Sponsored by AMD

Investigate Footprint Shrinkage of
OpenOffice.org

Michael Meeks <michael.meeks@novell.com>,
Tor Lillgvist <tlillgvist@novell.com>

Novell.

mailto:michael.meeks@novell.com
mailto:tlillqvist@novell.com

Overview

OpenOffice.org is mythically resource intensive, and as the largest free C++
application out there stress tests everything it touches: compiler, toolchain, I/O & swap
algorithms, memory allocators and so on.

This document analyzes the footprint of the writer component (since this is typical),
running under a GNOME desktop, though the results should be similar to those of other
environments. All analysis was performed (unless otherwise specified) with an OO.o
2.0.4 build on a SLEDI0 system.

Memory breakdown

Overall pmap analysis
pmap is a standard tool for displaying information about process memory mappings.

It can be used for simple, but reliable measure of the memory problems:

Size / Mb RSS /Mb Dirty / Mb
Total 266 (104 unshared) 75 25

So — we require 75SMb of physical memory to do no more than start up writer, and
enter a few characters. Of this, only 19Mb (25%) is heap space. Thus to reduce memory
consumption it will be necessary to reduce both heap and code sizes.

RSS breakdown

10.05%

I 00.0 code

Ml [heap]

[l System Unshared
[l System Shared
Il Gnome bits

[shared icons

[] fonts

[stacks

56.95%
25.24%

Code breakdown analysis

We have ~43Mb of core OO.o code (RSS), from ~83Mb (Size). The complete OO.o
code size is 125Mb, so clearly a combination of on-demand loading, and the component
model separation effects a reduction of a factor of ~3 in code size. Unfortunately, from a
per-module level analysis of the remaining code, it is clear that there is no single
dominant library susceptible to removal.

p.2

Library Breakdown

libsw680li.s0 4912
libsvx680li.s0 4168 .‘
senvices.rdb 2532 »
libsfx680li.s0 1860 7
libsvI680li.s0 1812

types.rdb 1568

Similarly analysis of overall section sizes using the Novell-developed relocstat tool
shows that things appear fairly normal although the data (.data / .rodata) appears
large, and linking (. rel.plt, .plt, .dynsym, .dynstr, .got.plt,
.got, .hash) seems unfortunately large at 16% of total size. Code (. Text) is still the
largest chunk; we compile with -Os however it is clear that in this area more compiler
work to optimize more aggressively for size may be helpful.

DSO breakdown

data relocs 7683

exceptions 15432

code 65902
linking 21848

data 22710

C++/ g++ optimization

There are however several sub-optimalities in the C++ compiler, mainly the excessive
emission of vtable related relocations. Cleaning this up yields both space and time wins,
particularly startup wins — since all vtable relocations must be processed before executing
code in a given DSO (Dynamic Shared Object). A complete solution requires 2 schemes

1. DSO initializers to do simple bitmap informed copies of vtables from their
parents. This turns the painfully slow named relocation symbol lookup process
into a single parent vtable lookup per DSO, per sub-class. This also turns a 16byte
relocation (+ symbol) into a 2bit entity. - 8 days

2. vtable instead of PLT (Procedure Linkage Table) invocation. When implementing
virtual methods, chaining to the parent implementation is a very common
occurrence. If instead of a direct by-symbol call via the PLT we do an indirect call

p.3

http://go-oo.org/ooo-build/bin/relocstat

via a parent vtable pointer, assuming that all calling code uses this convention we
can save more symbols, PLT trampolines & GOT slots. - 8 days

The total saving here across the 125Mb of code is around 9MDb, ie. ~7%, so perhaps
we can save SMb from the total size.

Extraneous libraries
A fair number of libraries are not really required on startup — re-factoring could be
used to remove these from the stack eg.

Name Size / Kb
sndfile 344
jvmaccessgec3 160
jvmfwk 160
avmedia 144
portaudio 28
Total 836

While removing these libraries may marginally improve startup performance, the net
memory gain is not substantial, for a substantial re-factoring cost. - 5 days

Component databases (.rdb) files

The .rdb files 10MD total size, (4Mb RSS) are highly inefficient using an obsolete
legacy format. When gzipped, these files shrink to 1Mb, so it should be easy to save
>50% of the memory consumed here, yielding another SMb from the total size. There are
however some API issues to overcome here relating to up-stream's ABI stability
commitment — 5 days

Images.zip shrink

The initial design of accessible icons was not theme based, and included a single
theme of accessible variants of ~all artwork into the same .zip file. Thus a certain amount
of resources are consumed, by accommodating these. While only 26% of the icon size is
accessible variants, this accounts for 35%-+ of the directory size — which is permanently
loaded. Thus we can save perhaps 200k moving to a theme based approach. - 5 days

Heap Allocation
Profiling the heap allocation reveals a number of interesting issues of varying
complexity.

