Telescope Fabre ROA Montsec
Observatory

INDI Control System

Reference Manual

Version 0.9.3

© 2007-2010 Clear Sky Institute, Inc. USA. All rights reserved.

Page 1 of 71

Table of Contents

B o Yo 1 U]) o H ST PUPPUPRRRPRRR 5
1.1 SYSTEIN OVEIVIEW ..euuiiiiiiiiiiiie ettt et e et e et e et e et e et e et s et aaanstsnsataaannsesnsasnaannsennssnssassnssnsensen 5

P 0 B o To] £ PSPPI 8
2 N O] o1 00 o VT N OO P TSR U PPt 8
2.1.1 Command line argUIMENES.ccouuiiiiiiiiiiiiiee e e et e et e e et e e et e e et eesateesateeseneaeseranees 8
2.1.2 Status INAICATOTS. ..ouun it e et e et e e et e e et te e e et e e et e eeaaneessenaeannaannes 9
2.1.3 MaAIN WITIAOW . .eiiiiiiiiiiei et et e et e et e et e et e et e et e st estnestnnassnsstnaareaenasnassasenns 9

P O A L=y ¢ A 1= oo [PP 10

N I T 1Y =TT 010 o 1= TS 11
2.1.6 POINtIiNG MOAEL.......cooiiiiiiieeei et e et e e e et e e et e e e eae e e et e eeaaeesanesaaannns 12

W A = 101 (6 1 o Vo PSPPSRIt 15

B R S T a7 b o) a1 4 =Y L PP 16
2.1.9 IMPLlemMeEntation......coie e e e e e e et a it e e e aaaans 17

P 0 o] 0 1 s PSPPSR 19
2.2.1 Command line arguUmeEnTS.........cuuiiiiiiiiiiiii e e e e e e e et e e e e e ea e eanaa s 19

2.2.2 MaAIN WITAOW . .eiiiiiiiii et et e e et et e e te e et e st e st e et e st esaneannesrnasanesnasnaens 19

DG L@) 5 O]) o W 22
2.3.1 Command line argumeEntS........cc.uiiiiiiiiiiiiieiie e e e e e et e e e e ea e aaaa e 22
2.3.2 M WITAOW . .euniiiiii et e e e e e e et e et e et e e et e st e s s eanesaneesnesnasnaens 22

JC TG T 5 1011 1o B = o TS 22

2.3 4 VIBW LA ceeiiiiii et aaas 25

2.3.5 Scheduling AlGOTItRI......ccuu i e e e e e e et e e et e e e et e ea e eaeeneannas 26

P0G B @) 0 & o (o PRt 27
2.3.7 XML Database FOTMAt.........cciiuuiiiiiiieiiiie e et et e e e et e e et e e et e e et e e saneesanneeenaannns 28

I A1 B I o 0] 01 =Y it = PPN 31
T A =Y (=TT o]0} o 1 O U OSSOSO 32

G I =) o 1 RN 35

G TG T 5 kv N (o) a1 0 1Y o L SRS 37

T A 1 1 4 = T OSSP PRU PR PN 39

G T 00 07 1 s PSPPI 40

G I O 0 03 1 1 1 =Y O 42
I VT 1 - S TP TUPPPPTUPPON 43

R T U TP 45

8 1 X PP 46

G TR 00) 5 S S 47
3.11 Driver InterCoOmMmMUINEICATION.iiue ittt et et e e ae et e et e e e e e e e eraeeaeeaneanas 48

4 Command LiNe PrOQTalmiS.ccuuuiiiiiieieiieeiiiie ettt e et eetiieeetneettneeeeteneeereneeersnassrnssnassnesenerenssrnsennaes 49
N o 1= HA D) BTSRRI 49
=T 1\ 51
G I =3 v2= 11 A\ D) PP 53
R N 1o] a4 o 55
T o Yo X BT 57
4.6 ik220con and iK22010Ad........cccuuiiiiiiieeiie ettt e e e e e et et e et e e a et ea et e aanaaans 57

RS ToNinnv= N A I O o) ahii (o L0 har= 1 w10) o BN P PP 59
ST = Yo To 1 AT =To 1 1= s o] - SO OIS 60
5.2 File SYStEIM LAY OUL....uciiiiiiiiii et e e et e ettt e e et e e sta e e eeteeaaaneeenneaeanneaesnaaennns 60
5.3 Building from SOUTCE COAE........cceiuniiiiiieiiiiie e e et eeeree e et eeeaeeeate e e et e st eaessnaannns 63

SR K= oo AT By I O o) a =Y od (o) o 1= 65
6.1 PCA8 MOtIioN CONEIOIIET......ciiiiiiiiie et e e et e e et e e e et e e e aae e et e et e s e aaneeanaaaanns 67

