
Extending OpenOffice XHTML filter

Habib Louafi∗and Stéphane Coulombe†

Department of IT and Software Engineering
École de Technologies Supérieure, University of Quebec, Canada

May 7, 2013

OpenOffice enterprise documents can be converted into XHTML-based Web pages. The components
(e.g. text, images, and shapes) of the enterprise document are extracted and converted separately, and then
wrapped in a XHTML document.

However, the XHTML-based Web page, which outputs only text, is very rudimentary and not reliable at
all. It doesn’t take into account the font issues; all the fonts used in the presentation are replaced by only one
font (the Web browser’s default font). The images, graphics and even the background are completely absent
in the outputted Web pages, though, in the XTML source code, images’ binary codes are still included.
Besides, the layout aspect is not taken into account; all the objects (text boxes, images, etc) are overlaid on
top of each other.

Therefore, we have extended the native OpenOffice XHTML filter by fixing the aforementioned drawbacks
and adding some features that were not considered at all; such as the graphics. Note that, only the features
which are important to our research are fixed. Figures 1, 2 and 3 depict the impact of the extensions we
have achieved. The first figure shows a presentation slide containing text boxes, images and some graphics.
The second figure shows the Web page as produced by the native OpenOffice XHTML filter, whereas the
third one shows the Web page as produced by the extended version of the OpenOffice XHTML filter.

The following sections will be about the various identified bugs and how they were fixed as well as the
added features.

1 Styles issues in the native XHTML filter
The following is tested using OpenOffice 3.1 version. The XHTML filters of the 3.1 and 2.4 versions have
the same behavior, as described in the previous section.

1.1 How the styles are represented in the presentation document
After analyzing how the styling information, used in the presentation document, is represented in the back-
end (XML content), we have realized that not all this information is included in the XML content. In fact,
the styles used in the presentation are of two types:

1. The default styles: When the user writes a text in the presentation without modifying any styles, the
default ones are used. In other words, the styling information is not specified by the user, but by the
OpenOffice engine. On the back-end side, the styles’ information is not included at all in the XML
content “content.xml”. In fact, they are included in the “styles.xml” file and referenced in the XML
content of the presentation.

∗Email: hlouafi@gmail.com, habib.louafi.1@ens.etsmtl.ca
†Email: coulombe.stephane@etsmtl.ca

1



Figure 1: Example of a slide containing different objects.

Figure 2: The Web page version of the previous slide as exported by the native OpenOffice XHTML filter.

2



Figure 3: The Web page version of the previous slide as exported by the extended OpenOffice XHTML filter.

2. The user-specified styles: In this case, the typed text is re-styled by the user, such as modifying the
font-name, font-size, font-color, etc. In other words, the styles’ information is explicitly specified by
the user. In this case, this information is included in the XML content of the presentation

1.2 How the styles are converted by the native XHTML filter
The styles used in the presentation are first collected by the “style_collector.xsl” template. Then, they are
converted to CSS styles using the “style_mapping_css.xsl” template. After analyzing how the fonts are
collected and mapped to their corresponding CSS styles, we have realized the following:

1. The default styles: We said that the default styles used in the presentation are not explicitly written
in the XML content of the presentation, but in the styles XML file. The filter is able to convert all the
styles information, except the font name. In the version of OpenOffice we have installed, the default
font name was “Arial”. This information is lost during the export operation; it is replaced by “Times
New Roman”. The latter is no more than the default font name of the Web browser. Since no font
name is specified by the filter in the XHTML output, the Web browser uses its default font name. But,
the good thing is that all the other styles (color, italic, underline, etc) are taken into account by the
filter.

2. The user-defined styles: When the styles are specified explicitly by the user, we have noticed the same
phenomena; the font’s names used in the presentation are not reproduced by the filter.

The problem is in the “style_mapping_css.xsl” template that doesn’t perform the mapping operation cor-
rectly. It uses a syntax that is different from that used by OpenOffice in the “content.xml” and “styles.xml”
files. After fixing this bug, all the font’s names used in the presentation (the default one and those specified
by the user) are reproduced with fidelity as illustrated by Figures 4, 5, and 6.

3



Figure 4: A slide that contains different fonts.

Figure 5: The XHTML Web page version of the previous slide as exported by the native OpenOffice XHTML
filter.

4



Figure 6: The XHTML Web page version of the previous slide as exported by the extended OpenOffice
XHTML filter.

2 Layout issues
Figure 7 shows a slide comprised of seven text boxes. One of them is situated opposite to the others on the
right side. The native filter is not able to preserve this layout as shown by Figure 8; all is aligned to the left.
The problem is that the filter doesn’t convert the coordinates of each text box. That’s why they are serial-
ized in the XHTML output. In OpenOffice, these coordinates are referred by x and y; which represent the
distances of the text box from the left and top of the slide respectively. They should be converted to their cor-
responding CSS left and top positions. Figure 9 shows the XHTML output after fixing this issue. The mod-
ifications have been done in the template: “..\OpenOffice.org 3\Basis\share\xslt\export\xhtml\body.xsl”

3 Images issues
The OpenOffice native XHTML filter converts images into binary codes and incorporates them in the
XHTML code. It doesn’t use the traditional technique that consists in putting all the images in a folder
and including URL references to them in the XHTML code. Figure 11 shows the XHTML source code of
the example shown by Figure 10. Albeit, the embedded images are binary coded, they can be rendered by
the majority of the Web browsers, such as Firefox, Safari, etc. The problem is with the MS-IE, which is not
able to render binary coded images.

