
Real-Time Linux Kernel Design, Minimization and Optimization
Virginia Tech CS5204 Operating System Project: Jinggang Wang jiwang5@vt.edu

Abstraction:

This paper presented a general discussion about real-time Linux kernel design,
minimization and optimization. A specific example of a real-time Linux kernel was
discussed in details. Specifically, it covered the following topics: real-time operating
system requirements; why the general Linux can not meet those real-time requirements;
RTOS implementation approaches; mechanisms used in Real-Time Linux; skeleton code
list and explanation; kernel minimization and optimization. The contribution of this paper
is that it gave a detailed explanation about the three skeleton kernel programs rtl_sched.c,
rt_time.c and rt_fifo.c in a specific embedded real-time Linux: uClinux. More detailed
comments were also added to the original source code.
Key words: Linux, RTOS, RTLinux, uClinux, micorkernel, real-time scheduling, IPC.

1. Real-Time Operating System Requirements

A real-time system is a system that performs its functions and responds to external,
asynchronous events within some specified time period.[1] There are hard and soft real-
time systems. In soft real-time systems, timing requirements are statistically defined. An
example can be a video conferencing system: it is desirable that frames are not skipped,
but it is acceptable if a frame or two is occasionally missed. In a hard real-time system, the
deadlines must be guaranteed. For example, if during a rocket engine test this engine
begins to overheat, the shutdown procedure must be completed in time.

Twenty years ago, hard real-time applications were simple and usually placed on
dedicated, customized and isolated hardware. However, real-time applications today are
getting more and more powerful and yet complicated. They need to control such systems
as factory floors connected to supply database, telescopes connected to the Internet, cell
phones generating graphic displays, routers and telephone switches.

In order to provide with complex functions, great flexibility as well as strong
reliability to real-time applications that will not run over pure hardware any more, a good
real-time operating system is required to be embedded into those application facilities.

A real-time operating system (RTOS) is an operating system capable of
guaranteeing timing requirements of the processes under its control. While a time-sharing
OS like UNIX strives to provide good average performance, for a RTOS, correct timing is
the key feature. Throughput is of secondary concern.
 In order to deliver the tight worst-case timing performance needed by hard real-
time, the RTOS needs to be simple, small, predictable, and optimized to minimize the
worst-case performance.

2. Unsuitability of Linux for Hard Real-Time Applications

The following features make Linux infeasible to be used to run hard real-time
applications: (1) Unpredictable scheduling – depends on system load; (2) Coarse timer
resolution (10 ms); (3) Non-preemptible kernel; (4) Disabling of interrupts used for
coarse-grained synchronization; (5) Use of virtual memory; (6) Reordering of requests for
efficiency (e.g. for disk I/O). The detailed explanation could be found in [2]. Moreover,

Linux processes are heavyweight processes, and it can take several hundred microseconds
to finish a context switch, and thus make it impossible to schedule a task to poll a sensor
every 100 microseconds.

3. Basic Real-Time Operating System Implementation Approaches
 In order to facilitate the implementation of RTOS, POSIX standard has defined
RTOS related specifications. POSIX.1b-1993 standard specified some real-time features in
UNIX. The standard defined prioritized scheduling, locking of user memory pages in
memory, real-time signals, improved IPC and timers, and a number of other features.
Linux partially supports the POSIX.1b standard. However, POSIX.1b compatibility only
permits certain kinds of soft real-time processing in Linux.
 Generally there are three ways to implement a RTOS.
 1. Microkernal Based Approach. An example is the QNX[3] which only
implements process scheduling, interprocess communication, low-level network
communication, and interrupt dispatching. All other services, such as device drivers and
file systems, are implemented as user processes. So the kernel is very small (7 KB of code)
and fast. Comparing with monolithic kernel, it has some advantages. Debugging user
processes is easier than debugging kernel components. If user processes are executed in
separate address spaces, memory management errors in different modules are isolated.
Another advantage is scalability. A QNX system can be scaled down to 100K to fit in the
ROM, or expanded to a full-featured multi-machine development environment. Porting
and maintenance is also easier. In addition, a real-time user process can preempt a device
driver, which is not the case in monolithic kernels.

 However, performance becomes a weak point since microkernel architecture
places heavy load on interprocess communication and context switching. Microkernels
only provide simple services directly. Therefore, more system calls have to be performed
in a microkernel system than in a monolithic one to accomplish the same task. it is most
likely for performance reasons that monolithic kernels are still prospering.