Page 2 of 71

ST 5 14 TS] e (oY a0 A Vo) o FO PP POPPRRPRRR 68

6.3 RoOf and Ram CONEIOL.........iiiiiiiiiii e e et e et e e e et e e et e e et e e eaneesaneeaneaanaernaennnns 69
oI @ 7N o L B o) 0 =Y L F RN 70
6.5 TK220 ENCOAET INPUL....uniiiiiieiie e e e et e e et e e e et e et et et e s eaaaanaan 70
O 0= 0o oY iy B 1 1 =) o PN 70
T U] 3 PN 71
OIS AN b ol 0 1o 1m0} 1<) o N 71
6.9 Temperature and HUMIidity SENSOTS......cccuuiiiiiiiiiiiie e et e e e ev e eaeeaa e 71
oI O =T 0 11 o PRI 71
6.11 Cabling and GrOUNAING......ccceuuueeiiiieeiiieeeiiiie e eiee e e teeeetieeeeteeeeateestaeessaaesstaeanaernessnesrnasrnns 71
A Do o1t haaL=) 0 LAl 5 B TS] o) oy 20PN 73

Page 3 of 71

Illustration Index

Iustration 1: INDI @rChitECIUTE.ccuuiiiiiiiiiiie et e e e e e et e e ea e e et e eeaaneeernneeeenanns 6
Illustration 2: ObsCon status COlOT MEANINGS.......iiiiuieiiiiie e ee et et e e e e et e e et e e er e st e st eaaneaens 9
Ilustration 3: ObSCON MAaIN WINAOW......uuiiiiiiiiiiie e e et e e e e et e e et e e ea e esaeneeeaneaneennaenns 9
Illustration 4: ObsCon Next Candidate WindOW..........cooiviiiiiiiiiiiiiie e e e e 10
Illustration 5: Manual Telescope Control WindOW.........ccceuuiiiiiiiiiiiiee e e e e 11
IMustration 6: Pointing MOAEl..........oiiiiiiiii et e e e e et e e e e e s e et e e e s aannas 13
IMustration 7: Building WInAOW........coouuiiiiie e e et e et e e et e e e st e st e e e anaesnaannnas 16
[llustration 8: Obscon Environment WindOW........cccouiiiiiiiiiiii et e e e e e e ans 17
Mustration 9: ODSCAM WINAOW......ciiiiuiiiiiiiiiiiree ittt eetiire e e eeetaeseeaeataeeeeatnseesnneennnsesnnseesnsees 20
Illustration 10: ObsCam FITS header WindOW........ccouiiiiiiiiiiiiiei e et e e e e ans 21
Illustration 11: QExCon Build Request tab.........ooiiiiiiiiiie e e e 23
Illustration 12: QExCon View Requests tab.......c.o i 25
Illustration 13: Inter-driver COMmMUNICAtION........ceiiiiiiiiiie e et e e et eeeaen s 48
Illustration 14: System processes and fileS.........ccuoviiiiiiiiiiiiiiiiee e e ere e e e eaa s 59
Illustration 15: Overall electrical diagraml........c..oviiiiiiiiiiiniiiii et e e e e eeie e e e e aeeaaaas 67
Illustration 16: E Stop CONCEPt AiagTami......ccuueiiiiieiiiiieieiie et e et e e eiee e et e e e teeeeeaa et e e e aneeaneesnaannnns 69

Page 4 of 71

Introduction

1 Introduction

Welcome to the Observatory Control System for San Fernando Baker-Nunn Camera. The system
allows for local and remote control of all equipment including the telescope, focuser, camera and
roof. Weather conditions and power mains are monitored and shutdown procedures are
performed automatically if unsafe operating conditions are imminent.

See §2.1 for more information about ObsCon, the main observatory control GUI and §2.2 for the
basic camera control GUI. See §3 for a detailed list of each INDI Device and Property. See §4 for
some command line client programs that use the INDI Properties. See §6 for information about
how to connect the hardware.

1.1 System Overview

The control system design is a client-server architecture. Hardware and supporting services are
implemented as servers. Applications such as graphical user interfaces and command line
programs are clients. All communication uses TCP/IP sockets for reliable distributed operation.

The servers and clients communicate using the INDI! protocol. This is an XML-based protocol for
passing parameters back and forth in a compact efficient format. Typical bandwidth
requirements for monitoring and control of all observatory functions (except camera images) are
on the order of a few tens of kbps, so even simple voice-grade modem connections are sufficient
for routine remote operation.

