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Abstraction: 

This paper presented a general discussion about real-time Linux kernel design, 
minimization and optimization. A specific example of a real-time Linux kernel was 
discussed in details.  Specifically, it covered the following topics: real-time operating 
system requirements; why the general Linux can not meet those real-time requirements; 
RTOS implementation approaches; mechanisms used in Real-Time Linux; skeleton code 
list and explanation; kernel minimization and optimization. The contribution of this paper 
is that it gave a detailed explanation about the three skeleton kernel programs rtl_sched.c, 
rt_time.c and rt_fifo.c in a specific embedded real-time Linux: uClinux.  More detailed 
comments were also added to the original source code.   
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1. Real-Time Operating System Requirements 

A real-time system is a system that performs its functions and responds to external, 
asynchronous events within some specified time period.[1] There are hard and soft real-
time systems. In soft real-time systems, timing requirements are statistically defined. An 
example can be a video conferencing system: it is desirable that frames are not skipped, 
but it is acceptable if a frame or two is occasionally missed. In a hard real-time system, the 
deadlines must be guaranteed. For example, if during a rocket engine test this engine 
begins to overheat, the shutdown procedure must be completed in time. 

Twenty years ago, hard real-time applications were simple and usually placed on 
dedicated, customized and isolated hardware. However, real-time applications today are 
getting more and more powerful and yet complicated. They need to control such systems 
as factory floors connected to supply database, telescopes connected to the Internet, cell 
phones generating graphic displays, routers and telephone switches. 

In order to provide with complex functions, great flexibility as well as strong 
reliability to real-time applications that will not run over pure hardware any more, a good 
real-time operating system is required to be embedded into those application facilities. 

A real-time operating system (RTOS) is an operating system capable of 
guaranteeing timing requirements of the processes under its control. While a time-sharing 
OS like UNIX strives to provide good average performance, for a RTOS, correct timing is 
the key feature. Throughput is of secondary concern. 
 In order to deliver the tight worst-case timing performance needed by hard real-
time, the RTOS needs to be simple, small, predictable, and optimized to minimize the 
worst-case performance. 
 
2. Unsuitability of Linux for Hard Real-Time Applications 

The following features make Linux infeasible to be used to run hard real-time 
applications:  (1) Unpredictable scheduling – depends on system load; (2) Coarse timer 
resolution (10 ms); (3) Non-preemptible kernel; (4) Disabling of interrupts used for 
coarse-grained synchronization; (5) Use of virtual memory; (6) Reordering of requests for 
efficiency (e.g. for disk I/O). The detailed explanation could be found in [2]. Moreover, 



Linux processes are heavyweight processes, and it can take several hundred microseconds 
to finish a context switch, and thus make it impossible to schedule a task to poll a sensor 
every 100 microseconds. 
 
3. Basic Real-Time Operating System Implementation Approaches 
 In order to facilitate the implementation of RTOS, POSIX standard has defined 
RTOS related specifications. POSIX.1b-1993 standard specified some real-time features in 
UNIX. The standard defined prioritized scheduling, locking of user memory pages in 
memory, real-time signals, improved IPC and timers, and a number of other features.   
Linux partially supports the POSIX.1b standard.  However, POSIX.1b compatibility only 
permits certain kinds of soft real-time processing in Linux.   
 Generally there are three ways to implement a RTOS. 
 1. Microkernal Based Approach. An example is the QNX[3] which only 
implements process scheduling, interprocess communication, low-level network 
communication, and interrupt dispatching. All other services, such as device drivers and 
file systems, are implemented as user processes. So the kernel is very small (7 KB of code) 
and fast. Comparing with monolithic kernel, it has some advantages. Debugging user 
processes is easier than debugging kernel components. If user processes are executed in 
separate address spaces, memory management errors in different modules are isolated. 
Another advantage is scalability. A QNX system can be scaled down to 100K to fit in the 
ROM, or expanded to a full-featured multi-machine development environment. Porting 
and maintenance is also easier. In addition, a real-time user process can preempt a device 
driver, which is not the case in monolithic kernels.   

