
LAGR Phase II API

Planner to Perception Interface Additions

 Purpose

The purpose of this document is to describe proposed additions to the LAGR API to be used to support
plug and play of perception systems with planning and control systems in the Phase II “Best of LAGR”
system.

Background

At the beginning of LAGR Phase I, CMU delivered to each team a robot complete with a working
software installed. The software consisted of 6 parts:

1. RedHat 9 Linux operating system. (in Phase II this was upgraded to SuSE 10.1)
2. Baseline non replaceable low-level control, data acquisition and position estimation software.
3. Replaceable Baseline planner
4. Replaceable Baseline perception software.
5. Replaceable Graphical User Interface to be run remotely across a wireless network.
6. Interface library(liblagr.a) and corresponding header files (lagrInterface.h . . .)

Because some of the baseline components were not replaceable the interfaces were one way. The teams
could write software to send some information but not receive it or implement the components that
receive it. Other information could be received but teams could not generate it. A consequence of this one
way nature of the interfaces was that teams implementing their own planners had no interface to the
perception system to work against. The only way to replace the planner was to also replace the perception
system and the graphical user interface and define your own custom interfaces between them. Since each
of team did this separately, each of these systems is likely incompatible.

Scope

This document is concerned only with the interface between the perception software and the
planning/control software. Although each of these two large components might be subdivided and
additional interfaces defined then defined between those subcomponents we are not yet ready to deal with
that level of detail. The term perception is intended to include any team developed software module that
generates data compatible with the interface that provides information about which geographic areas
should be traversed and which should not including detecting roads, paths, terrain types, the ground
plane, obstacles and cover and including any map building, fusion or filtering of this information before
being sent to the planner. The planning and control side could also include any software that filters or
fuses the updates after being received builds maps and any thing else needed to control the robot such
that it reaches the goal in the optimal way.
The standard would require only the use of a single new header (lagr2.h) by each team which wishes to
produce a compatible planner or perception system. An implementation of this standard (lagr2Nist.so)
will be provided but teams are free to implement their own version of the library. The library itself needs
to wrap some form of communication system however the protocols that it uses and the data structures
sent across them are internal and unique to each implementation of the library and therefore not defined
here.
The new library is not intended to replace the original API liblagr.a or the header files that came with it

but to be used along side it/them.
The new API provides an interface both for the planner and for the perception system however
interoperability might require only one to be modified to use the new API as long as a library that
communicates with the older non-standard interface is available. Imagine team A has an perception
system that uses the new standard API and team B has a planner that uses a custom team-specific API
but can provide a library to team A that wraps their custom API in the standard API. A's perception can
be linked with the library and therefore to B's planner. Similarly team C might have an perception system
with a custom API and a wrapper library for team D with standard API Planner. Teams A and D could
be linked using any version of the library. Unfortunately teams C's perception and teams B's planner
both with different incompatible custom interfaces are not going to work together without modifying one
or the other. This means ideally both planners and perception modules would use the new API for
maximum flexibility but that we will be able to interoperate with some legacy systems most importantly
the original baseline planner which can not be modified to use the standard API. Other combinations are
possible including wrapping the new API in some teams custom API.

It is designed to impose as few constraints as possible on the implementations of the planner, the
perception system and even on the internal communication system and still allow for interoperability. It

Perception
Planning
and Control

Team A's
Perception Lagr2

API

Team
B
API

Team B's
Planner

Team C's
Perception

Lagr2
API

Team
C
API

Team D's
Planner

Team A's
Perception Lagr2

API
Lagr2
API

Team D's
Planner

Team C's
Perception

Team B's
PlannerXX

should be possible to run multiple perception systems simultaneously connected to a single planner. It is
probably not reasonable to run multiple planners at the same time since there is no mechanism described
to determine how the robot should behave when the planners have conflicting outputs but the API does
not necessarily exclude the possibility either.

Concepts

The lagr2Updater is a pointer to a generic communications object. It might point to a structure that
contains a socket file descriptor or a handle used by any underlying communications system, or the
structure could even be empty if the library implementor had no need to store anything in it. Applications
are expected to call lagr2CreateUpdater() once at startup and lagr2Destroy() once at shutdown. The
create function takes as an argument the name of a .ini file which could just be ignored but is expected to
contain whatever configuration information is relevant to this implementation. By obtaining the data from
the INI file rather than by having the application call functions to set these options the application is kept
more independent from the library implementation. The lagr2Updater's primary purpose is to send and
receive updates. Each update is conceptually a list of map cells with modified attributes and a vehicle
state that tags the time and position at which the raw data was collected from which the attributes were
determined. The state might be different from the current state due to delays at any number of places in
the system. Also the planner might later correct its internal map based on the knowledge with better
estimation of past positions. How these updates are internally stored and whether they are communicated
all at once or with a number of messages back and forth is up to the library implementor however the
functions lagr2GetUpdate() and lagr2SendUpdate() still need to be called by the user to support libraries
that happen to send the data all at once and modifications to the update should not become visible to the
user until after a call to lagr2GetUpdate(). Each map cell is associated with geographic position and a
number of attributes, it is expected that except for cost very few planners will make use of all of the
available attributes and further that very few perception systems would generate all of the attributes, and
even for those that do some attributes might be known or relevant only for certain positions and not the
entire map. The planner should perform with at least minimally acceptable behavior even if the only
attribute set is cost. Developers of perception systems should be aware that when used within the “best of
LAGR” system the only attribute essentially certain not to be ignored when they are connected to a
compatible planner from another team is cost. This is not to say that is useless to set any other attribute
since as the list of attributes is publicized and perception modules available to produce them and
assuming the associated information really is valuable in achieving better behavior the likelihood of
more planners taking advantage of the attribute increases. The communications library may not
necessarily send all of the attributes either based on an assumption perhaps confirmed in the ini file that
the planner will not some attributes. The API uses double values for all attributes since this provides the
maximum precision and range of values, but the library might very well convert this to a smaller type
(char, short , float etc.) and use information in the ini file to confirm that with the given planner and/or
perception system this is a safe thing to do that will conserve memory or communications bandwidth.

Some examples of what implementors of perception systems, planners or interface libraries might do was
provided to avoid having components be less reusable by making unnecessary assumptions about how
the rest of the system will be implemented but developers need to be encouraged to focus on their
component and assume the widest possible range of other components. Rather than perception systems
becoming highly tuned to the quirks of the planner or comm system they are using or vice-versa.

To be done

An additional document will provide a description of every function within the API. Some examples will

be built, both real functioning examples using the NIST, Baseline and SRI planners cross connected to
either the NIST or SRI perception systems as well as a more trivial but easier to understand non working
example.

	LAGR Phase II API
	Planner to Perception Interface Additions
	 Purpose
	Background
	Scope
	Concepts
	To be done