INDI drivers are written in ANSI C for the Linux operating system. Low level hardware drivers
are written for Linux kernel 2.6.13. GUIs are written in Java 1.5 for maximum portability and
consistency across platforms. All GUIs have been tested on Linux under KDE, Windows XP and
Mac OS 10.5. Command line programs are written in ANSI C.

Illustration 1 shows the basic INDI data flow architecture. Each box represents one process.
Each line represents either a socket connection or three UNIX pipes carrying the stdin, stdout
and stderr streams.

Central to the design is the indiserver. On startup indiserver forks each driver process and
arranges pipes to connect to their stdio streams. All sockets and streams carry traffic formated
according to INDI XML message rules with one exception: the stderr output stream from a driver
is simply copied to the log file maintained by the indiserver and can be any free-form message.

After starting each driver indiserver functions basically as a router between clients and drivers.
It listens to the INDI XML messages and sends them only to interested processes based on
contents of the device and name properties within the INDI message. Indiserver also serves as a
process shepherd: if any driver dies, as indicated by EOF while reading from its stdin stream,
indiserver will restart it and establish new stream pipes automatically.

1 See http://www.clearskyinstitute.com/INDI/INDI.pdf

Page 5 of 71

Introduction

client client

) TCP socket
indiserver TCP socket indiserver 4>
[} [} []

stdin/out/err

driver driver

hardware

Illustration 1: INDI architecture

Note that indiservers may also connect to each other. This is called chaining. Because all traffic
is INDI, an indiserver may connect to another indiserver and appear to be a client in every way.
When making the connection, command line arguments on the initiating indiserver specify the
devices on the target indiserver with which it wishes to have visibility. The initiating indiserver
will have no knowledge of other devices on the target indiserver. In this way separate indiservers
may, on the one hand, share devices, or, on the other hand, intentionally hide devices from their
respective connecting clients.

Within each driver is the code that implements the desired functionality for one, and only one,
INDI device. Some drivers only provide services, such as target prediction. Other drivers control
hardware. Drivers may also communicate with other drivers; this is called snooping. The INDI
architecture places no restrictions on what a driver can do. The only requirement is that it
respond to INDI messages that arrive on its stdin stream for its device and that it generate valid
INDI messages from its device on its stdout stream. INDI drivers are most easily written in C
using the library functions provided with this system; type man indidevapi for details. The source
code for all drivers are included with this package and serve as excellent examples of well
written drivers.

Clients, like drivers, may do anything they wish so long as they communicate valid INDI
messages over the socket with which they connect to an indiserver. Otherwise clients can be
GUIs, command line programs, daemons or other process roles and may be written in any desired
language. The sample clients provided in this package are the GUIs ObsCon and ObsCam written
in Java and the command line clients get/set/evalINDI written in C. The latter may be used
directly but are generally intended to be used by scripts written in perl, python or shell as a
handy means to communicate with an indiserver without the need to write socket and XML
processing code. The source code for all of these clients is included with this package and serve
as excellent examples of well written clients.

Using a TCP socket for clients to connect to an indiserver provides great flexibility. The client
and indiserver may be on the same host in which case the simple localhost alias provides a very
easy connection. If the clients are on other machines, there are two choices depending on the
need for security. By default indiserver listens to port 7624. If the firewall on its host has this
port open, then clients on other hosts may connect directly by simply specifying this port when

Page 6 of 71

Introduction

they connect. But if such cavalier connections are deemed unwise, then a secure connection can
be made using ssh tunneling. Ssh has the ability to build a secure connection to a remote host in
such a way as it appears as a local socket server but in fact transfers this connection to a server
on a remote host. It can only do this if an ssh login is available from the client host to the
indiserver host. See the -L option in the ssh man page on linux or the ssh tab on the Windows
client such as putty. Ssh tunneling thus addresses both access control and secure
communications. Using ssh is not necessary when using the GUI clients included with this
package because they have the ability to make ssh tunnels already built in (see the -t option on
ObsCon and ObsCam).

Page 7 of 71

Introduction

2 GUI Tools

There are two programs that provide a graphical user interface to the observatory control
system. One is ObsCon: an abbreviation for Observatory Control. The other is ObsCam: an
abbreviation for Observatory Camera. Both are Java client programs that connect to the INDI
network. Multiple simultaneous instances of both these tools may be run at the same time, and
all have equal peer control over the system, so take care to arrange an arbitration scheme in a
separate manner to determine who has responsibility for operating the equipment and who is just
monitoring.

2.1 ObsCon

ObsCon provides command and monitoring capability for all observatory systems except the
camera (to operate the camera, see ObsCam in §2.2). In order to function, it must connect to the
observatory INDI server. ObsCon is written in Java and distributed as a jar file. It is
recommended to run obscon using the convenient script provided, obscon, which sets up a
default environment and runs the Java runtime giving it the jar file and any additional arguments.

