Geometric Computer Vision

Marc Pollefeys

Fall 2009

http://www.inf.ethz.ch/personal/pomarc/courses/gcv/
ETH

Geometric Computer Vision course schedule (tentative)

	Lecture	Exercise
Sept 16	Introduction	-
Sept 23	Geometry \& Camera model	Camera calibration
Sept 30	Single View Metrology (Changchang wu)	Measuring in images
Oct. 7	Feature Tracking/Matching	Correspondence computation
Oct. 14	Epipolar Geometry	F-matrix computation
Oct. 21	Shape-from-Silhouettes	Visual-hull computation
Oct. 28	Multi-view stereo matching	Project proposals
Nov. 4	Structure from motion and visual SLAM	Papers
Nov. 11	Multi-view geometry and self-calibration	Papers
Nov. 18	Shape-from-X	
Nov. 25	Structured light and active range sensing	Papers
Dec. 2	3D modeling, registration and range/depth fusion (Christopher Zach?)	Papers
Dec. 9	Appearance modeling and image- based rendering	Final project presentatons
Dec. 16	Final project presentations	

Projective Geometry and Camera model Class 2

points, lines, planes conics and quadrics transformations camera model

Read tutorial chapter 2 and 3.1
http://www.cs.unc.edu/~marc/tutorial/

Homogeneous coordinates

Homogeneous representation of 2D points and lines

$$
a x+b y+c=0 \quad(a, b, c)^{\top}(x, y, 1)=0
$$

The point x lies on the line 1 if and only if

$$
1^{\top} \mathrm{x}=0
$$

Note that scale is unimportant for incidence relation

$$
(a, b, c)^{\top} \sim k(a, b, c)^{\top}, \forall k \neq 0 \quad(x, y, 1)^{\top} \sim k(x, y, 1)^{\top}, \forall k \neq 0
$$

equivalence class of vectors, any vector is representative Set of all equivalence classes in $\mathbf{R}^{3}-(0,0,0)^{\top}$ forms $\mathbf{P}^{\mathbf{2}}$

$$
\begin{aligned}
& \text { Homogeneous coordinates }\left(x_{1}, x_{2}, x_{3}\right)^{\top} \text { but only 2DOF } \\
& \text { Inhomogeneous coordinates }(x, y)^{\top}
\end{aligned}
$$

Points from lines and vice-versa

Intersections of lines
The intersection of two lines 1 and l^{\prime} is $x=1 \times l^{\prime}$
Line joining two points
The line through two points x and x^{\prime} is $\mathrm{l}=\mathrm{x} \times \mathrm{x}^{\prime}$

Example

Note:

$$
\begin{aligned}
& \mathrm{X} \times \mathrm{X}^{\prime}=[\mathrm{X}]_{\times} \mathrm{X}^{\prime} \\
& \text { with } \quad[\mathrm{x}]_{\mathrm{x}}=\left[\begin{array}{ccc}
0 & z & -y \\
-z & 0 & x \\
y & -x & 0
\end{array}\right]
\end{aligned}
$$

EHH

Ideal points and the line at infinity

Intersections of parallel lines

$$
\mathrm{l}=(a, b, c)^{\top} \text { and } \mathrm{l}^{\prime}=\left(a, b, c^{\prime}\right)^{\top} \quad \mathrm{l} \times \mathrm{l}^{\prime}=(b,-a, 0)^{\top}
$$

Example

$$
\begin{aligned}
& (b,-a) \text { tangent vector } \\
& (a, b) \text { normal direction }
\end{aligned}
$$

Ideal points $\quad\left(x_{1}, x_{2}, 0\right)^{\top}$
Line at infinity $\quad 1_{\infty}=(0,0,1)^{\top}$

$$
\mathbf{P}^{2}=\mathbf{R}^{2} \text { U } 1_{\infty} \quad \begin{aligned}
& \text { Note that in } \mathbf{P}^{2} \text { there is no distinction } \\
& \text { between ideal points and others }
\end{aligned}
$$

