6, Coons patch meshes , which allows you to introduce curvature into your shaded fragments. These are all
discussed in the section on patterns in the PostScript Reference Manual. The key ColorSpace specifies the type

of colors to be used. The value /DeviceGray says that colors are specified by a single number between 0 and

1, specifying a shade of gray. Another possibility would be /DeviceRGB, indicating three numbers RGB. The
/DataSource lists 2D points and colors to be interpolated between them. Here it is an array of 3 × 4 numbers,

since there are three vertices in a triangular plate. Each of the 4 numbers is associated to a single vertex. The first

of the 4 numbers is a ‘magic number’ that for us will always be 0. The next two are coordinates in the current
user 2D coordinate system of the image of the vertex, and g the shade of gray associated to that vertex. If the

color space is RGB then this single number becomes three color components. The point (x, y) is calculated from
our 3D points in a way I’ll explain in a moment.

These shading routines are not unique to 3D drawing. The following code fragment draws a single triangle with
colors black, red, and white at the vertices.

/A [ 0 3 sqrt 2 div ] def

/B [ -0.5 0 ] def

/C [ 0.5 0 ] def

/ds [

0 A aload pop 1 0 0

0 B aload pop 1 1 1

0 C aload pop 0 0 0

] def

newpath

<<

/ShadingType 4

/ColorSpace [ /DeviceRGB ]

/DataSource ds

>>

shfill

For a 3D object, the color at any point will be determined by the light source and the normal vector at that point.

Thus the data structures needed for Gouraud shading are slightly different from the flatplate scheme we used
earlier. For one thing, we now must use triangular plates instead of rectangular ones. To use Gouraud shading

to draw any 3D shape, the first step is to build it as a family of triangles, each with normal vectors at the vertices

plus a normal function for the triangle itself. The normal vector for the triangle is used to test visibility, and the
ones at the vertices are used to interpolate colors. We think of the surface to be drawn as an array of such colored

triangles.
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To be precise, a vertex P is here is an array [[x y z] [A B C 0]] where x, y, z are the 3D coordinates of
P , [A, B, C] the unit normal vector at P . This is the sort of structure to be returned from the parametrization

procedure. A triangle is an array [P Q R [A B C 0]] where P , Q, R are vertices in this sense. A surface is an

array of triangles. Thus

/T [

P Q R

[ P 0 get Q 0 get R 0 get ] normal-function

] def

defines a triangle T, if P , Q, R are vertices.

Usually these data will be constructed from a parametrization, but not always. We’ll discuss how to do that

efficiently in a moment.

Given an array surface, an array of triangles in this sense, here is how it is drawn:

surface {

% [ P Q R normal ] now on stack

aload pop

/f exch def % f = normal function

/R exch def

/Q exch def

/P exch def

% P, Q, R = vertex = [ pt + normal ]

f E dot-product 0 ge {

newpath

% define grey tones for shading

/sP L P 1 get dot-product 1 add 2 div def

/sQ L Q 1 get dot-product 1 add 2 div def

/sR L R 1 get dot-product 1 add 2 div def

/ds [

0 [ P 0 get aload pop 1 ] CTM transform3d render sP

0 [ Q 0 get aload pop 1 ] CTM transform3d render sQ

0 [ R 0 get aload pop 1 ] CTM transform3d render sR

] def

newpath

<< /ShadingType 4

/ColorSpace [ /DeviceGray ]

/DataSource ds >>

shfill

} if

} forall

The line

0 P 0 get transformto2d sP

has the ‘magic number’ 0; the 3D point P rendered to 2d; and then the shade at P . Here is what the figure looks

like if surface is a sphere:
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Smooth, eh? Shading in this figure has been done with a Bernstein polynomial of degree 5.

Most surfaces will be built from a parametrization by a rectangular array. Here is a sketch of the way things go,
at least when we are drawing a surface covered by a rectangle via parametrization. Before we do any drawing

at all, we do some preparation. (1) We write the parametrization function, which returns an array of two arrays,

location plus normal function. (2) We build the (M + 1) × (N + 1) array of the object’s 3D points plus normal
function at those points, using the parametrization function. Here M and N are positive integers which we

choose large enough to give an illusion of smoothness. Experimentation will probably be necessary to get them
right. In effect we have now built a grid of size M × N covering the surface.