2.1.1 Command line arguments

ObsCon support the following command line arguments:

-e n specify number of samples in the Environment window graph.

-h h specify direct socket connection to INDI host h, default localhost
-i display inbound INDI messages for debugging

-0 display outbound INDI messages for debugging

P p specify direct socket port p, default 7624

-s display in a smaller GUI format. This makes obscon use smaller fonts

and smaller gaps between GUI components, designed for use on laptops or
other small screens.

-t hs i1 create ssh tunnel to INDI host h, ssh port s (default 22), INDI
port 1 (default 7624) and login account I. This is the default
connection mode if none of -t, -h or -p are given. This is used to
access an INDI server that is behind a firewall by creating a secure
ssh tunnel. It is necessary to have an account on the INDI server and
be able to log into that account from outside the firewall using ssh.

-w ignore and don't save window information. Without this option, obscon
will save and restore the location, size and whether it was visible for
each obscon window each time it is exited and started. It saves this
information to a file named .obscon (note the leading period) in the
user's home directory.

Page 8 of 71

GUI Tools

2.1.2 Status Indicators

ObsCon makes extensive use of small colored dots to indicate specific state information. These
are always one of four colors, as defined in Illustration 2.

Gray: Idle or unknown
Green: OK or ready
Yellow: Busy or in progress
Red: Alert or problem

Illustration 2: ObsCon status color meanings

@000

2.1.3 Main window

When ObsCon is started, the main window appears, see Illustration 3. Across the top are buttons
to open additional windows as described in the following sections.

V1.14 ALL STOP

~Laocal e tatus ~aky Dome
1:37 AM] @ Roof unknown L
22 NW]

RA: 17:43:09.1 HA: 12:00:00.0(| @ Ram unknown

Dec: 47:22:04.8 LST: 5:43:26 || @ Tracking

Alt: 0:00:00.0 3X: 0.0|| @ Slewing
Az: 0:00:00.0 3Y: 0.0 @ Lens unknown
PA: 0:00 AM: 13.333 (| © Weather
” Dew AT: 50.3 Gust: 1.0|| @ QEx off ”

Hide messages | Erase |

Illustration 3: Obscon main window

Across the top are buttons to display the several supporting windows provided by ObsCon.

The left section labeled Local contains a 24-hour clock in local time. The yellow and blue ring
shows when the sun is above the horizon and the times of dawn and dusk. The gray ring shows
when the moon is above the horizon. The time marked in green is the local sidereal time. The
local time is displayed in the upper left. Clicking on the question mark (?) displays a dialog with
this information in more quantitative terms.

The section labeled Current Pointing shows information about where the telescope is pointing
and critical environmental information (dewing and wind gust). The current UTC is displayed
above this section.

Page 9 of 71

GUI Tools

The section labeled Status shows the most important observatory system information such as
telescope, roof, mirror cover and weather alerts. Note also the state of the QEx scheduling
system is indicated. Gray means QEX is not active; Green means it is active but no request is
currently running; Yellow means an automatic request is currently being executed. When the
state is Yellow, any operation of the observatory from Obscon could interfere with the functions
being performed from the request.

The section labeled Sky Dome shows a sketch of the observatory showing whether the roof and
ram arm open, the current wind direction, current telescope pointing direction and symbols
showing the sun and moon if they are above the horizon.

The bottom section of the window shows messages from the various INDI drivers. These may be
hidden, erased and scrolled with the controls provided.

2.1.4 Next Target

This window can display current and daily planning sky location information for potential viewing
targets and can create or save observing lists of planned targets. See Illustration 4.

Next Candidate Target

MNext Candidate Target

@ RA: 10:00:00.0 Dec: 20:00:00.0

) Catalog:

[Check this candidate: || History | e
RA: 10:00:00.0 dRA: 0.0 Alt: -18:08:09
Dec: 20:00:00.0 dDec: 0.0 Az: 313:31:11
HA: 8:51:24 AM: 13.333 PA: 38:20:49
Sat -1:46 Rises in 8:02 Transits in 15:06

rCandidate Sky View

~Local Time Stri|

Cand
Pdoon
Sun

NW

rAir Mass and Altitude vs Local Hour

1
3
5
T
9
1
1

1
3

Illustration 4: ObsCon Next Candidate window

Across the top are fields to define a target of interest using either of two methods. If the first
method is chosen, enter the RA and Declination for a fixed target at Epoch J2000. If the second
method is chosen, enter the name of a catalog? entry or the definition of a target in either edb® or
Two-Line element format.