3D points and planes

Homogeneous representation of 3D points and planes

$$
\pi_{1} X_{1}+\pi_{2} X_{2}+\pi_{3} X_{3}+\pi_{4} X_{4}=0
$$

The point X lies on the plane π if and only if

$$
\pi^{\top} \mathrm{X}=0
$$

The plane π goes through the point X if and only if

$$
\pi^{\top} \mathrm{X}=0
$$

Planes from points

Solve π from $X_{1}^{\top} \pi=0, X_{2}^{\top} \pi=0$ and $X_{3}^{\top} \pi=0$

$$
\left[\begin{array}{l}
\mathrm{X}_{1}^{\top} \\
\mathrm{X}_{2}^{\top} \\
\mathrm{X}_{3}^{\top}
\end{array}\right] \pi=0 \quad \text { (solve } \pi \text { as right nullspace of }\left[\begin{array}{l}
\mathrm{X}_{1}^{\top} \\
\mathrm{X}_{2}^{\top} \\
\mathrm{X}_{3}^{\top}
\end{array}\right] \text {) }
$$

Points from planes

Solve X from $\pi_{1}^{\top} \mathrm{X}=0, \pi_{2}^{\top} \mathrm{X}=0$ and $\pi_{3}^{\top} \mathrm{X}=0$
$\left[\begin{array}{l}\pi_{1}^{\top} \\ \pi_{2}^{\top} \\ \pi_{3}^{\top}\end{array}\right] \mathrm{X}=0 \quad$ (solve Xas right nullspace of $\left[\begin{array}{c}\pi_{1}^{\top} \\ \pi_{2}^{\top} \\ \pi_{3}^{\top}\end{array}\right]$),

Representing a plane by its span

$$
\begin{aligned}
& \mathrm{X}=\mathbf{M} \mathrm{X} \quad \mathbf{M}=\left[\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3}\right] \\
& \pi^{\top} \mathbf{M}=0
\end{aligned}
$$

Lines

Representing a line by its span

$$
\mathrm{W}=\left[\begin{array}{l}
\mathrm{A}^{\top} \\
\mathrm{B}^{\top}
\end{array}\right] \quad \lambda \mathrm{A}+\mu \mathrm{B}
$$

Dual representation

$$
\begin{aligned}
& \mathrm{W}^{*}=\left[\begin{array}{c}
\mathrm{P}^{\top} \\
\mathrm{Q}^{\top}
\end{array}\right] \quad \lambda \mathrm{P}+\mu \mathrm{Q} \\
& \mathrm{~W}^{*} \mathrm{~W}^{\top}=\mathrm{WW}^{* \top}=0_{2 \times 2}
\end{aligned}
$$

Example: X-axis

$$
\mathrm{W}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \quad \mathrm{W}^{*}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

(Alternative: Plücker representation, details see e.g. H\&Z)

Points, lines and planes

$$
\begin{aligned}
& \mathbf{M}=\left[\begin{array}{c}
\mathrm{W} \\
\mathrm{X}^{\top}
\end{array}\right] \quad \mathbf{M} \pi=0 \\
& \mathbf{M}=\left[\begin{array}{l}
W^{*} \\
\pi^{\top}
\end{array}\right] \quad \mathbf{M} \mathbf{X}=0
\end{aligned}
$$

ETH

Plücker coordinates

Elegant representation for 3D lines

$$
\begin{aligned}
& l_{i j}=A_{i} B_{j} \quad B_{i} A_{j} \quad \text { (with } \mathrm{A} \text { and } \mathrm{B} \text { points) } \\
& \mathrm{L}=\left[l_{12}, l_{13}, l_{14}, l_{23}, l_{42}, l_{34}\right]^{\top} \in \mathbf{P}^{5} \\
& \quad(\mathrm{~L} \mid \hat{\mathrm{L}})=l_{12} \hat{l}_{44}+l_{13} \hat{l}_{22}+l_{14} \hat{l}_{23}+l_{23} \hat{l}_{44}+l_{42} \hat{l}_{13}+l_{34} \hat{1}_{12} \\
& (\mathrm{~L} \mid \mathrm{L})=0 \quad \text { (Plücker internal con } \\
& (\mathrm{L} \mid \hat{\mathrm{L}})=\operatorname{det}[\mathrm{A}, \mathrm{~B}, \hat{\mathrm{~A}}, \hat{\mathrm{~B}}]=0 \quad \text { (two lines intersect) }
\end{aligned}
$$

(for more details see e.g. H\&Z)

Conics

Curve described by $2^{\text {nd }}$-degree equation in the plane

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

or homogenized $x \mapsto^{x_{1}} / x_{3}, y \mapsto^{x_{2}} / x_{3}$

$$
a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}+d x_{1} x_{3}+e x_{2} x_{3}+f x_{3}^{2}=0
$$

or in matrix form

$$
\begin{aligned}
& \text { natrix form } \\
& \mathbf{x}^{\top} \mathbf{C} \mathbf{x}=0 \text { with } \mathbf{C}=\left[\begin{array}{ccc}
a & b / 2 & d / 2 \\
b / 2 & c & e / 2 \\
d / 2 & e / 2 & f
\end{array}\right]
\end{aligned}
$$