In fact, the images are coded using the base-64 encoding [1]. This way of coding images has a negative
impact on the file size of the presentation. On average, an image encoded using base-64 is 33% larger than a
binary image [2]. Besides, there are pros and cons to using this kind of representation; file size and bandwidth
versus network latency.

Two options are offered when the image is to be inserted in the presentation. When the user is asked
to enter or select the file name of the image to insert, a check box, named Link, can be checked to indicate
whether the physical URL of the image should be inserted or not.

5



Figure 7: A slide that contains different textboxes dispersed.

Figure 8: The XHTML Web page version of the previous slide as exported by the native OpenOffice XHTML
filter.

6



Figure 9: The XHTML Web page version of the previous slide as exported by the extended OpenOffice
XHTML filter.

Figure 10: A slide that contains different text boxes and images.

7



Figure 11: The source code of the XHTML Web page version of the previous slide as exported by the native
OpenOffice XHTML filter (The images are binary coded).

1. If Link is not checked, the image is converted into base-64 and included in the content XML file. In
the latter, a relative link to PNG files is used as a URL to the image.

2. If Link is checked, the image is not converted and an absolute URL link is inserted in the XML content
file. That URL represents the physical location, in the disk, of the inserted image. This way, the URL
and type of the image (e.g., JPEG, GIF,. . . ) are preserved.

Using the second option, it is possible to use the traditional way of representing images in Web pages. This
way, it is possible to insert the URL of the image in the XHTML code and adding an extra folder; which
includes the embedded images.

4 Graphics issues
In order to enhance the existing OpenOffice XHTML filter, we have added the possibility to export the
following graphics: rectangles, circles, ellipse and lines. To this end, we have added a Javascript library that
enables us to draw different shapes on the Web browser. This library is free of use and open source code [3].
Figure 12 shows an example of a slide containing rectangles, an ellipse, a circle and two lines. The existing
filter doesn’t output any graphics. As illustrated by Figure 13, the modifications added to the filter are able
to render those shapes on Web pages. The modifications have been achieved as follows:

1. The “..\OpenOffice.org 3\Basis\share\xslt\common\measure_conversion.xsl” is included in the tem-
plate:
“..\OpenOffice.org 3\Basis\share\xslt\export\common\styles\style_mapping_css.xsl”.

2. The templates used to capture the styles used by the shapes; such as the color of the line and the
background color are added to the template:
“..\OpenOffice.org 3\Basis\share\xslt\export\common\styles\style_mapping_css.xsl”.

8



Figure 12: A slide that contains different shapes.

Figure 13: The XHTML Web page version of the previous slide as exported by the actual OpenOffice
XHTML filter.

9



3. The templates used to draw the rectangle, ellipse, circle and line shapes are added to the template:
“..\OpenOffice.org 3\Basis\share\xslt\export\xhtml\body.xsl”.

4. In the XSLT source code, these templates can be located by searching their corresponding keyword.
For example, to locate the template that draw the ellipse, you can use the “draw:ellipse” keyword.

5 Text-boxes and images adaptation
This section is about conveting enterprise documents (Impres slides, for example) to be visualized on Web-
enabled mobile terminal, which ahev not the same screen resolution. It is part of our research project.

The extended version of the XHTML filter allows us to adapt presentation slides into XHTML web
pages comprised of text-boxes and images. The next step is to give this filter the possibility to adapt the
presentation document components using a scaling parameter (which can be applied to both text boxes and
images) and a quality factor (applied to embedded JPEG images).

To allow the XHTML filter resizing text boxes using a scaling parameter z, we modified the template:
“..\OpenOffice.org 3\Basis\share\xslt\export\xhtml\body.xsl”. For embedded JPEG images, we developed
a Java-based application that uses imageMagick tools to convert images using z and QF . Then we registered
this application with OpenOffice by providing the classpath in which the application is stored on the disk.
As a result, using OpenOffice APIs, it is possible now to adapt presentation document, using the desired
scaling parameter and quality factor, into Web pages renderable on Web-enabled mobile devices. Figure 14
shows a slide as exported by the OpenOffice XHTML extended version using different combinations of z and
QF .

6 Conclusion
The extensions have been achieved in two steps. In the first one, we fixed the various bugs mentioned above
and added the possibility to export images and shapes (other shapes can be added following the same logic
we used). In the second step, we added the possibility to export the document elements (text, iamges and
shapes) using a scaling parameter z, which is applied to all document’s components, and a quality factor
QF applied to JPEG images (this is used to control the resulting image visual quality and file size).

The extended version of the XHTML filter has been tested using OpenOffice Impress slides, and future
work can be carried out to validate its applicability to the other types of documents, such as Writer and
calc.

10



(a) (b)

(c) (d)

Figure 14: A slide as exported by our extended OpenOffice XHTML filter: (a) the original slide, (b)
transcoded using z = 30% and QF = 80, (c) transcoded using z = 80% and QF = 80, (d) transcoded using
z = 50%, QF = 60

References
[1] M. S. Kolich. High Performance JavaScript Vector Graphics Library. On line, 2009. Accessed on 04

April 2013.

[2] Wikipedia. Data URI scheme. On line, 2013. Accessed on 04 April 2013.

[3] W. Zorn. High Performance JavaScript Vector Graphics Library. On line, 2008. Accessed on 04 April
2013.

11


