ebizCharge
Documentation

by Mark Manning (mark@briley.com)

1. Introduction

This documentation is presented in the hopes that it clarifies how to work with the ebizCharge set of SOAP interfaces. No guarantee is presented within this documentation that ebizCharge won't change their interface or even thow all of this out and start using some other interface. With that in mind, this documentation should accompany the ebiz class found in class_ebiz.php. This class is a fairly straight forwards implementation of the SOAP interface presented by ebiz itself in the documentation sent to myself. All I have done is to take what they sent to me and make it in to a class so it is easier to use.

2. The SOAP interface
The SOAP interface is defined on http://searchsoa.techtarget.com/definition/SOAP as:

SOAP (Simple Object Access Protocol) is a messaging protocol that allows programs that run on disparate operating systems (such as Windows and Linux) to communicate using Hypertext Transfer Protocol (HTTP) and its Extensible Markup Language (XML).

Please keep in mind that most SOAP applications use HTTPS (ie: Secure HTTP) and many also use JSON (a simplified XML language). So if you see a call to json_encode() or json_decode() - it is the same as using an XML encoding or decoding routine with the exception that we are going through JSON instead of XML. The end product though, will be the same.

3. The Class
The ebizCharge class is made up of four parts. These are:

1. Initiation. In other words – we start up the class.
2. Loader. In other words – we set up everything to send.
3. Communication. In other words – we send the request and get something back.
4. Closer. In other words – we close the connection and do any post processing that
needs to be done.

Simple – no? Well, maybe for YOU – but it wasn't simple to set up. Once the underlying communication code was set up though – it was pretty easy. Hopefully you, who are reading this, like it and use it.

4. Starting
We will use only PHP in this documentation. All other languages you will have to translate what I am putting here into that language. This shouldn't be all that hard anymore. Most languages now use such things as INCLUDE or REQUIRE to include a file into the source code. Of course, C/C++ can also have complied libraries but you also have to include those. So the process is the same.

So to begin with, we have to include the library. Like so:

include_once("<YOUR PATH TO THE LIBRARY>/class_ebiz.php");

This will give you full access to the library (or class).

5. Overview of the class
You should edit the class so you can follow along with this part.

Ready? Ok. The first thing you will notice is that all of the variables are placed into an array call VARS. Why was this done? It was done so the SET() and GET() functions can set or get the values for these variables and it also makes it easy to keep track of the variables as well. Notice also that all local variables are just declared and used in the functions. Only the global variables are placed into the VARS array.

1. Functions.
The list of functions is as follows:

1. __construct()
This function is called when the class is instantiated (which is just a big word for created). When you do the following:

$ebiz = new class_ebiz();

However! If you look at the end of the class you will find these two lines of code there:

if(!isset($GLOBALS['classes'])){ global $classes; }
if(!isset($GLOBALS['classes']['ebiz'])){

$GLOBALS['classes']['ebiz'] = new class_ebiz();

}

These two lines of code AUTOMATICALLY create the class for you when you include it in to your code. In this way, no matter where you are in your program the class is already there. If you decide you do not want these there, then simply comment them out. I have found though that this greatly simplies what I need to do. Which is why they are there. For me, instead of creating a new class instance each time I just do the following:

$ebiz = $GLOBALS[‘classes’][‘ebiz’];

And now I have a class to work with.

2. The SET function
The set() handles the setting of all global variables. Because they are all declared as vars[‘<VARIABLE NAME>’], it is extremely simple to locate, set, and get these values. Now! How do you make it so no one can find and/or set/get the values? (In other words – How can you keep someone from getting your Merchant ID or other sensitive information? Easy! Just change the name of the variable. So maybe you call the merchant_id variable my_companys_id instead or i_love_my_id. It is already set to be a private variable so no one is going to be able to see what you call it once you have set it. Got it? Good! Do this for all of the sensitive variables and you won’t have to worry about this.

3. The GET function
The get() function does the opposite of the set() function. It gets the value of the variable and returns it. This means if something is an array or an object or plain text – the get() function just returns it. It is up to you to figure out (or know) what type of variable it is you are dealing with.

4. The hashInfo function
The hashInfo() function simply sets up the hashInfo array. Note that you do not call it. It is called automatically from within the __construct() function. I am only placing it here so you know what it is.