5DOF: $\{a: b: c: d: e: f\}$

Five points define a conic

For each point the conic passes through

$$
a x_{i}^{2}+b x_{i} y_{i}+c y_{i}^{2}+d x_{i}+e y_{i}+f=0
$$

or

$$
\left(x_{i}^{2}, x_{i} y_{i}, y_{i}^{2}, x_{i}, y_{i}, 1\right) . \mathbf{c}=0 \quad \mathbf{c}=(a, b, c, d, e, f)^{\top}
$$

stacking constraints yields

$$
\left[\begin{array}{llllll}
x_{1}^{2} & x_{1} y_{1} & y_{1}^{2} & x_{1} & y_{1} & 1 \\
x_{2}^{2} & x_{2} y_{2} & y_{2}^{2} & x_{2} & y_{2} & 1 \\
x_{3}^{2} & x_{3} y_{3} & y_{3}^{2} & x_{3} & y_{3} & 1 \\
x_{4}^{2} & x_{4} y_{4} & y_{4}^{2} & x_{4} & y_{4} & 1 \\
x_{5}^{2} & x_{5} y_{5} & y_{5}^{2} & x_{5} & y_{5} & 1
\end{array}\right] \mathbf{c}=0
$$

Tangent lines to conics

The line 1 tangent to \mathbf{C} at point x on \mathbf{C} is given by $\mathrm{l}=\mathbf{C x}$

Dual conics

A line tangent to the conic \mathbf{C} satisfies $1^{\top} \mathbf{C}^{*} 1=0$
In general (C full rank): $\quad \mathbf{C}^{*}=\mathbf{C}^{-1}$

Dual conics = line conics = conic envelopes

Degenerate conics

A conic is degenerate if matrix \mathbf{C} is not of full rank
e.g. two lines (rank 2)

$$
\mathbf{C}=\operatorname{lm}^{\top}+\mathrm{ml}^{\top}
$$

e.g. repeated line (rank 1)

$$
\mathbf{C}=11^{\top}
$$

Degenerate line conics: 2 points (rank 2), double point (rank1)

Note that for degenerate conics $\left(\mathbf{C}^{*}\right)^{*} \neq \mathbf{C}$

Quadrics and dual quadrics

$$
\mathrm{X}^{\top} \mathrm{QX}=0 \quad(\mathrm{Q}: 4 \times 4 \text { symmetric matrix })
$$

- 9 d.o.f.
- in general 9 points define quadric

- $\quad \operatorname{det} \mathrm{Q}=0 \leftrightarrow$ degenerate quadric
- tangent plane $\pi=\mathrm{QX}$

$$
\pi^{\top} Q^{*} \pi=0
$$

- relation to quadric $\mathrm{Q}^{*}=\mathrm{Q}^{-1}$ (non-degenerate)

ETH

2D projective transformations

Definition:
A projectivity is an invertible mapping h from P^{2} to itself such that three points $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ lie on the same line if and only if $h\left(\mathrm{x}_{1}\right), h\left(\mathrm{x}_{2}\right), h\left(\mathrm{x}_{3}\right)$ do.

Theorem:

A mapping $h: \mathrm{P}^{2} \rightarrow \mathrm{P}^{2}$ is a projectivity if and only if there exist a non-singular 3×3 matrix \mathbf{H} such that for any point in P^{2} reprented by a vector x it is true that $h(\mathrm{x})=\mathbf{H x}$

Definition: Projective transformation

$$
\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \text { or } \quad \begin{aligned}
& \mathrm{x}^{\prime}=\mathbf{H} \mathrm{x} \\
& 8 \mathrm{DOF}
\end{aligned}
$$

Transformation of 2D points, lines and conics

For a point transformation

$$
\mathrm{x}^{\prime}=\mathbf{H x}
$$

Transformation for lines

$$
l^{\prime}=\mathbf{H}^{-\top} 1
$$

Transformation for conics

$$
\mathbf{C}^{\prime}=\mathbf{H}^{-\top} \mathbf{C H}^{-1}
$$

Transformation for dual conics

$$
\mathbf{C}^{\iota^{*}}=\mathbf{H C} \mathbf{C}^{*} \mathbf{H}^{\top}
$$

Fixed points and lines

$\mathbf{H e}=\lambda \mathrm{e} \quad$ (eigenvectors $\mathbf{H}=$ fixed points) ($\lambda_{1}=\lambda_{2} \Rightarrow$ pointwise fixed line)