 However, performance becomes a weak point since microkernel architecture 
places heavy load on interprocess communication and context switching. Microkernels 
only provide simple services directly. Therefore, more system calls have to be performed 
in a microkernel system than in a monolithic one to accomplish the same task.   it is most 
likely for performance reasons that monolithic kernels are still prospering. 

2. Monolithic Approach. One example of a monolithic system is VxWorks.[4] 
VxWorks is a proprietary RTOS geared towards host/target approach. A UNIX host is 
used for software development and for running non-real-time parts of an applications. The 
VxWorks kernel called wind runs real-time tasks on the target computer. The machines 
communicate using TCP/IP networking. 

 In VxWorks, the kernel and tasks run in one address space. This allows task 
switching to be very fast and eliminates the need for system call traps. A run-time linker 
allows dynamic loading of both tasks and system modules. This feature makes for 
scalability. An interactive shell with C-like syntax can be used to examine and modify 
variables, evaluate expressions, call functions, and perform simple debugging. These 
features encourage experimentation and make development somewhat easier. However, 
They also make the system more fragile as errors in one module can easily affect others. 

 3. Decoupled Approach. Instead of “making a general purpose operating system 
kind-of-realtime”(IRIX)[5] and “keeping adding nonreal-time features to a real-time 
operating system”(VxWorks),[2] the original Real-Time Linux designers took another 
alternative. RTLinux decouples the real-time and non-real-time systems. This mechanism 
makes the real-time process simple, fast, predictable and optimized to minimize worst-case 



performance. In order to support non-real-time applications at the same time, the general 
purpose Linux is run as the lowest priority thread. This approach will be discussed in the 
following part in more details. 

 
4. RTLinux Mechanisms 

As stated above, RTLinux decouples the real-time and non-real-time systems. 
Real-time applications are threads and interrupt handlers. Non-real-time components are 
put in the Linux thread that has the lowest priority. A patent “virtual interrupt controller” 
prevents the low priority thread from blocking interrupt aimed at real-time interrupt 
handlers. Communication between real-time components and the non-real-time Linux 
thread is designed to make sure the former is never forced to wait for operations of the 
latter. The application data flow for the whole system is illustrated in the following figure. 
We will discuss the RTLinux mechanisms in the following subtopics: 

  
 

 
 
 
 
 
 
 
 
 

      Figure 1: Data flow of a typical application in a RTLinux system[6] 
1.  Interrupt Emulation  
One of the problems with doing hard real-time on a standard Linux system is the 

fact that the kernel uses disabling interrupts as a means of synchronization. Promiscuous 
use of disabling and enabling interrupts inflicts unpredictable interrupt dispatch latency.   

In Real-Time Linux, this problem is solved by putting a layer of emulation 
software between the Linux kernel and the interrupt controller hardware. In the Linux 
source code all occurrences of cli, sti, and iret instructions (iret means return from 
interrupt) are replaced with emulating macros: S_CLI, S_STI and S_IRET. All hardware 
interrupts are caught by the emulator.[6]   

2: Real-Time Tasks  
Real-time tasks are user-defined programs that execute according to a specified 

schedule. The initial design was to give each real-time task its own address spaces to 
provide memory protection. This scheme works, but the system performance is not 
optimal due to inefficiency of TLB invalidation and change of protection level. 

One way to improve performance is to run all RT-tasks in one address space. By 
using the kernel address space, we eliminate the overhead of protection level changes. 
However, this approach is clearly more fragile: a bug in a real-time task can wipe out the 
whole system. 

Running tasks in the kernel address space has several advantages. Besides 
eliminating frequent TLB invalidation and protection level changes mentioned above, the 
approach allows us to refer to functions and objects by names rather than descriptors. For 
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example, real-time tasks are represented as C structures. Each task can be given an 
arbitrary C identifier that can be used in other tasks. Dynamic linking performed during 
module loading resolves symbols to addresses, so the access is very efficient. 