After a target is defined, click Check this candidate. This will display current information, a
time strip showing when the target and Sun and Moon are up today and a graph of altitude and
airmass. The strip and graph span one day centered on local midnight. If the candidate is
currently above the horizon, it will also be displayed in the sky map at the bottom.

2 Catalogs are stored in /usr/local/octavi/catalogs.
3 http://www.clearskyinstitute.com/xephem/help/xephem.html#mozTocId468501

Page 10 of 71

GUI Tools

Clicking History will bring up a table of candidates checked so far during this session. A
candidate may be checked again by double-clicking or selecting it and clicking Check. A selected
entry may be removed from the list by clicking Delete. The list may be saved by clicking Save
and a previously saved list may be read by clicking Browse.

If it is desired to track the current candidate, click on Track it! This will slew the telescope to
the target and begin to track it.

2.1.5 Telescope

The Telescope window allows direct control over the telescope, the mirror cover and camera
focus. Refer to Illustration 5.

NN

Manual Telescope Controls

(9] Open Close Lens cover

(o] Set HA velocity 0+ ||—
Dec velocity |14
.,Tmmude 0:00:00 | Here — || 0:00[1]
Azimuth 0:00:00 | Here — || 0:00[[— | -
QIT Hour angle 12:00:00 | Here —+ 0:00:00 |+ || —+
Declination 52:57:06 | Here —+ 0:00:00 | T || 4
® set |Focus 0.0[Here — || o[174
r Tracking Offset
N 1 " |Step: |1 |v |arc seconds
E| + |Zero| —+ Net offset:
1 “w 0.0 «
S 001
rMiscellaneous Statu
@ PC48 OK @ HA P limit @ Dec P limit @ Focus P limit @ Focus home
@ IK220 OK @ HA N limit @ Dec N limit @ Focus N limit @ Alt limit

Illustration 5: Manual Telescope Control window

The top row has buttons to open and close the Lens cover.

The next two rows allow entering a desired slew velocity for each axis. Enter the desired values
in degrees/second then click Set. The arrows provide a convenient means to increase or decrease
the value by 0.1 degrees per second.

The next two rows show the current telescope pointing direction in an Altitude and Azimuth
coordinate system. New values may be entered as desired then clicking Set will slew the
telescope to the given direction and stop. Click Here to copy the current value to the new values
field. Use the arrows to change the values in increments of 10 degrees.

The next rows are similar, but allow entering a desired HA and Dec pointing direction. Enter the
desired pointing direction then click Set.

The next row displays the current focuser position and may be changed to a new position by
entering a value into the given field and clicking Set. As with pointing direction, shortcuts are
provided for copying the current position into the desired field and incrementing the position.

Page 11 of 71

GUI Tools

The section labeled Tracking Offset offers a means for injecting modest offsets into the
telescope pointing position. The offset distance may be chosen from the pulldown menu. Clicking
on any of the arrow buttons adds the current offset in the given direction to the total in each
dimension. The two text field show, the current net total offset in each principle direction. All
offsets in both direction directions may be removed at any time by clicking on Zero.

The section labeled Miscellaneous Status shows the state of various limit switches and
equipment states.

Clicking on STOP will immediately bring the telescope to a controlled stop.
2.1.6 Pointing Model

Clicking on Pointing in the ObsCon main window will bring up the Pointing Model window, see
Illustration 6. The purpose of a pointing model is to capture a representation of the imperfections
of a telescope mount and use this information to point more accurately at sky targets.

Note that the pointing model provided by this system can only compensate for systematic errors,
i.e., errors that are stable and repeatable every time for a given sky direction. Errors that do not
repeat, such as worm gear wear or phase imperfections, are not modeled with this system. If
there is any reason to suspect that any of the model errors have changed, such as removal and
replacement of optics, mount adjustments, drive train wear, or accidents then a new model must
be created. Some observatories find their models change with season but are otherwise
repeatable and so they save and install models for winter, spring, summer and fall.

The model consists of several scaler and trigonometric terms, one for each modeled mechanical
error. The terms combine to form a net pointing error at each position in the sky. The errors are
added to the positions reported by the axis encoders to form the location actually pointed to in
the sky. When used in reverse, the model is applied to the desired sky location and computes the
encoder values required to point to that location.