2. Monolithic Approach. One example of a monolithic system is VxWorks.[4]
VxWorks is a proprietary RTOS geared towards host/target approach. A UNIX host is
used for software development and for running non-real-time parts of an applications. The
VxWorks kernel called wind runs real-time tasks on the target computer. The machines
communicate using TCP/IP networking.

 In VxWorks, the kernel and tasks run in one address space. This allows task
switching to be very fast and eliminates the need for system call traps. A run-time linker
allows dynamic loading of both tasks and system modules. This feature makes for
scalability. An interactive shell with C-like syntax can be used to examine and modify
variables, evaluate expressions, call functions, and perform simple debugging. These
features encourage experimentation and make development somewhat easier. However,
They also make the system more fragile as errors in one module can easily affect others.

 3. Decoupled Approach. Instead of “making a general purpose operating system
kind-of-realtime”(IRIX)[5] and “keeping adding nonreal-time features to a real-time
operating system”(VxWorks),[2] the original Real-Time Linux designers took another
alternative. RTLinux decouples the real-time and non-real-time systems. This mechanism
makes the real-time process simple, fast, predictable and optimized to minimize worst-case

performance. In order to support non-real-time applications at the same time, the general
purpose Linux is run as the lowest priority thread. This approach will be discussed in the
following part in more details.

4. RTLinux Mechanisms

As stated above, RTLinux decouples the real-time and non-real-time systems.
Real-time applications are threads and interrupt handlers. Non-real-time components are
put in the Linux thread that has the lowest priority. A patent “virtual interrupt controller”
prevents the low priority thread from blocking interrupt aimed at real-time interrupt
handlers. Communication between real-time components and the non-real-time Linux
thread is designed to make sure the former is never forced to wait for operations of the
latter. The application data flow for the whole system is illustrated in the following figure.
We will discuss the RTLinux mechanisms in the following subtopics:

 Figure 1: Data flow of a typical application in a RTLinux system[6]
1. Interrupt Emulation
One of the problems with doing hard real-time on a standard Linux system is the

fact that the kernel uses disabling interrupts as a means of synchronization. Promiscuous
use of disabling and enabling interrupts inflicts unpredictable interrupt dispatch latency.

In Real-Time Linux, this problem is solved by putting a layer of emulation
software between the Linux kernel and the interrupt controller hardware. In the Linux
source code all occurrences of cli, sti, and iret instructions (iret means return from
interrupt) are replaced with emulating macros: S_CLI, S_STI and S_IRET. All hardware
interrupts are caught by the emulator.[6]

2: Real-Time Tasks
Real-time tasks are user-defined programs that execute according to a specified

schedule. The initial design was to give each real-time task its own address spaces to
provide memory protection. This scheme works, but the system performance is not
optimal due to inefficiency of TLB invalidation and change of protection level.

One way to improve performance is to run all RT-tasks in one address space. By
using the kernel address space, we eliminate the overhead of protection level changes.
However, this approach is clearly more fragile: a bug in a real-time task can wipe out the
whole system.

Running tasks in the kernel address space has several advantages. Besides
eliminating frequent TLB invalidation and protection level changes mentioned above, the
approach allows us to refer to functions and objects by names rather than descriptors. For

User Process
RT FIFO

RT FIFO

Linux Kernel

Disk Network

X Windows

Display

RT Process

Peripheral Device

example, real-time tasks are represented as C structures. Each task can be given an
arbitrary C identifier that can be used in other tasks. Dynamic linking performed during
module loading resolves symbols to addresses, so the access is very efficient.

Task switching is also easier if all tasks run in one address space. Real-Time Linux
performs task switching in software because hardware switches are slow on i486 CPUs. A
context switch consists of pushing all integer registers on the stack and changing the stack
pointer to point to the new task. [6]

3 Scheduling
The main task is to satisfy timing requirements of tasks. There are many ways to

express timing constraints and many scheduling policies. No single policy is appropriate
for all applications. Real-Time Linux allows users to write their own schedulers. This
makes it possible to experiment with different scheduling policies and find the ones that
best suit the application. Schedulers can use the interval timer facility described later.