Then we build all the triangular faces we want to draw, using the grid as indicated here:

i, j i+1, j

i, j+1 i+1, j+1

Here’s code that does this:

/sphere [

0 1 2 N mul 1 sub {

/i exch def

0 1 N 1 sub { /j exch def

/P S i get j get def

/Q S i 1 add get j get def

/R S i 1 add get j 1 add get def

/n [ P 0 get Q 0 get R 0 get ] normal-function def

n length 0 ne {

[ P Q R n ]

} if

/P S i get j get def

/Q S i 1 add get j 1 add get def

/R S i get j 1 add get def
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/n [ P 0 get Q 0 get R 0 get ] normal-function def

n length 0 ne {

[ P Q R n ]

} if

} for

} for

] def

14.7. Abandoning convexity

Few scenes other than the very simplest, even in theoretical mathematical figures, consist of a single convex body.

A simple visibility test by means of normal functions will no longer work.

The basic problem can be demonstrated with a simple example. Suppose that you want to draw not just one but

two cubes. In certain situations, one of them will hide part or even all of the other from view.

The basic idea is to draw the one that is farthest away first, and then the nearest one, because PostScript paints

over what it draws. Indeed, this strategy is called the painter’s algorithm . Furthermore, if you are doing an

animation, in effect moving your eye around the pair of cubes, which one is farthest away and which one is
nearest will change, so you must decide dynamically as the scene changes which is to be drawn first. In addition,

if you have a large number of objects to draw, you will have to make these dynamical choices efficiently. These
all seem like impossible demands, right?

Drawing complicated scenes in much more complicated in 3D than in 2D—and more interesting, since some real

ideas are required. Much highend 3D drawing, for example in video games or movies, relies on a pixelbypixel
treatment. the pixels in hardware designed for this purpose incorporate a depth coordinate—that is to say, depth

with respect to the plane of the screen—and pixels are colored in the order of their depth, so that close pixels are
painted after far ones. This hardware option is unavailable to PostScript, which is essentially deviceindependent.

The PostScript program itself must therefore be responsible for keeping track of depth. The standard method for

doing this is to use a binary space partition .

In drawing the two cubes, for example, the trick is to place a plane between the two cubes, and use that to keep

track of how the eye is related to the cubes. The cube to draw first is the one on the side of this plane opposite
from the eye.

In other words, we divide space into two parts by a plane. Each side of this plane contains one of the cubes. The

question of nearest and farthest is determined by determining which side of this plain the eye (or, in practice,
what I have called the virtual eye ) is on.
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This division of space into two components by means of this plane is about the simplest example of a binary
(twofold) partition of space. If there are more than two convex objects to be drawn, the idea is to partition all of

space by a plane separating one group of objects from the other, then partition each of the halfspaces if necessary

by its intersection with a plane, etc. until each of the pieces that space has been chopped up into contains exactly
one of the objects to be drawn.

This partition is stored in a way that makes it easy and rapid to decide where the eye lies in relation to these
partitioning planes. The important thing is that the construction of the partition itself, which takes up a relatively

large amount of time, can be accomplished before any drawing at all. The amount of work involved in this is

roughly proportional to n2 if there are n objects to be drawn. The drawing itself turns out to be proportional to
n, which is generally much smaller.

P1

P2P3

P4

P1

P2P3

P4

Eye

1

2

3

4

5

The basic idea, illustrated on the left, is to first partition all of space into two pieces by a single plane (here P1),

then partition each of the remaining components by its intersection with a plane (P2 and P3), etc. When using this
partition to draw, in this example the program first decides what side of P1 the eye lies on, and then recursively

looks at each side in turn. The right hand image shows the order of drawing with the eye at upper right. The

structure necessary to do this drawing is a binary tree whose nodes are the separating planes and whose leaves
the objects to be drawn.