Notes on making a new pointing model

The use of this Pointing model function should only be used after a basic model has been created
by hand. When installing a new telescope, the first step must be to get the parameters in tel.cfg
correct, particularly the values for the motor and encoder steps per revolution and with the
correct sign. Then a new $OBSHOME/config/default.ptm file should be created with a text editor
that contains zeros for all terms except the first two: XI and YI. These terms set the offsets, in arc
seconds, from the HA and Dec zero encoder positions to the meridian and ecliptic, respectively. A
good strategy is to edit default.ptm, restart inditel (using sudo killall inditel), check the reported
position in Obscon main window, and repeat these steps until HA, Dec, Alt and Az all agree
approximately with the actual telescope orientation. Only after XI and HI are sufficiently correct
that stars can be found in your imaging detector device can you proceed to use this Pointing tool.
Also make sure the telescope computer time is set accurately to avoid errors in HA. Also note
that the soft limits in tel.cfg are only meaningful after a good pointing model is complete. So
when starting a model it is convenient to set them very liberally to allow complete motion but
then great care must be taken to avoid extreme telescope positions. After a good model is
competed then go back and set the limits to reasonable values.

Page 12 of 71

GUI Tools

Pointing Model £

o

Pointing Model

[¥] Collimation

5548

197388

25723

[C] Nonperp 0.0
[] Polar H 0.0
] Polar V 0.0
[[] Tube flex 0.0
[] Fork flex 0.0
] Dec flex 0.0
[] ENlipHS 0.0
] ENlipHC 0.0
15 stars marked
HA -419 Al 37:01 | |] EllipDecS 0.0
::E ?::: ’:;g ?;3;] ENipDecC 0.0
| GoTo || Mark || UnMark | | Save || Read || Install |

Reset

| Compute New Model |

rAnalysis

® AHA

) ADec

) AAIL

) AAZ

0.0

-10.0

-20.0

-30.0

-12.0

-6.0 0.0 6.0 12.0

i HA O Dec

AL (O Az

Median error = 5.803, max = 21.616 asecs

I
7

Illustration 6: Pointing model

The Pointing Model window is divided into three sections, left to right. The left section displays a
map of the current sky, showing reference stars from a standard catalog* and sky locations that
are part of a model. The map is updated once per minute to track the movement of stars across
the sky. Note that modeled locations do not move over time because they are fixed on the sky.

The center section shows the value of each term of a pointing model in arc seconds, allows
selecting terms to be used in a new model and can save new and read previously defined pointing
models to files on disk.

The right section displays two graphs that allow one to analyze the quality of a model. The top
cartesian graph can show model errors, in arc seconds, in and against several sky coordinates.
The lower polar graph shows the distribution of errors on an HA/Dec polar plot. Clicking on a

star in either plot will display its quantitative information, circle it temporarily on all plots and

offer the option of removing it from the list of stars used in modeling.

The points on the sky map in the left section are color coded to show their role in a pointing

model, as shown in Table 1.

4 The standard catalog is called pointingstars.edb. It is searched, in order, in the current

directroy, in $OBSHOME/config and then in the obscon.jar file.

Page 13 of 71

GUI Tools

Color Meaning

White Star from calibration catalog.

Green Selected to display quantitative information.
Blue Star will be added if Marked.

Red Location is used in a pointing model.

Table 1: Colors of stars in Pointing Model sky map

To gather data for a new model, start by clicking on a catalog star which will turn it green and
will display its current coordinates in several different frames of reference. Clicking Goto will
cause the telescope to slew and track to that position using the currently installed model. Use the
Offset commands in the ObsCon Telescope window, §2.1.5, to center the star then click Mark to
add its location to the new model and draw it as red on the map. Repeat this procedure with a
good sample of stars around the sky.

To remove the last star from in a new model, click Undo as far back as desired. To remove all
stars from a candidate model and begin again, click Reset.

The column of check boxes and numbers that dominates the center section shows each term of a
pointing model and whether that term is being used. It is important to add only enough terms
into the model to achieve the desired pointing accuracy. Extra terms that do not add significantly
to the model accuracy can make the model less stable between the calibration points.

Once a good collection of stars have been added to a model and the desired terms selected click
Compute New Model. The values assigned to each selected term will be displayed in the center
table. You may repeat with different stars or terms as often as you like. If you wish you may Save
the model at any time to a disk file. Click Install to make this model become the active default
model in use by the telescope control system.

Table 2 describes each term available for use in a pointing model® in more detail. The columns Ah
and Ad show the formulas used by the model for each term to compute the error in hour angle
and declination, respectively. The nominal telescope HA and Dec axes are referred to as X and Y,
respectively. In the formulas, ¢ is the latitude of the observatory.