Area Size Saving Description
/Kb /Kb
hunspell 3000 1500 The dictionaries are loaded, and strings duplicated

into memory instead of mmapping the dictionary files
(and complicating the checking code) — 5 days

OUString 2000 1500 The majority of strings are duplicates, and the UCS-2
representation also burns big chunks of memory, since
almost all strings are programmatic and hence ASCII
anyway. - 2 days

p.4

configmgr 3443 1000 SimpleCheckingHeapMgr — 1.3Mb, stl node
allocation — 1.2Mb, strings, obj references etc.
consume the rest. - 5 days

StxNewHdl 512 512 This is a buffer against OOM (to be freed in that
case), but is (apparently) never used. - 0.1 days

‘package’ zip code 1022 500 reading the large images.zip file creates a huge hash
table with lots of duplicated string stems — 3 days

component 890 300 The extensive use of

registry OMultiTypelnterfaceContainerHelper which involves
an inappropriate use of the (badly behaved for small
sets) STL::hashtable burns the memory here. Also
OStorePageData consumes a chunk of memory. - 1

day

String duplication is a rampant problem, analysis of string usage suggests that 90%

(by size) of strings post startup are duplicates of other strings. The base string classes are
immutable, so implementing a global unique string hash may be a simple and worthwhile
solution here. It is notable too that malloc overhead is significant — a malloc based profiler

registers 16Mb of allocations, where pmap reports 19Mb.

Startup performance issues

Dominating Cold Start problems
The difference between cold and warm start times is substantial on typical hardware:

Cold vs. Warm start

Inspiron

0.00% 50.00% 100.00%

CPU time on the left and I/O time on the right as a proportion of total cold start up
time. The Inspiron is far older hardware, so the CPU costs of linking / startup dominate
the I/0O issues, but the Thinkpad is a far more recent CPU with larger cache.

A further problem is with small memory footprint situations — Linux I/O degrades
very substantially in the presence of multiple I/O requests:

p.5

Effect of I/0O load

Dell Inspiron

[Cold
M Cold+/0
[Cold-pre+1/0

Thinkpad

00 1.0 20 30 40 50 60 7.0 80 9.0 10.0 11.012.0 13.0 14.015.0 16.0 17.0 18.019.0 20.0 21.022.0 23.0

This shows how simulated I/O load in the form of seeks (in this case an Is -R /usr in
parallel) causes dramatic degradation in cold start time. Unfortunately, low memory
situations exacerbate this problem by necessitating swap usage to free up physical
memory to read in large chunks of code, as can be seen this can easily turn cold start time
from 3 seconds to 23 seconds. Pre-loading can help to reduce this problem.

Ideally kernel work is required to quantify and address swap performance, 1/0
handling etc. Some substantial work has been done to reduce the amount of I/O performed
at startup, but this work tends towards obfuscating on-disk structures in unpleasant ways.
At root this is a kernel level issue.

Unfortunately, reliable cold start profiling is extremely difficult to repeat, or generate
any reliable data from. This is particularly so due to the eclectic mix of syscall I/O and
mmapped I/0O. More research is required here — implementing a valgrind skin to generate
memory (and mmap) traces, combined with syscall I/O traces would be a good first start.
- 4 days

Cachegrind profiling

Valgrind is a program for debugging and profiling Linux executables using a synthetic
CPU in software. Of course, its pseudo-CPU model is (at some level) extremely contrived,
however it can give us some rough insight into the proportion of time spent in various
areas. This simulation was tweaked for a processor with a very small cache:

valgrind --tool=callgrind --simulate-cache=yes --dump-
instr=yes \

--11=65536,16,32 --D1=65536,16,32 \
--1.2=131072,4,32 ./soffice.bin -writer

p.6

|Self ELF Object H
u24.53mld-2.550
116.40mconfigmgr2.uno.so
113.20mlibc-2.5.50
1 9.95mlibuno_sal s0.3

4.67 mlibhunspell so @

H Incl. |Se|f |CaHed ‘ Function =

muo0.72 0.00 120x080643990

mmo0. 51 0.00 1=sal_main

me 7833 0.00 1 mdesktop::Desk
430 0.00 1 mdesktop:: Deskt—
3.47 0.00 1 mdesktop:Langl .’7 TTTTFTE
346 0.00 1 mdesktop::Deski =
2.08 0.00 1 mdesktop: Deskt F’i.rrr rr
206 000 1 sidesktop: Deskl Bl W FFFEWFFF |—r
202 021 313762sallocate @I

1.91 0.09 272 790 mwoperator new
1.59 0.00 1 sdeskiop::Deski
102 011 303 753=deallocate
097 0.09 263 306soperator delete

0.72 0.00 1 mdesktop:: Deskt
0.59 0.00 11 mdesktop::Langt
0.40 0.00 1 mdesktop: Deskt
0.28 0.00 3mdesktop:Lang
0.26 0.00 2 uideskiop::Lang.
0.26 0.00 2 mdesktop::Langt