$\mathbf{H}^{\top} 1=\lambda 1$ (eigenvectors $\mathbf{H}^{-\top}=$ fixed lines)

ETH

Hierarchy of 2D transformations

		transformed	invariants
Projective 8dof	$\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]$		Concurrency, collinearity, order of contact (intersection, tangency, inflection, etc.), cross ratio
Affine 6dof	$\left[\begin{array}{ccc}a_{11} & a_{12} & t_{x} \\ a_{21} & a_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right]$		Parallellism, ratio of areas, ratio of lengths on parallel lines (e.g midpoints), linear combinations of vectors (centroids). The line at infinity I_{∞}
Similarity 4dof	$\left[\begin{array}{ccc}s r_{11} & s r_{12} & t_{x} \\ s r_{21} & s r_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right]$		Ratios of lengths, angles. The circular points I,J
Euclidean 3dof	$\left[\begin{array}{ccc}r_{11} & r_{12} & t_{x} \\ r_{21} & r_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right]$		lengths, areas.

The line at infinity

$$
1_{\infty}^{\prime}=\mathbf{H}_{A}^{\top} 1_{\infty}=\left[\begin{array}{cc}
\mathbf{A}^{\top} & 0 \\
\mathbf{A t} & 1
\end{array}\right]\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=1_{\infty}
$$

The line at infinity I_{∞} is a fixed line under a projective transformation H if and only if H is an affinity

Note: not fixed pointwise

Affine properties from images

Affine rectification

EHH

The circular points

$$
\begin{gathered}
\mathrm{I}=\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right) \quad \mathrm{J}=\left(\begin{array}{c}
1 \\
-i \\
0
\end{array}\right) \\
\mathrm{I}^{\prime}=\mathbf{H}_{S} \mathrm{I}=\left[\begin{array}{ccc}
s \cos \theta & s \sin \theta & t_{x} \\
-s \sin \theta & s \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right)=s e^{i \theta}\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right)=\mathrm{I}
\end{gathered}
$$

The circular points I, J are fixed points under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

The circular points

"circular points"

Algebraically, encodes orthogonal directions

$$
\mathrm{I}=(1,0,0)^{\top}+i(0,1,0)^{\top}
$$

Conic dual to the circular points

$$
\begin{gathered}
\mathbf{C}_{\infty}^{*}=\mathrm{IJ}^{\top}+\mathrm{JI}^{\top} \quad \mathbf{C}_{\infty}^{*}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \mathbf{C}_{s}^{*}=\mathbf{H}_{s} \mathbf{C}_{\infty}^{*} \mathbf{H}_{S}^{\top}
\end{gathered}
$$

The dual conic \mathbf{C}_{∞}^{*} is fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

Note: \mathbf{C}_{∞}^{*} has 4DOF 1_{∞} is the nullvector

Angles

Euclidean: $\quad 1=\left(l_{1}, l_{2}, l_{3}\right)^{\top} \quad \mathrm{m}=\left(m_{1}, m_{2}, m_{3}\right)^{\top}$

$$
\cos \theta=\frac{l_{1} m_{1}+l_{2} m_{2}}{\sqrt{\left(l_{1}^{2}+l_{2}^{2}\right)\left(m_{1}^{2}+m_{2}^{2}\right)}}
$$

Projective: $\quad \cos \theta=\frac{1^{\top} \mathbf{C}_{\infty}^{*} \mathrm{~m}}{\sqrt{\left(1^{\top} \mathbf{C}_{\infty}^{*} 1\right)\left(\mathrm{m}^{\top} \mathbf{C}_{\infty}^{*} \mathrm{~m}\right)}}$

$$
1^{\top} \mathbf{C}_{\infty}^{*} \mathrm{~m}=0 \text { (orthogonal) }
$$

Transformation of 3D points, planes and quadrics

For a point transformation

$$
X^{\prime}=\mathbf{H X}
$$

(cfr. 2D equivalent)

$$
\left(\mathrm{x}^{\prime}=\mathbf{H} \mathrm{x}\right)
$$

Transformation for lines

$$
\pi^{\prime}=\mathbf{H}^{-\top} \pi
$$

$$
\left(l^{\prime}=\mathbf{H}^{-\top} 1\right)
$$

Transformation for conics

$$
\mathrm{Q}^{\prime}=\mathrm{H}^{-\mathrm{T}} \mathrm{QH}^{-1} \quad\left(\mathbf{C}^{\prime}=\mathbf{H}^{-\top} \mathbf{C H}^{-1}\right)
$$

