graph searching the objective is to determine the minimal number of guards
needed to search a graph. This number is closely related to other important
graph parameters, such as interval-width, path-width or vertex separation, see
[3,16,35-37]. However, computing the minimal number of searchers is NP-hard
[41].

This is the other goal of our approach towards graph automata. So far the
graph search strategy has not been of primary concern and has been used
only as a means to approach the minimal number of searchers. There are no
particular investigations how the searchers do their job, and how the search
strategy is described. Graph automata contribute to this point. A graph au-
tomaton has only a finite state control and uses only finitely many instructions
for the description of a graph search strategy. However, there is some inherent
nondeterminism involved. Moreover, there is no a priori upper bound on the
number of guards. At last, the search strategy of a graph automaton works
only on graphs from the recognized language.

Let’s take a closer look at the behaviour of graph automata and the way the
guards are directed on an input graph. After each move the guarded nodes sep-
arate the input graph into a visited and a yet undiscovered part. The guards
watch the edges inbetween, which we shall call bridges. These edges define
an edge-separator or a cut of the input graph. Their removal would discon-
nect the input graph into at least two connected components. In a move, a
small piece of the yet unvisited part is discovered, and the frontier of guarded
nodes and bridges advances beyond the discovered piece. These moves are
continuous, and do not leave a gap. Cleared nodes and edges are not recon-
taminated. This means a monotone search strategy, graph searching without
recontamination [3,4,36,38,41]. Hence, graph automata are plans for monotone
search strategies on graphs. The search strategies are special. A strategy is de-
scribed by a finite set of instructions and is executed by a nondeterministic
finite state machine. The behaviour of a graph automaton resembles common
graph traversals, such as depth-first search, breadth-first search, or Dijkstra’s
shortest path algorithm. Such traversals perform a sequence of discrete moves.
After each move the graph is partitioned into visited, unvisited and guarded
nodes. For efficient graph traversals emphasis is laid on the data structures
for the guarded nodes, see [13]. Efficiency is not of concern here.

Graph automata are designed as the dual of important classes of graph gram-
mars. They proceed in such a way that their computations reconstruct deriva-
tions of the associated graph grammars, and conversely. This one-to-one corre-
spondence is established for linear and for boundary NC'E graph grammars.
Our main results state that finite graph automata are equivalent to linear
graph grammars and recognize exactly the class of linear NC'E graph lan-
guages, and that alternating graph automata are equivalent to boundary graph
grammars and recognize exactly the class of boundary NC'E graph languages.



