6) Find $f^{\prime}(x)$ where $f(x)=\sin \left(0 x^{r}-r\right)$
$\mathrm{g}(\mathrm{x})$ will be $\sin (\mathrm{h}(\mathrm{x}))$ and $\mathrm{h}(\mathrm{x})$ will be $\left(5 x^{2}-\mathrm{r}\right)$
$\mathrm{g}^{\prime}(\mathrm{h}(\mathrm{x}))=\cos \left(5 x^{2}-3\right)$
$h^{\prime}(\mathrm{x})=10 \mathrm{x}$
$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{h}(\mathrm{x})) \cdot \mathrm{h}^{\prime}(\mathrm{x})$
$f^{\prime}(\mathrm{x})=10 x \cos \left(5 x^{2}-3\right)<--$ solution
7) find $f^{\prime}(x)$ where $f(x)=\sqrt{\cos 4 x-2 x}$
$\mathrm{g}(\mathrm{x})=\sqrt{x}$
$h(x)=\cos 4 x-2 x$
$g^{\prime}(\mathrm{h}(\mathrm{x}))=\frac{1}{2 \sqrt{\cos 4 x-2 x}}$
$h^{\prime}(x)=-4 \sin 4 x-2$
$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{h}(\mathrm{x})) \cdot \mathrm{h}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\cos 4 x-2 x}} \times(-\varepsilon \sin 4 \mathrm{x}-2)=\frac{-4 \sin 4 \mathrm{x}-2}{2 \sqrt{\cos \varepsilon x-2 x}}<-$ solution
8)

$f(x)=\ln 2 x$
$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{h}(\mathrm{x})) \bullet \mathrm{h}^{\prime}(\mathrm{x})$
$g(x)=\ln x$
$h(x)=2 x$
$\mathrm{g}^{\prime}(\mathrm{x})=1 / \mathrm{x}$
$h^{\prime}(\mathrm{x})=2$
$g^{\prime}(h(x))=1 /(2 x)$
$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{h}(\mathrm{x})) \cdot \mathrm{h}^{\prime}(\mathrm{x})=1 /(2 \mathrm{x}) \bullet 2=2 /(2 \mathrm{x})=\mathbf{1} / \mathrm{x}<--$ solution

13)

$$
y=\left(0 x^{2}-2 x\right)^{e^{x}}
$$

ln both sides:

$$
\ln y=e^{x} \ln \left(5 x^{2}-2 x\right)
$$

breaking this down for product and chaining rules:

$$
\begin{aligned}
& \mathrm{g}(\mathrm{x})=e^{x} \\
& \mathrm{~h}(\mathrm{x})=\mathrm{k}(\mathrm{u}(\mathrm{x})) \\
& \mathrm{k}(\mathrm{x})=\ln (\mathrm{x}) \\
& \mathrm{u}(\mathrm{x})=\left(5 x^{r}-r x\right)
\end{aligned}
$$

so we differentiate both sides (product rule first):

$$
\frac{1}{y} \frac{d y}{d x}=g^{\prime}(x) h(x)+h^{\prime}(x) g(x)
$$

now the chain rule on $\mathrm{h}^{\prime}(\mathrm{x})$:

$$
\frac{1}{y} \frac{d y}{d x}=g^{\prime}(x) h(x)+k^{\prime}(u(x)) u^{\prime}(x) g(x)
$$

multiply both sides by y:

$$
\frac{d y}{d x}=\left(g^{\prime}(x) h(x)+k^{\prime}(u(x)) u^{\prime}(x) g(x)\right) \times y
$$

Now we differentiate:

$$
\begin{aligned}
& \mathrm{g}(\mathrm{x})=e^{x} \\
& \mathrm{~g}^{\prime}(\mathrm{x})=e^{x} \quad \text {-- easy enough } \\
& \mathrm{k}(\mathrm{x})=\ln (\mathrm{x}) \\
& \mathrm{k}^{\prime}(\mathrm{x})=1 / \mathrm{x} \quad \text {-- also easy }
\end{aligned}
$$

$\mathrm{u}(\mathrm{x})=\left(5 x^{2}-2 x\right)$
$\mathrm{u}^{\prime}(\mathrm{x})=(10 x-2) \quad-$ simple (the power rule is my friend)
now we plug it all in:
from above so I don't have to keep scrolling up:

$$
\begin{aligned}
y & =\left(0 x^{r}-r x\right)^{e^{x}} \\
\mathrm{~h}(\mathrm{x}) & =\mathrm{k}(\mathrm{u}(\mathrm{x}))=\ln \left(5 x^{2}-r x\right) \\
\frac{d y}{d x} & =\left(g^{\prime}(x) h(x)+k^{\prime}(u(x)) u^{\prime}(x) g(x)\right) \times y \\
& \quad \mathrm{~g}^{\prime}(\mathrm{x}) \quad \mathrm{h}(\mathrm{x}) \quad \mathrm{k}^{\prime}(\mathrm{u}(\mathrm{x})) \quad \mathrm{u}^{\prime}(\mathrm{x}) \quad \mathrm{g}(\mathrm{x}) \\
\frac{d y}{d x} & =\left(e^{x} \times \ln \left(5 x^{2}-2 x\right)+\frac{1}{5 x^{2}-2 \mathrm{x}} \times(10 \mathrm{x}-2) \times e^{x}\right) \times\left(5 x^{2}-2 x\right)^{e^{x}}
\end{aligned}
$$

Which is the solution. To move it to look like the answer on the test, we rearrange to put y in front, flip the addition, and combine $1 / \mathrm{u}(\mathrm{x})$ and $\left(\mathrm{u}^{\prime}(\mathrm{x})\right.$ times $\left.\mathrm{g}(\mathrm{x})\right)$:

$$
\frac{d y}{d x}=\left(5 x^{2}-2 x\right)^{e^{x}} \times\left(\frac{e^{x}(10 \mathrm{x}-2)}{5 x^{2}-2 \mathrm{x}}+e^{x} \times \ln \left(5 x^{2}-2 x\right)\right)
$$

finally (phew) we pull out $\mathrm{e}^{\wedge} \mathrm{x}$ as a common factor and put it in front, getting the same solution as A on the quiz:

$$
\frac{d y}{d x}=e^{x}\left(5 x^{2}-2 x\right)^{e^{x}}\left(\frac{10 \mathrm{x}-2}{5 x^{2}-2 \mathrm{x}}+\ln \left(5 x^{2}-2 x\right)\right)
$$