By default, RTLinux provides a priority-based preemptive scheduler in that each
task is assigned a unique priority. If several tasks are ready to execute, the task with the
highest priority is executed. Whenever a task becomes ready it will immediately preempt
the executing task if the current task has a lower priority. Each task is supposed to
relinquish the CPU voluntarily.

The scheduler also directly supports periodic tasks. The period and the offset (the
starting time) are specified for each of them. An interrupt-driven (sporadic) task can be
implemented by defining an interrupt handler that wakes up the needed task.
 4. Timing

Precise timing is necessary for the correct operation of the scheduler. Schedulers
often require task switching at specific moments of time. Timing inaccuracies cause
deviations from the planned schedule, resulting in so-called task release jitter. One reason
for low timer resolution typically found in operating systems is the use of periodic clock
interrupts. In RTLinux, the author avoids the periodic clock interrupts by using a
programmable interval timer to interrupt the CPU only when needed. Specifically, the
author puts the timer chip into the interrupt-on-terminal-count mode. Using this mode, an
interrupt can be scheduled with approximately 1 microsecond precision. In this scheme the
overhead of interrupt processing is minimal while the timer resolution is high. To keep
track of the global time, all intervals between interrupts are summed up together. Most
modern computers provide a software-readable global time counter.

The timer interface allows the scheduler to obtain the current time and to register
functions to be called at particular moments. Periodic interrupts are simulated for Linux.
With soft interrupts it is particularly easy to imitate an interrupt request, a bit in the
pending interrupts mask is set. On the next soft return from interrupt, or soft sti, the
handler will be invoked.

In order to make the interval timer work efficiently, it should not take a long time
to reprogram the timer chip. Fortunately, most modern CPUs, e. g., Pentiums, have timers
on-chip in addition to the outside timer chip. [6]

5 Interprocess Communications
Since the Linux kernel can be preempted by a real-time task at any moment, no

Linux routine can safely be called from real-time tasks. However, some communication
mechanism must be present. Simple FIFO buffers are used in RTLinux for moving

information between non-real-time processes and real-time processes. RT-FIFO buffers
are allocated in the kernel address space. They are referred to by integer numbers. The
real-time task interface to RT-FIFOs includes creation, destruction, reading and writing
functions. Reads and writes are atomic and do not block, which avoids the priority
inversion problem. Linux user processes, on the other hand, see RT-FIFOs as ordinary
character devices. Unlike the special system call interface, the character device interface
gives the users full power of UNIX API for communication with real-time tasks.[6]

6. RTLinux Kernel Core Code Summary and Explanation
 1: Interrupt Emulation Code:

 S_CLI: movl $0, SFIF
 S_STI: sti

pushfl
pushl $KERNEL_CS
pushl $1f
S_IRET

 Figure 2: Soft CLI and STI
In S_CLI, the Linux interrupt enable flag SFIF is reset. Whenever an interrupt

happens, the emulator checks SFIF. If it is set, the Linux interrupt handler is invoked
immediately. Otherwise, the handler is not invoked. Instead, a bit is set in the variable
SFREQ that holds the information about all pending interrupts. When Linux re-enables
interrupts, the handlers of all pending interrupts are executed. Such simulated interrupts
are called as soft interrupts.

Since Linux has no direct control over the interrupt controller, it does not
influence processing of real-time interrupts that do not pass through the emulator.
The S_STI macro sets up the stack as if an interrupt is being handled, and then uses
S_IRET macro to emulate the return. This works because S_IRET enables soft interrupts
just as the hardware iret enables real ones.

The S_IRET macro starts with saving some scratch registers and initializing the
data segment register to point to the kernel. The latter is necessary to access global
variables. Then the bit mask representing all unmasked pending interrupts is scanned for a
set bit. If no pending interrupt was found, the interrupt state variable is set, and a hard
return from interrupt is performed. If an interrupt was found, a jump is made to the Linux
handler. The handler's S_IRET, in turn, will jump to the next pending interrupt handler,
and so on, until no interrupts are pending.
 S_IRET: push %ds

 pushl %eax
 pushl %edx
 movl $KERNEL_DS ,%edx
 mov %dx,%ds
 cli
 movl SFREQ, %edx
 andl SFMASK, %edx
 bsfl %edx, %eax
 jz 1f
S_CLI
sti
jmp SFIDT(,%eax,4)