5 Terms are consistent with those in Tpoint, see http://www.tpsoft.demon.co.uk/pointing.htm

Page 14 of 71

GUI Tools

Term Description Ah Ad
XIndex X axis home position Xo
YIndex Y axis home position Yo
Collimation |Optical/mechanical sec &
misalignment
Nonperp Non-perpendicularity |tan &
of axes
PolarH Polar axis azimuthal cos h tan & sin h
error
PolarV Polar axis altitude sin h tan & cosh
error
TubeFlex |Tube sag cos ¢ sin h sec & cos ¢ cos hsin d -
sin ¢ cos &
ForkFlex |Fork sag cos h
DecFlex Dec sag cos ¢cos h + sin @
tan &
EllipHS Ellipticity of X sin h
EllipHC cos h
EllipDecS | Ellipticity of Y sin &
EllipDecC cos d

Table 2: Pointing model terms

2.1.7 Building

Clicking on Building in the main ObsCon window will display the building monitoring and control
window, as shown in Illustration 7.

The top portion of the window contains buttons and indicators to open and close the roof and end

ram.

The center portion shows the current and target temperatures for the air conditioning system.
The status will be Red if the AC reports an error.

Next are the controls for the CCD chiller. This allows turning the chiller running On or Off,
setting Local (front panel) or Remote control, setting a new set-point temperature and monitoring
the current fluid temperature. Note that the communications protocol to the chiller does not
allow INDI to determine whether the chiller running is On or Off, nor whether it is operating in
Local or Remote control mode. Therefore, the button states shown are only accurate if they were
the result of commands issued from obscon and nothing different was performed on the chiller's
own front panel. Note also that when the chiller is in Local control mode, it is not possible for
obscon to change between running On and Off nor to set a new set-point temperature. For this
reason, these controls will be disabled when obscon sets Local mode. Regardless of the control
mode, obscon can always correctly display the current set-point temperature and the current

fluid temperature.

Page 15 of 71

GUI Tools

P

Building State and Controls

~Roof
.| Open || Close | Roof
@ | Open | | Close | Ram

~Adr Conditioner

@ Set Temperature 0 1]

~Chiller
Il| Remote || Local | Control
Q | On | | Off | Running
@| set |Temperature 15.9 16.0
Target Temperature: 16.0
@ Tank Low @ Fan Fall @ Pump Fail
@ RTD Open @ RTD Short

~UPS
Battery Charged 80 %

@ Mains OK

Illustration 7: Building window

The lower portion shows the percentage of battery charge on the UPS and whether the main
commercial power is currently available.

2.1.8 Environment

This Obscon window shows the current environmental parameters available from the weather
station and other sensors in the observatory and can also show graphs of previous values over
various time intervals. See Illustration 8.

Any one of the parameters in the top section may be selected for graphing. The reason only one
at a time may be selected is because the units are generally different. The graph will show the
scale for these selections on the right side of the graph. Then in addition any number of
parameters in the lower section may also be selected for graphing. The reason any of these may
be selected at one time is because they all use the same units for temperature. The temperature
scale for these values is shown on the left side of the graph.

The time interval for the graph is chosen from the collection of radio boxes below the graph.
Intervals from the past hour to the past year may be selected.

Note that quite a lot of data must be sent to build the graphs. Over slow connections, it might be
desirable to reduce the amount of data by using the -e command line to obscon (see §2.1) option
to reduce the amount of data. Of course, using less data will make a courser graph.

Page 16 of 71

GUI Tools

The data are connected using a Bezier curve which provides a smoothing effect similar to a
running average but does not generally include the exact data values. The exact data points may
also be plotted if desired by selecting the control Show raw data.

S

Environmental Conditions

Environmental Conditions

-Environment History

TempC wind speed, mps
15" PEe
1.2 14
- EE:
. noa Mo
e IV /s

: L s
0.4 M a4
0.2 [0.2
0.0 ! 0.0

-0 -85 50 45 40 -35 - 30 25 -0 <15 -0 5 il
rinut es

History: @® One Hour) One Day (OneWeek (' One Month (' One Year

Select one of these:

@ Wind speed 2.5) Rain detected 0
) Wind gust 2.5) Rain total 0.0
1 Wind dir 16.3 ' Pressure 56.6
) E Field 4768.7 _» Humidity 38
1 None

Select any of these temperatures:

Air temp 1.2] 1.2
[] Dew point -37.0 1 None

[] WA Override [] Show raw data

Illustration 8: Obscon Environment window

Obscon shows the various 1-wire temperature, humidity and dew point sensors in the IndoorEnv
window.

Whenever INDI detects any of several conditions considered dangerous for further observations
to continue it issues a Weather Alert. Currently this includes excessive wind speed, humidity,
detection of rain, high levels of electrical activity, low UPS battery power and inability to access
the Internet. When an Alert is issued the system automatically closes the camera blind and the
roof and ram. If for some reason it is necessary to prevent this automatic reaction, a Weather
Alert Override may be activated. While an Override is in effect an Alert will not perform the
closing procedures. An Override may be started by clicking the control in the Environment
window. The env.cfg configuration file contains a parameter that determines how long the
Override will remain in effect. Unless the Override is started again before this period it will
automatically turn off. The env.cfg file also allows adjusting the length of time an Alert will
remain in effect after any or all causal factors have returned to normal..