Task switching is also easier if all tasks run in one address space. Real-Time Linux 
performs task switching in software because hardware switches are slow on i486 CPUs. A 
context switch consists of pushing all integer registers on the stack and changing the stack 
pointer to point to the new task. [6] 

3 Scheduling  
The main task is to satisfy timing requirements of tasks. There are many ways to 

express timing constraints and many scheduling policies. No single policy is appropriate 
for all applications. Real-Time Linux allows users to write their own schedulers. This 
makes it possible to experiment with different scheduling policies and find the ones that 
best suit the application. Schedulers can use the interval timer facility described later. 

By default, RTLinux provides a priority-based preemptive scheduler in that each 
task is assigned a unique priority. If several tasks are ready to execute, the task with the 
highest priority is executed. Whenever a task becomes ready it will immediately preempt 
the executing task if the current task has a lower priority. Each task is supposed to 
relinquish the CPU voluntarily. 

The scheduler also directly supports periodic tasks. The period and the offset (the 
starting time) are specified for each of them. An interrupt-driven (sporadic) task can be 
implemented by defining an interrupt handler that wakes up the needed task.  
            4. Timing  

Precise timing is necessary for the correct operation of the scheduler. Schedulers 
often require task switching at specific moments of time. Timing inaccuracies cause 
deviations from the planned schedule, resulting in so-called task release jitter. One reason 
for low timer resolution typically found in operating systems is the use of periodic clock 
interrupts. In RTLinux, the author avoids the periodic clock interrupts by using a 
programmable interval timer to interrupt the CPU only when needed. Specifically, the 
author puts the timer chip into the interrupt-on-terminal-count mode. Using this mode, an 
interrupt can be scheduled with approximately 1 microsecond precision. In this scheme the 
overhead of interrupt processing is minimal while the timer resolution is high. To keep 
track of the global time, all intervals between interrupts are summed up together. Most 
modern computers provide a software-readable global time counter. 

The timer interface allows the scheduler to obtain the current time and to register 
functions to be called at particular moments. Periodic interrupts are simulated for Linux. 
With soft interrupts it is particularly easy to imitate an interrupt request, a bit in the 
pending interrupts mask is set. On the next soft return from interrupt, or soft sti, the 
handler will be invoked.  

In order to make the interval timer work efficiently, it should not take a long time 
to reprogram the timer chip. Fortunately, most modern CPUs, e. g., Pentiums, have timers 
on-chip in addition to the outside timer chip. [6] 

5 Interprocess Communications  
Since the Linux kernel can be preempted by a real-time task at any moment, no 

Linux routine can safely be called from real-time tasks. However, some communication 
mechanism must be present. Simple FIFO buffers are used in RTLinux for moving 



information between non-real-time processes and real-time processes. RT-FIFO buffers 
are allocated in the kernel address space. They are referred to by integer numbers. The 
real-time task interface to RT-FIFOs includes creation, destruction, reading and writing 
functions. Reads and writes are atomic and do not block, which avoids the priority 
inversion problem. Linux user processes, on the other hand, see RT-FIFOs as ordinary 
character devices. Unlike the special system call interface, the character device interface 
gives the users full power of UNIX API for communication with real-time tasks.[6] 

 
6. RTLinux Kernel Core Code Summary and Explanation 
 1: Interrupt Emulation Code: 

   S_CLI: movl $0, SFIF 
   S_STI: sti 

pushfl 
pushl $KERNEL_CS 
pushl $1f 
S_IRET 

       Figure 2: Soft CLI and STI 
In S_CLI, the Linux interrupt enable flag SFIF is reset. Whenever an interrupt 

happens, the emulator checks SFIF. If it is set, the Linux interrupt handler is invoked 
immediately. Otherwise, the handler is not invoked. Instead, a bit is set in the variable 
SFREQ that holds the information about all pending interrupts. When Linux re-enables 
interrupts, the handlers of all pending interrupts are executed. Such simulated interrupts 
are called as soft interrupts. 

Since Linux has no direct control over the interrupt controller, it does not 
influence processing of real-time interrupts that do not pass through the emulator. 
The S_STI macro sets up the stack as if an interrupt is being handled, and then uses 
S_IRET macro to emulate the return. This works because S_IRET enables soft interrupts 
just as the hardware iret enables real ones. 