 1: movl $1, SFIF
popl %edx
popl %eax
pop %ds
iret

Figure 3: Soft IRET
Scanning and decision taking are done atomically--otherwise, if a new interrupt

occurs between them, and the scan has not found any pending interrupts, the invocation of
the new interrupt handler will be delayed until the next S_STI or S_IRET. The author
used chained jumps instead of subroutine calls because the latter would not fully emulate
direct interrupt handling. Linux handlers examine the stack to find out whether it was the
user or the kernel code that was interrupted, and make decisions based on it. Therefore, it
is important to preserve the stack state.[6]

 2: Three Major Kernel Programs: rtl_sched.c, rtl_time.c, and rtl_fifo.c
As stated in chapter 5, after we determined these two strategies of infrastructure

level: interrupt emulation and real-time task construction, scheduling, timing and
interprocess communication become 3 major concerns of RTLinux implementaion. The
reasons why they are required are given in above chapters and summarized again here:
scheduling helps us to run all kinds of real-time tasks in the right schedule and thus meet
their deadlines; In order to conduct microsecond-level scheduling, we need to design a
more efficient timing program of high resolution; Interprocess communication is important
for us to build the communication between a real-time task and a regular Linux task.
Therefore, by analyzing these three programs: rtl_sched.c, rtl_time.c and rtl_fifo.c, we can
clearly see how a complete RTLinux implementation works.
 Following the original authors of RTLinux from New Mexico Institute of Mining
and Technology, there are several companies are working on RTLinux now. In order to
make the project feasible, I picked a small embedded RTLinux version called uClinux from
Lileo company[7]. In uClinux, all real-time components as well as real-time applications
are built into the kernel and thus play into effect starting from the system boot. The whole
system will run on a small embedded kit: uCsimm[8], which uses a MC68EZ328 chip as
the CPU together with some memory chips. The analysis will be divided into the
following sub-topics:
 How System Install and Start All Real-Time Components?

The function to install the scheduler, timing program,and rt_FIFO are
rtl_shedule_init(), rt_time_init() and rtf_init() respectively. In uClinux, the real-time
application program starts from the fixed function call rtl_application_init(). In order to
use these real-time compeonents, all of these installation functions must be executed when
the system boots.

Linux kernel consists of some low-level machine-dependent assembly programs
and a group of C programs.[9] But unlike a regular user-mode c program which uses a
main() function as the entry function, in Linux kernel, the entry function is start_kernel() in
/usr/src/init/main.c file. From the main.c file in uClinux, the following code is found:

#ifdef _RT_
extern void rt_time_init(void);
extern void rt_schedule_init(void);
extern void rt_application_init(void);
#endif

 asmlinkage void start_kernel(void)
{ ……
 #ifdef _RT_
 rt_time_init();
 rtl_schedule_init();
 #endif
 …
 kernel_thread(init, NULL,0);
 cpu_idle(NULL);
}
static int init(void* unused)
{ ….
 #ifdef _RT_
 rtl_application_init();
 #endif
 setup(); //This system call will finally invoke rtf_init()
 …
}
From the above code, it is obvious to see how the kernel installs the real-time

sheduler, timing program and application program. The real-time FIFO installation is not
so straightforward in that it employs the mechanism of Linux System Call. The function
setup() is a System Call, which will be mapped to the System Call assembly routine
sys_setup in entry.S file. The assembly routine will finally invoke rtf_init through the
following path: àinvoke sys_setup() in filesystems.càdevice_setup() in
genhd.càchr_dev_init() in mem.càrtf_init() in rtl_fifo.c

 Major Function and Data Flow Chart Blocks about Scheduling and Timing.
In rtl_sched.c, two linked-lists are defined, “rtl_tasks” is for all live real-time tasks

which are competing for CPU, and “rtl_zombies” is for all zombie real-time tasks. During
its life time, a real-time task could be in the following 5 states: Ready, Delayed, Dormant,
Active, and Zombie. The state transition diagram is as follows:

Figure 4: State Transition Diagram of Real-Time Tasks
Typical kernel functions that are called within a real-time application include

rt_task_init(), rt_task_make_periodic(), rt_task_wait(), rt_task_delete(), and
rt_task_suspend(). A real-time application always starts its execution from the function
rtl_application_init(). Within this function, all real-time tasks are initialized by calling
rt_task_init() which initializes the task fields such as priorities, states(Dormant), the
function to be called as part of the task body, stack size and etc. The application would
then call rt_task_make_periodic() to start the periodic tasks by setting the start time and