Transformation for dual conics

$$
\mathrm{Q}^{,^{*}}=\mathrm{HQ}^{*} \mathrm{H}^{\top} \quad\left(\mathbf{C}^{*}=\mathbf{H} \mathbf{C}^{*} \mathbf{H}^{\top}\right)
$$

Hierarchy of 3D transformations

Projective 15dof

Affine 12dof

Intersection and tangency

Parallellism of planes, Volume ratios, centroids, The plane at infinity \boldsymbol{T}_{∞}

Similarity 7dof

Angles, ratios of length The absolute conic Ω_{∞}

Euclidean 6dof

Volume

The plane at infinity

$$
\boldsymbol{\pi}_{s}^{\prime}=\mathbf{H}_{A}^{\top} \boldsymbol{\pi}_{s}=\left[\begin{array}{ll}
\mathbf{A}^{\top} & 0 \\
-\mathbf{A t} & 1
\end{array}\right]\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\pi_{\infty}
$$

The plane at infinity π_{∞} is a fixed plane under a projective transformation H iff H is an affinity

1. canonical position $\pi_{\infty}=(0,0,0,1)^{\top}$
2. contains directions $\mathrm{D}=\left(X_{1}, X_{2}, X_{3}, 0\right)^{\top}$
3. two planes are parallel \Leftrightarrow line of intersection in π_{∞}
4. line // line (or plane) \Leftrightarrow point of intersection in π_{∞}

The absolute conic

The absolute conic Ω_{∞} is a (point) conic on π_{∞}.
In a metric frame:

$$
\left.\begin{array}{c}
X_{1}^{2}+X_{2}^{2}+X_{3}^{2} \\
X_{4}
\end{array}\right\}=0
$$

or conic for directions: $\left(X_{1}, X_{2}, X_{3}\right) \mathrm{I}\left(X_{1}, X_{2}, X_{3}\right)^{\top}$ (with no real points)

The absolute conic Ω_{∞} is a fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

1. Ω_{∞} is only fixed as a set
2. Circle intersect Ω_{∞} in two circular points
3. Spheres intersect π_{∞} in Ω_{∞}

The absolute dual quadric

$$
\Omega_{\infty}^{*}=\left[\begin{array}{cc}
\mathrm{I} & 0 \\
0^{\top} & 0
\end{array}\right]
$$

The absolute dual quadric Ω_{∞}^{*} is a fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

1. 8 dof
2. plane at infinity π_{∞} is the nullvector of Ω_{∞}
3. Angles:

$$
\cos \theta=\frac{\pi_{1}^{\top} \Omega_{\infty}^{*} \pi_{2}}{\sqrt{\left(\pi_{1}^{\top} \Omega_{\infty}^{*} \pi_{1}\right)\left(\pi_{2}^{\top} \Omega_{\infty}^{*} \pi_{2}\right)}}
$$

EHH

Camera model

Relation between pixels and rays in space

EH

Pinhole camera

illum in tabula per radios Solis, quam in coelo contingit: hoc eft, fi in ccelo fuperior pars deliquiü patiatur, in radiis apparcbit inferior deficere,vt ratio exigit optica.

Sic nos exadtè Anno.1544. Louanii celipfim Solis obferuauimus, inuenimusq; deficere paulò plus \mathfrak{q} dex-

Pinhole camera model

$$
\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \mapsto\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & & & 0 \\
& f & & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

linear projection in homogeneous coordinates!-TH

Pinhole camera model

ETH

Principal point offset

$(X, Y, Z)^{T} \mapsto\left(f X / Z+p_{x}, f Y / Z+p_{y}\right)^{T}$
$\left(p_{x}, p_{y}\right)^{T}$ principal point

$$
\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \mapsto\left(\begin{array}{c}
f X+Z p_{x} \\
f Y+Z p_{x} \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & & p_{x} & 0 \\
& f & p_{y} & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Principal point offset

