Phys 116 Spring '09 - HW 9
12.3) We have an open tube, so the frequencies will be given by where n can be any positive integer $(1,2,3, \ldots)$. The question asks for fundamental mode, so . We are given the length of the pipe . Since this is a pipe, the speed we want is the speed of sound in air. Since we aren't given a temperature, use

12.4) We have an open tube, so the frequencies will be given by where n can be any odd integer $(1,3,5,7, \ldots)$. The question asks for fundamental mode, so . We are given the length of the pipe . Since this is a pipe, the speed we want is the speed of sound in air. Since we aren't given a temperature, use $L=0.57 \mathrm{~m}$.

12.5) We have an open tube, so the frequencies will be given by
where n can be any positive integer (1, 2, 3, ...). We can get wavelength either from the sketches, from the frequencies through \qquad

$1^{\text {st }}$ mode $\quad 5^{\text {th }}$ mode

12.6) We have a closed tube, so the frequencies will be given by

where n can be any odd integer $(1,3,5, \ldots)$. We can

pressure for 5th mode - open on left
displacement for 5th mode - open on left

12.7) This is the reverse process of the previous several problems and a direct comparison of stopped and open pipes.

12.20)
13.6) The equation for frequency in an ideal closed cylinder (reeds are closed and the clarinet is a cylinder) is
where n must be an odd integer.

The lowest note of an instrument (with the notable exception of the brass) is the fundamental, so $n=1$.

The instrument has a bell at the end which lessens its effective length of the instrument.