[ap]rt_task_wait()

Dormant

rtl_schedule()

rt_task_suspend()

rtl_schedule()
[ap]rt_task_wakeup()

rt_task_wait()

rt_task_make_periodic()

rt_task_delete()
Zombie

Delayed

Ready

Active

rt_task_init()

period fields and resetting the timer to interrupt CPU at the specified time to run this task.
Within the timer interrupt service routine, rtl_schedule() function is invoked which selects
a task that has the highest priority and the earliest start time from those tasks in Delayed
or Ready state. Once a task is selected, it executes until it completes its execution for the
current period and calls the rt_task_wait() to relinquish the CPU, or it may be preempted
if another high priority task is selected by rtl_schedule() through the timer interrupt service
routine. If the task were to eventually complete its execution, it will call rt_task_suspend()
which changes the task state to Dormant and calls the rtl_schedule() again. If no any task
in Delayed or Ready state, rtl_schedule() would deactivate itself and activate the regular
Linux scheduler. In this case, user-space programs such as the shell will be able to
execute.[10]

The real-time scheduler works in the support of high-resolution timer. The
following flowchart illustrates how rtl_sched.c, rtl_time.c and the real-time application
program work together.

Figure 5: Data-Flow and Interaction Diagram of rtl_sched.c/rtl_time.c/application
rt_fifo.c: Real-Time FIFO Construction.
The reason why it is necessary to build a real-time FIFO is related to the special

architecture of RTLinux itself. According to RTLinux logic, an application is naturally
divided into 2 parts: the real-time part could be run as a real-time process and non-real-
time part as a regular Linux process. Pipes, FIFOs, and system V IPC system calls related
to semaphores, messages queues and shared memory are widely used as interprocess
communication methods in Linux. However, two reasons prevent them from being the
right choices for RTLinux. First, unlike regular Linux processes, a real-time process is

 job done

 job not done

Push “rtl_startup(void (*fn)…)” on stack

rtl_application_init()

rt_task_init()

init_stack()

rt_make_periodic()

rt_time_init()
/*Set oneshot mode and Install ISR */

rt_oneshot_timer_irq()
/* Timer Interrupt Service routine */

rt_set_timer()

rtl_schedule_init()

rtl_no_timer() /*fine-scale timer will
be added by rt_make_periodic()*/

rtl_set_oneshot_mode()

rtl_request_timer(&rtl_schedule)
/* Ask Timer ISR to execute rtl_schedule() */

rtl_schedule()

rtl_switch_to()
 Stack Operation for
Context Switch

rtl_startup(void (*fn)…)

fn() /*This is the real execution of the real-time task*/ rt_task_wait()

rt_task_suspend()

running in kernel space. But Pipes and FIFOs are used for communication between 2
processes in user space, while the communication we need is between a process in kernel
space and a process in user space. Second, since Linux has the lowest priority in the whole
system, no Linux system call can be trusted as a guarantee to real-time performance.
Therefore, a real-time FIFO (rt_FIFO) is needed.

The rt_FIFO needs to meet the following requirements: First, it is in the kernel
space; Second, it can be accessed both from kernel space and from user space; Third,
access to the rt_FIFO from kernel space should not be blocked, and on the other hand, it
may block the access from a process in user space; Fourth, a Linux process in the user
space can treat the rt_FIFO as a standard character device so that it can be accessed easily
through the standard device interface of open, close, read and write.

Basically a rt_FIFO is nothing but a buffer allocated in the kernel space and
associated with a waiting queue due to the blocking feature for non-real-time service side.
As in the kernel space, a rt_FIFO can only be created and destroyed by a real-time process
through the kernel function of kmalloc(size, GFP_KERNEL) and kfree(buffer)
respectively. For the sake of non-blocking, whenever a real-time process accesses a
rt_FIFO, the CPU interrupt is disabled so that no other task could have a chance in
competing with the same resource.

As illustrated before, when uClinux boots, rtf_init() executes once and it creates a
fixed number of empty FIFO arrays. After the real buffer space for a rt_FIFO is allocated
by a real-time process, it is associated with an integer which would be used as the minor
number of the rt_FIFO character device to the Linux process.