Camera rotation and translation

$$
\begin{aligned}
& \widetilde{\mathrm{X}}_{\mathrm{cam}}=\mathrm{R}(\widetilde{\mathrm{X}}-\widetilde{\mathrm{C}}) \\
& \mathrm{X}_{\mathrm{cam}}=\left[\begin{array}{cc}
\mathrm{R} & -\mathrm{R} \widetilde{\mathrm{C}} \\
0 & 1
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)=\left[\begin{array}{cc}
\mathrm{R} & -\mathrm{R} \widetilde{\mathrm{C}}] \\
0 & 1
\end{array}\right] \mathrm{X} \\
& \mathrm{x}=\mathrm{K}[[[10] \widetilde{\mathrm{C}}] \mathrm{X} \\
& \mathrm{x}=\mathrm{PX} \quad \mathrm{P}=\mathrm{K}[\mathrm{R} \mid \mathrm{t}] \quad \mathrm{t}=-\mathrm{R} \widetilde{\mathrm{C}}
\end{aligned}
$$

ETH

CCD camera

General projective camera

$$
\begin{aligned}
& K=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
& \alpha_{x} & p_{y} \\
& & 1
\end{array}\right] \\
& \mathrm{P}=\underbrace{\mathrm{KR}}[\mathrm{I} \mid \widetilde{\mathrm{C}}] \quad 11 \operatorname{dof}(5+3+3) \\
& \text { non-singular } \\
& P=\underbrace{\mathrm{extrinsic} \text { camera parameters }}_{\text {intrinsic camera parameters }}
\end{aligned}
$$

Radial distortion

- Due to spherical lenses (cheap)
- Model:

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \sim\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right] \mathbf{R}\left[\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R}^{\top} & -\mathbf{R}^{\top} \mathrm{t} \\
0_{3}^{\top} & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]\right]
$$

straight lines are not straight anymore

Camera model

Relation between pixels and rays in space

EH

Projector model

Relation between pixels and rays in space (dual of camera)

(main geometric difference is vertical principal point offset to reduce keystone effect)

Meydenbauer camera

Fig. 5: The principle of »Plane-Table Photogrammetry" (after an instructional poster of Meydenbauer's institute)

Fig. 6: The effect of a vertical shift of the camera lens; the position II makes the best use of the image format (after Meydenbauer's textbook from 1912)

Affine cameras

Action of projective camera on points and lines
projection of point

$$
\mathrm{x}=\mathrm{PX}
$$

forward projection of line

$$
X(\mu)=P(A+\mu B)=P A+\mu P B=a+\mu b
$$

back-projection of line

$$
\begin{aligned}
& \Pi=\mathrm{P}^{\mathrm{T}} 1 \\
& \Pi^{\mathrm{T}} \mathrm{X}=1^{\mathrm{T}} \mathrm{PX} \quad\left(1^{\mathrm{T}} \mathrm{x}=0 ; \mathrm{x}=\mathrm{PX}\right)
\end{aligned}
$$

Action of projective camera on conics and quadrics
back-projection to cone

$$
\mathrm{Q}_{\mathrm{co}}=\mathrm{P}^{\mathrm{T}} \mathrm{CP}
$$

$$
x^{T} C x=X^{T} P^{T} C P X=0
$$

$$
(x=P X)
$$

projection of quadric

$$
\mathrm{C}^{*}=\mathrm{PQ}^{*} \mathrm{P}^{T} \quad \Pi^{\mathrm{T}} \mathrm{Q}^{*} \Pi=\mathrm{l}^{\mathrm{T}} \mathrm{PQ}^{*} \mathrm{P}^{\mathrm{T}} 1=0
$$

$$
\left(\Pi=\mathrm{P}^{\mathrm{T}_{1}}\right)
$$

Image of absolute conic

$$
\begin{aligned}
\omega^{*} & =\mathbf{P} \Omega^{*} \mathbf{P}^{\top} \\
& =\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathrm{t}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{I} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{R}^{\top} \\
\mathrm{t}^{\top}
\end{array}\right] \mathbf{K}^{\top} \\
& =\mathbf{K} \mathbf{K}^{\top} \\
\omega & =\mathbf{K}^{-1} \mathbf{K}^{-\top}
\end{aligned}
$$

A simple calibration device

(i) compute H for each square (corners @ (0,0),(1,0),(0,1),(1,1))
(ii) compute the imaged circular points $\mathrm{H}(1, \pm \mathrm{i}, 0)^{\top}$
(iii) fit a conic to 6 circular points
(iv) compute K from ω through cholesky factorization
(\approx Zhang's calibration method) SM

Exercises: Camera calibration

EHH

Next class: Single View Metrology

Antonio Criminisi EMH