023 0.02 40 972 moperator new(]
0.17 0.02 40 447 goperator de\et

. 012 0.00 3Jdeskton“Lﬁ|:i%

Linking

This is an area we have invested in substantially in the past. The above chart shows a
SL10.2 system, with the -Bdirect and —hash-style=gnu optimisations present. These give a
substantial improvement for machines with small L2 caches. However, since our -dynsort
work went into binutils (as the new —hash-style=gnu option) it gained a pre-bloom filter.
This is unnecessary and counter-productive for -Bdirect linking (it adds an extra cache
miss per symbol), because we know which library contains the target symbol. More
details are available at Optimizing Linker [L.oad Times.

This work of course has a positive impact on all linking on the system, that is
particularly helpful to systems with small caches. Extra work required here would involve:

e binutils — external relocation sorting by target library, and bucket library offset — 2
days

e glibc — re-factoring to improve efficiency, and to bypass the bloom filter in —hash-
style=gnu for -Bdirect lookups. - 3 days

e binaries — due to implementation quirks -Bdirect doesn't generate sections for
binaries — adding this would improve the linking of lots of small apps.

Lazy Loading

The -Bdirect linking implementation makes possible another linker optimization:
Lazy Loading. (cf. MS' /delayload feature). Since the direct linking information lets us
know where each symbol is referenced, in the case that we know that a library exports no
Vague symbols that cannot be directly bound — it should be possible to defer loading this
library until those symbols are referenced, detecting which library should be demand
loaded from the direct linking data. Unfortunately this doesn't work well for libraries
requiring early initialization, which includes a lot of our dependencies.

A number of binutils & glibc changes would be required to implement this, but it may
be generally useful for all desktop apps — 15 days.

p.7

http://gcc.gnu.org/onlinedocs/gcc/Vague-Linkage.html
http://docs.sun.com/app/docs/doc/816-1386/6m7qcobkr?a=view
http://lwn.net/Articles/192624/

Config Manager

After linking, it is clear that configmgr is the next worst performing piece of OO.o.
Indeed, previous measurements with -Bdirect linkage show it dominating startup, as it
appears to on Win32. A host of inefficiencies relating to a previous architectural design
(never fully realized) built towards a shared memory architecture for cross-process
coherent config sharing. Unfortunately the level of inefficiency this imposes is incredible
— it requires 79 lock/unlock pairs to fetch a -single- config key (eg.).

Re-factoring is ongoing here to make the code more readable, and substantial wins,
perhaps a doubling of the configmgr performance should be possible here — 5 days.

Gnome VFS integration

This is used on both desktops to provide samba share access amongst other things.
Unfortunately it is loaded on startup from ucpgvfsl.uno.so. which is the GnomeVFS
“UCP” (Universal Content Provider) component. In normal use, the code in ucpgvfs1 is
not needed at all, but it still has to be loaded to avoid a problem if it is loaded later
through the “Proxy” UCP. On load
ucpgvfsl pulls in libgnomevfs and many dependencies, otherwise unneeded during
startup. Initializing gnome-vfs also reads and parses number of (potentially) scattered
config files, some of which are fairly large.

Possible solutions here are to dlopen libgnomevfs and initialize it idly, or re-factor the
ORB such that the proxy UCP problems go away, a prototype re-factoring in patch form
exists — 3 days

Prioritized tasks

Memory footprint reduction:

Prioritized by win/day

Task Size Duration Saving

/ Kb / days Kb/day
heap: StfxNewHdl 512 0.1 5120
re-working rdb files 5000 3 1,667
heap: OUString 1500 2 750
g++: Parent vtable chain 4500 8 563
g++: DSO initializers 4500 8 563
heap: component registry 300 1 300
heap: hunspell 1500 5 300
heap: configmgr 1000 5 200
removing unneeded libs 836 5 167
heap: package 500 3 167
images.zip shrink 200 5 40

The g++ work is somewhat complex and risky, unless done by the toolchain team,
thus spending time several other tasks perhaps makes more sense.

p.8

Performance improvements
Since the performance wins are rather harder to estimate here, this prioritisation is

based on some considerable guesstimation:

Task Duration /days
configmgr 5
link: binutils 2
link: glibc improvements 3
VES re-work 3
cold start valgrind / research 4

Lazy loading 15

The configmgr is prioritized over linking, since SL.10.2 improves the linking situation
substantially across the system. Also the configmr is a major space hog as well, thus there
is some overlap between the time & space savings here. However — the linking work does
require re-visiting and further refinement.

Conclusion

There is a lot to fix. If we split the time: 13 days of size reduction — which should
yield a 2Mb heap shrink (12%), a 4% code shrink, and SMb from the .rdb files (4%). That
would leave 7 days in which to tackle the configmr, and further improve the linking
situation.

p.9