To see from the Linux side, a character device called “rtf” is registered by the
function register_chrdev(RTF_MAJOR,”rtf”,&rtf_fops) within rtf_init(). Usually all rtf
devices have a major number of 63. Then the specific rt_fifos are created by “mknod”
command as /dev/rtf0 /dev/rtf1 with minor number of 0,1 respectively. The structure
rtf_fops includes all file operations such as open, seek, read, write and etc.[11] For
example, if an application wants to use /dev/rtf1, the real-time process will create a
rt_FIFO with minor number of 1,and the Linux process could open the device file of
/dev/rtf1, and then the real communication starts.

Although both are copy to and remove from a buffer, the send and receive
operations to the rt_FIFO from the kernel space are different from those from the user
space. Memory operation with the kernel space is done through kernel function memcpy(),
while memory operation between the kernel and user space is done through
memcpy_fromfs() and memcpy_tofs() functions.

7. RTLinux Kernel Minimization and Optimization
 Based on the design architecture of RTLinux, if we want to use it in a specific
application in some fields, the regular Linux is still a need. However, the big size of a
regular Linux kernel presents a big problem for RTLinux to be used in some low-memory
embedded systems such as RAM-disk based systems. Therefore, minimization of Linux
kernel is significant.
 The following ways could help us build a miniRTLinux kernel of size 1.44MB: 1)
Reduce the system size by exploiting redundancy, deletion and compression; 2) Reduce
run time sizes by shrinking executables, compressing output, and using multi-call binaries;

3) Pick the minimum list of libraries for the specific usage. The detailed explanation could
be found in [12].
 After kernel minimization, given a specific field application, there is still one
measure can be employed to further improve the performance of an embedded system
based on the kernel optimization. Basic idea is to tune the system setting to an optimized
point so that more run-time memory space is left and higher execution speed could be
achieved by ways such as allowing the system to drop log/data files to a central server
system and then remove them from the kernel until needed again; reducing the amount of
resource allocation (e.g. setting the maximum number of IDE device to 2 instead of 8,
setting console number to be 4, and etc.); picking optimized values for free pages, page-
cache and etc.; configuring reduced size for file systems(e.g. a directory depth of 1024 or
maximum filename length of 1800 characters are rarely needed and thus could be
reduced.). On-demand loading is also a good candidate since there are very few resources
really needed on-site. Much can be moved to off-site as long as there are mechanisms
available to hook them up on demand via scripts, cron and etc.[12]

8. Conclusions
 In this paper, general discussions about real-time system requirements,
unsuitability of Linux for real-time application, and real-time system design mechanisms
are presented in the beginning. More details are then given to all the key points about how
a RTLinux kernel is designed, minimized and optimized. Although some of the statements
are extracted from the design documentation from original authors based on personal
understanding and reorganizations, the contribution to the Linux public domain of this
paper is that it gives a detailed explanation about the three skeleton kernel programs
rtl_sched.c, rt_time.c and rt_fifo.c in a specific embedded real-time Linux: uCLinux.
More detailed comments were added to the original source code.

References
[1] Borko Furht, Dan Grostick, et al. Real-time UNIX systems: design and application
guide. Kluwer Academic Publishers Group, Norwell, MA, USA, 1991.
[2] Victor Yodaiken and Michael Barabanov RTLinux Version TWO Design
documentation about RTLinux in FSMLabs 1997. http://www.fsmlabs.com
[3] QNX company website. http://www.qnx.com
[4] Wind-River Company website. http://www.windriver.com.
[5] SGI Company Website: http://www.sgi.com/software.
[6] Michael Barabanov A Linux-based Real-Time Operating System, MS thesis,
June,1997. Http://www.fsmlabs.com/developers/white_papers.
[7] Lileo Company website. http://www.uclinux.org.
[8] uCsimm Project website: http://www.ucsimm.com.
[9] M.Beck,and etc, Linux Kernel Internals, 2nd edition, Addison-Wesley ,1999
[10] Binoy Ravindran, Project 1 Specification, ece4984,spring, 2000 at Virginia Tech
[11] Alessandro Rubini and etc Linux Device Drivers 2nd edition, O’Reilly 2001
[12] Nicholas Mc Guire MiniRTL Hard Real-Time Linux for Embedded Systems, 1998
Http://www.hofr.at