The S_IRET macro starts with saving some scratch registers and initializing the 
data segment register to point to the kernel. The latter is necessary to access global 
variables. Then the bit mask representing all unmasked pending interrupts is scanned for a 
set bit. If no pending interrupt was found, the interrupt state variable is set, and a hard 
return from interrupt is performed. If an interrupt was found, a jump is made to the Linux 
handler. The handler's S_IRET, in turn, will jump to the next pending interrupt handler, 
and so on, until no interrupts are pending. 
    S_IRET: push %ds 

  pushl %eax 
  pushl %edx 
 movl $KERNEL_DS ,%edx 
 mov %dx,%ds 
 cli 
 movl SFREQ, %edx 
 andl SFMASK, %edx 
 bsfl %edx, %eax 
 jz 1f 
S_CLI 
sti 
jmp SFIDT(,%eax,4) 



      1: movl $1, SFIF 
popl %edx 
popl %eax 
pop %ds 
iret 

Figure 3: Soft IRET 
Scanning and decision taking are done atomically--otherwise, if a new interrupt 

occurs between them, and the scan has not found any pending interrupts, the invocation of 
the new interrupt handler will be delayed until the next S_STI or S_IRET. The author 
used chained jumps instead of subroutine calls because the latter would not fully emulate 
direct interrupt handling. Linux handlers examine the stack to find out whether it was the 
user or the kernel code that was interrupted, and make decisions based on it. Therefore, it 
is important to preserve the stack state.[6] 

 2: Three Major Kernel Programs: rtl_sched.c, rtl_time.c, and rtl_fifo.c 
As stated in chapter 5, after we determined these two strategies of infrastructure 

level: interrupt emulation and real-time task construction, scheduling, timing and 
interprocess communication become 3 major concerns of RTLinux implementaion.  The 
reasons why they are required are given in above chapters and summarized again here: 
scheduling helps us to run all kinds of real-time tasks in the right schedule and thus meet 
their deadlines; In order to conduct microsecond-level scheduling, we need to design a 
more efficient timing program of high resolution; Interprocess communication is important 
for us to build the communication between a real-time task and a regular Linux task. 
Therefore, by analyzing these three programs: rtl_sched.c, rtl_time.c and rtl_fifo.c, we can 
clearly see how a complete RTLinux implementation works. 
          Following the original authors of RTLinux from New Mexico Institute of Mining 
and Technology, there are several companies are working on RTLinux now. In order to 
make the project feasible, I picked a small embedded RTLinux version called uClinux from 
Lileo company[7]. In uClinux, all real-time components as well as real-time applications 
are built into the kernel and thus play into effect starting from the system boot. The whole 
system will run on a small embedded kit:  uCsimm[8], which uses a MC68EZ328 chip as 
the CPU together with some memory chips.  The analysis will be divided into the 
following sub-topics: 
            How System Install and Start All Real-Time Components? 

The function to install the scheduler, timing program,and rt_FIFO are 
rtl_shedule_init(), rt_time_init() and rtf_init() respectively. In uClinux, the real-time 
application program starts from the fixed function call rtl_application_init().  In order to 
use these real-time compeonents, all of these installation functions must be executed when 
the system boots. 

Linux kernel consists of some low-level machine-dependent assembly programs 
and a group of C programs.[9]  But unlike a regular user-mode c program which uses a 
main() function as the entry function, in Linux kernel, the entry function is start_kernel() in 
/usr/src/init/main.c file. From the main.c file in uClinux, the following code is found: 