5. The clientIP function
The clientIP() function is another function that you should never have to call. It too is called from within the __construct() function. What it does is to automatically figure out the remote address presented by the server to PHP. However, if the class is used outside of the server, then the default of 127.0.0.1 is used. This is the localhost address of your system.

6. The items function
The items() function is included because I needed a way to add up the total cost or “Amount” used in the “charges” array and I felt that no one should have to do this individually. After all, if your charges say you are charging $50.00 on $500.00 worth of items – it should cause an error. Thus, the items() function does the addition for you. If you do not want this to happen – just call the set() function itself like so:

$ebiz->set(‘items’, $items);

And the items array in the vars array will be set. This is the first line of the function anyway.

Notes: This function can not be called before the call to set the charges. Otherwise the array entry “Amount” will be wiped out with whatever is in the call to set up the charges.

7. The transaction function
The transaction() function handles making the actual call to ebizCharge’s servers. Depending upon which function is to be called, only certain variables are gathered up and sent. This is already set up for you. All you have to do is to call the appropriate function without any arguments. All arguments are set up ahead of time via the set() function. See the __call() function for the list of functions that can be called.

This function always returns four items. These are $request, $result, $response, and $errors. The first three need to be converted back to regular arrays. This can be accomplished by calling the appropriate functions which are parse_request(), parse_result(), and parse_response(). See these functions below.

8. The dump function
The dump() function handles dumping out information you may need to dump in order to understand how this all works. It is a simple function that simply calls the PHP function print_r() for each argument sent to it.

9. The __call function
This is the most important function of this class. The __call() function is very simple – yet it does quite a bit. In PHP, if you have a class and you call a function that isn’t defined, then PHP calls the __call() function. This is very powerful because you can then define a list of functions (or options), look to see if that is what was called, and perform some action. In this case we then call the transaction() function with the proper argument which, in turn, calls the ebiz server for us. I believe an example is in order.

Example:

bankcard_sale();

This gets translated into:

ebiz->transaction(“bankcard_sale”);

Which calls the transaction() function which then calls the servers at ebiz.

10. The parse_request function
The parse_request() function converts the returning request into a plain array so that the information can be extracted and used. A typical request array will look like this:

Array
(
 [BANKCHECK_SALEResult] => Array
 (
 [ApprovalIndicator] => E
 [AuthCode] => 000000
 [Message] => Merchant does not currently

support check transactions.
 [CVVIndicator] =>
 [AVSIndicator] =>
 [ErrorCode] => 00040
 [BatchNumber] => 0
 [ReferenceNumber] => 425072
)

)

As you can see, what you get back is an array which has an array inside of it. In this case, the bankcheck_sale() function was called which was caught by the __call() function which then called the transactions() function with “bankcheck_sale” as its argument. That return the XML layout with all of the above information in it. By calling the parse_request() function, this XML information was then translated into the above array. This can be access by normal means then. Example:

$a = parse_request($request);
echo $a[‘BANKCHECK_SALEresult’][‘AuthCode’];

This can then be saved into your database by using the json_encode() function. Example:

$a = parse_request($request);
$b = json_encode($a);

Then you just write it out to your database.

$c = “update myTable set request=unhex(‘” .

bin2hex($b) . “’)”;

$msg = $dbClass->dosql($c);

Why use the unhex() and bin2hex() functions? Read about it here: https://en.wikipedia.org/wiki/SQL_injection

11. The parse_result function
The parse_result() function does the same job as the parse_request() function except it handles the result.

12. The parse_response function
The parse_response() function handles parsing the response given by the server.

13. The tests function
The tests() function contains one test of each of the various functions. It is provided so you will know how to use the class. Simply set one of the tests to TRUE and it will execute.

14. The __destruct function
The __destruct() function simply closes down the class. There really isn’t a call or function inside of the SOAP class itself that allows you to shut off the communication lines. So all that can be done is to provide this function in the hopes that in the future there will be something that can be called.

2. Process Overview
The general overview of how to use this class is:
1. Create/include the class
2. Set “charges”, “billing”, “shipping”, “items”, etc…
3. Call the appropriate function.
4. Parse the returning information.
5. Use the returning information and/or store it.
6. Final Thoughts
I have tried to make this class as easy to use as possible. I hope you find it so.
Mark Manning