P1

P2

P3

P4

This strategy of partitioning by halfspaces might work easily, or it might not. Sometimes some extra work is

involved. As the figure on the left below illustrates, the given figures might have to be chopped up. This is
acceptable, since what we are drawing are surface fragments, and a plane cuts a surface fragment into smaller

fragments. But we definitely have to allow for this chopping.
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There are special ways to draw special surfaces, but a binary space partition can be used to draw any collection

of surface fragments from any perspective. To be precise, a binary space partition is a tree, as I have mentioned,
with two kinds of nodes, branches and leaves, and it is defined in an essentially recursive manner. A leaf is

simply a surface fragment. A branch is in essence a separating plane, and in practice this plane is chosen to be

the support of one of the surface fragments. So it becomes a surface fragment together with the two binary space
partitions of the half spaces it determines, conventionally called left and right. If f ≥ 0 is the defining equation

of the separating plane, then all the leaves of the left partition lie entirely in the region f ≤ 0 and all those on

the right lie in f ≥ 0. More completely, any leaf lies in the intersection of all of the half spaces associated to
the branches containing it, which is of course a convex set. The leaves of a binary space partition are drawn

recursively. Each node ν of the partition is examined; if the eye lies, say, in the region fν ≥ 0 then all the leaves in
the left partition are drawn, followed by the fragment associated to the node itself, followed in turn by the right

partition. In constructing the partition associated to a collection of fragments, a fragment is chosen at random

from the collection and all the other fragments split into the halves determined by its support. These are collected
into left and right collections, and the partitions associated to each of these is then constructed. This is allowable

since the chosen surface fragment itself is excluded from both left and right, and the complexity of each partition

construction is decreased at each step.

The results can be quite pleasant, although complicated figures require a long time for PostScript to draw.

Certain configurations illustrate that in some configurations there is absolutely no way to guarantee backtofront

drawing without splitting up fragments, since there is no way to order the original fragments.
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Another application of the splitting algorithm used in binary space partitioning is to chop away things in 3D that

lie behind the eye, thus eliminating the weird effects mentioned in another chapter.

14.8. Summary

Drawing surfaces is quite complicated, and it is probably a good idea if I summarize the process here, at least in

the most common cases. I’ll work here with the most complicated case, where we are interested in using shfill.

It should be easy enough to adapt what I say to the easier case that doesn’t use it.

• I’ll assume the surface can be parametrized by a map f(s, t) from 2D to 3D. The first step is to write the

parametrization function f that has an array [s t] of length two as argument and returns the 4item array
[ x y z n ], where n is the unit normal vector to the surface at (x, y, z), the point parametrized by (s, t).

I’ll call such an array a vertex .

• Build an array of vertices over the range you want to look at. Usually this will be correspond to a rectangle
in parameter space.

• Assemble the plates of the surface into an array. These can be triangles, rectangles, . . . It is best—i.e. most
efficient—to build the largest flat plates possible. For example, on a sphere you build the rectangles laid out

by longitude and latitude. Be careful about singular points of the parametrization, such as the poles of the

parametrization of the sphere by latitude and longitude, where the rectangles collapse to triangles.
• Decide on a color scheme. Usually just a single color.

• Pick a light source and a shading scheme.

• If you’re dealing with a single convex object, there is nothing more to be done except to draw it and shade it,
testing visibility with the normal function for plates.

• Otherwise, make up a BSP structure. Then draw. In my code, the procedure that builds the BSP has as one
of ist arguments an interpolation routine that constructs the normal vector at a point on a segment between

two other vertices. This is needed because constructing the BSP tree occasionally requires that the plates it

starts with get split into smaller plates.

14.9. Code

PostScript routines for building binary space partitions can be found in the file bsp.inc, and sample usage in

triad.ps, box.ps, and doughnut.ps. The last illustrates a complete construction of a smooth surface. Well,
maybe not that smooth—note the straight line segments on the boundary of the doughnut. This can be fixed by

only the more sophisticated shading using Coons patches.
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The parametrization of the doughnut (or torus , which my Latin dictionary translates as ‘cushion’) is

(s, t) 7−→ ( (R + r cos t) cos s, (R + r cos t) sin s, r sin t )

where R and r are the two radii involved. The easiest way to see this is to start with the circle in the (x, z) plane

of radius r at center (R, 0) and rotate it around the zaxis in 3D.

In implementing binary space partitioning for drawing fragments, some extra care has to be taken to avoid nasty

floating point problems. The main difficulty is in splitting, because if two fragments are almost parallel and one

is split by the other, the result may vary wildly depending on floating point errors in the calculation. In practice
in drawing 3D figures a lot of fragments will have exactly the same normal function, which can cause extremely

bad effects without precautions. One good thing to do is to assign all these fragments exactly the same normal

functions—i.e. exactly the same array. Another is not to split any fragment by a plane approximately parallel to
it, although this is a costly and somewhat arbitrary test.
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