#ifdef  _RT_ 
extern void rt_time_init(void); 
extern void rt_schedule_init(void); 
extern void rt_application_init(void); 
#endif 



 asmlinkage void start_kernel(void) 
{   …… 
     #ifdef _RT_ 
 rt_time_init(); 
 rtl_schedule_init(); 
     #endif 
    … 
   kernel_thread(init, NULL,0); 
   cpu_idle(NULL); 
} 
static int init(void* unused) 
{ …. 
     #ifdef _RT_ 
            rtl_application_init(); 
      #endif 
            setup();      //This system call will finally invoke rtf_init() 
     … 
} 
From the above code, it is obvious to see how the kernel installs the real-time 

sheduler, timing program and application program. The real-time FIFO installation is not 
so straightforward in that it employs the mechanism of Linux System Call. The function 
setup() is a System Call, which will be mapped to the System Call assembly routine 
sys_setup in entry.S file. The assembly routine will finally invoke rtf_init through the 
following path: àinvoke sys_setup() in filesystems.càdevice_setup() in 
genhd.càchr_dev_init() in mem.càrtf_init() in rtl_fifo.c  

  Major Function and Data Flow Chart Blocks about Scheduling and Timing. 
In rtl_sched.c, two linked-lists are defined, “rtl_tasks” is for all live real-time tasks 

which are competing for CPU, and “rtl_zombies” is for all zombie real-time tasks. During 
its life time, a real-time task could be in the following 5 states: Ready, Delayed, Dormant, 
Active, and Zombie. The state transition diagram is as follows: 

 
 
 
 
 
 
 
 
 
 
Figure 4: State Transition Diagram of Real-Time Tasks 
Typical kernel functions that are called within a real-time application include 

rt_task_init(), rt_task_make_periodic(), rt_task_wait(), rt_task_delete(), and 
rt_task_suspend(). A real-time application always starts its execution from the function 
rtl_application_init(). Within this function, all real-time tasks are initialized by calling 
rt_task_init() which initializes the task fields such as priorities, states(Dormant), the 
function to be called as part of the task body, stack size and etc. The application would 
then call rt_task_make_periodic() to start the periodic tasks by setting the start time and 
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period fields and resetting the timer to interrupt CPU at the specified time to run this task. 
Within the timer interrupt service routine, rtl_schedule() function is invoked which selects 
a task that has the highest priority and the earliest start time from those tasks in  Delayed 
or Ready state. Once a task is selected, it executes until it completes its execution for the 
current period and calls the rt_task_wait() to relinquish the CPU, or it may be preempted 
if another high priority task is selected by rtl_schedule() through the timer interrupt service 
routine. If the task were to eventually complete its execution, it will call rt_task_suspend() 
which changes the task state to Dormant and calls the rtl_schedule() again. If no any task 
in Delayed or Ready state, rtl_schedule() would deactivate itself and activate the regular 
Linux scheduler. In this case, user-space programs such as the shell will be able to 
execute.[10] 

The real-time scheduler works in the support of high-resolution timer. The 
following flowchart illustrates how rtl_sched.c, rtl_time.c and the real-time application 
program work together. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Data-Flow and Interaction Diagram of rtl_sched.c/rtl_time.c/application 
rt_fifo.c: Real-Time FIFO Construction. 
The reason why it is necessary to build a real-time FIFO is related to the special 

architecture of RTLinux itself. According to RTLinux logic, an application is naturally 
divided into 2 parts: the real-time part could be run as a real-time process and non-real-
time part as a regular Linux process. Pipes, FIFOs, and system V IPC system calls related 
to semaphores, messages queues and shared memory are widely used as interprocess 
communication methods in Linux. However, two reasons prevent them from being the 
right choices for RTLinux. First, unlike regular Linux processes, a real-time process is 
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running in kernel space. But Pipes and FIFOs are used for communication between 2 
processes in user space, while the communication we need is between a process in kernel 
space and a process in user space. Second, since Linux has the lowest priority in the whole 
system, no Linux system call can be trusted as a guarantee to real-time performance. 
Therefore, a real-time FIFO (rt_FIFO) is needed. 

The rt_FIFO needs to meet the following requirements: First, it is in the kernel 
space; Second, it can be accessed both from kernel space and from user space; Third, 
access to the rt_FIFO from kernel space should not be blocked, and on the other hand, it 
may block the access from a process in user space; Fourth, a Linux process in the user 
space can treat the rt_FIFO as a standard character device so that it can be accessed easily 
through the standard device interface of open, close, read and write. 

Basically a rt_FIFO is nothing but a buffer allocated in the kernel space and 
associated with a waiting queue due to the blocking feature for non-real-time service side. 
As in the kernel space, a rt_FIFO can only be created and destroyed by a real-time process 
through the kernel function of kmalloc(size, GFP_KERNEL) and kfree(buffer) 
respectively. For the sake of non-blocking, whenever a real-time process accesses a 
rt_FIFO, the CPU interrupt is disabled so that no other task could have a chance in 
competing with the same resource.  

As illustrated before, when uClinux boots, rtf_init() executes once and it creates a 
fixed number of empty FIFO arrays. After the real buffer space for a rt_FIFO is allocated 
by a real-time process,  it is associated with an integer which would be used as the minor 
number of the rt_FIFO character device to the Linux process. 

To see from the Linux side, a character device called “rtf” is registered  by the 
function register_chrdev(RTF_MAJOR,”rtf”,&rtf_fops) within rtf_init().  Usually all rtf 
devices have a major number of 63. Then the specific rt_fifos are created by “mknod” 
command as /dev/rtf0 /dev/rtf1 with minor number of 0,1 respectively. The structure 
rtf_fops includes all file operations such as open, seek, read, write and etc.[11] For 
example, if an application wants to use /dev/rtf1, the real-time process will create a 
rt_FIFO with minor number of 1,and the Linux process could open the device file of 
/dev/rtf1, and then the real communication starts. 

Although both are copy to and remove from a buffer, the send and receive 
operations to the rt_FIFO from the kernel space are different from those from the user 
space. Memory operation with the kernel space is done through kernel function memcpy(), 
while memory operation between the kernel and user space is done through 
memcpy_fromfs() and memcpy_tofs() functions. 

 
7. RTLinux Kernel Minimization and Optimization 
 Based on the design architecture of RTLinux, if we want to use it in a specific 
application in some fields, the regular Linux is still a need. However, the big size of a 
regular Linux kernel presents a big problem for RTLinux to be used in some low-memory 
embedded systems such as RAM-disk based systems. Therefore, minimization of Linux 
kernel is significant. 
 The following ways could help us build a miniRTLinux kernel of size 1.44MB: 1) 
Reduce the system size by exploiting redundancy, deletion and compression; 2) Reduce 
run time sizes by shrinking executables, compressing output, and using multi-call binaries; 



3) Pick the minimum list of libraries for the specific usage. The detailed explanation could 
be found in [12]. 
 After kernel minimization, given a specific field application, there is still one 
measure can be employed to further improve the performance of an embedded system 
based on the kernel optimization. Basic idea is to tune the system setting to an optimized 
point so that more run-time memory space is left and higher execution speed could be 
achieved by ways such as allowing the system to drop log/data files to a central server 
system and then remove them from the kernel until needed again; reducing the amount of 
resource allocation (e.g. setting the maximum number of IDE device to 2 instead of 8, 
setting console number to be 4, and etc.); picking optimized values for free pages, page-
cache and etc.; configuring reduced size for file systems(e.g. a directory depth of 1024 or 
maximum filename length of 1800 characters are rarely needed and thus could be 
reduced.). On-demand loading is also a good candidate since there are very few resources 
really needed on-site. Much can be moved to off-site as long as there are mechanisms 
available to hook them up on demand via scripts, cron and etc.[12] 
  
8. Conclusions 
 In this paper, general discussions about real-time system requirements,  
unsuitability of Linux for real-time application, and real-time system design mechanisms 
are presented in the beginning. More details are then given to all the key points about how 
a RTLinux kernel is designed, minimized and optimized.  Although some of the statements 
are extracted from the design documentation from original authors based on personal 
understanding and reorganizations, the contribution to the Linux public domain of this 
paper is that it gives a detailed explanation about the three skeleton kernel programs 
rtl_sched.c, rt_time.c and rt_fifo.c in a specific embedded real-time Linux: uCLinux.  
More detailed comments were added to the original source code.   
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