2.1.9 Implementation

The main class is ObsCon. It cracks command line arguments, builds the GUI, makes a
connection to the INDI server and waits forever to handle GUI events and INDI messages.

Page 17 of 71

GUI Tools

The server connection is built and serviced in ServerlO. The connection can be built using a
typical socket, or it can be built via an ssh tunnel. A tunnel requires an ssh login on the target
machine. The command line arguments must include the ssh port and login name, then the
password will be prompted for interactively. The ssh tunnel is built using SSHTunnel and the ch
package in the obsio directory.

Once the connection is built, incoming INDI messages are formatted into an INDIMsg. Each
INDIMsg is given to DispatchMsg which runs in a separate thread. The device and name from
INDIMsg are combined and used as a hash lookup to find the corresponding subclass of
GUIUpdate to run. Thus there is one subclass of GUIUpdate for each possible incoming
device/name pair INDI message.

Outgoing INDI messages build an INDIMsg with the appropriate content and are given to
ServiolO for transmission.

Each pushbutton in the main ObsCon frame is associated with its corresponding frame and
display it when pushed.

Page 18 of 71

GUI Tools

2.2 ObsCam

ObsCam stands for Observatory Camera and is the primary means for operating the image
detector. It can connect to and control any camera for which there is an INDI driver. It can also
read and write FITS files from and to disk. ObsCam is intended only as a basic camera control
and image display tool. It is not intended to compete with very elaborate control and processing
tools.

2.2.1 Command line arguments

ObsCam supports the following command line arguments:

-h h specify direct socket connection to INDI host h, default localhost
-i display inbound INDI messages for debugging

-0 display outbound INDI messages for debugging

-p p specify direct socket port p, default 7624

-s display in a smaller GUI format. This makes obscam use smaller fonts

and smaller gaps between GUI components, designed for use on laptops or
other small screens.

-t h s il create ssh tunnel to INDI host h, ssh port s (default 22), INDI
port i (default 7624) and login account 1. This is the default
connection mode if none of -t, -h or -p are given. This is used to
access an INDI server that is behind a firewall by creating a secure
ssh tunnel. It is necessary to have an account on the INDI server and
be able to log into that account from outside the firewall using ssh.

2.2.2 Main window

Page 19 of 71

GUI Tools

000 Camera Caontrol and FITS Display V0.1

53.8, 39.3 = 6005.0 = RA, Dec = 5:41:41.8, =2:31:21

Read horsehead.fts

~Camera-

INDI Device: ﬂ
Exp time: I

B | & ShOpen () Closed

Take 1 Abort
Run Auto save
8 | Temp set: 20
Temp now: @ ?
.
Binning: 1=

Image—
Contrast: — ==

Load || save |

Illustration 9: ObsCam window

The ObsCam window is shown in Illustration 9.

The obscam window is dominated by the image display rectangle in the lower left. The area
always shows the entire image and unused portions are shown in blue. Moving the mouse over
the window will show a magnified view in the lower right rectangle.

Before taking an image, set the exposure time in the text field labeled Exp time. The units are in
seconds. Also set the shutter to Sh Open or Closed as desired for normal exposures or bias or
dark calibration frames. To take one exposure, click Take 1. When the image is complete, it will
be shown in the image display rectangle. To automatically take images one after another, toggle
Run on. To stop after the next image, toggle Run off. Click Abort to abandon an exposure before
it is complete started by either method. To save each image as it arrives to a disk file, click Auto
Save on. The name will consist of the Date and Time. All files are stored as 16 bit FITS® files.

The camera cooler target temperature is set by entering the desired value in the text field next to
Temp set then typing Enter. The current cooler temperature is displayed next to Temp now, the
status light being green if the cooler is at the target temperature, yellow if it is moving towards
the target temperature, red if there is a cooler error or gray if the cooler is off. Pixels may be
binned (equally horizontally and vertically) using the spin box next to Binning.

The image Contrast can be set using the slider. The image can be saved by clicking Save. An
existing FITS files can be loaded for viewing by clicking Load.

Each time an image is loaded (either from the camera or a disk file) and secondary window is
opened in which are displayed the FITS header fields. See Illustration 10. This window may be
moved and resized as desired but will always appear.

6 http://heasarc.gsfc.nasa.gov/docs/heasarc/fits.html

Page 20 of 71

aea horsehead.fts
SIMPLE = T /FITS header
BITFIX = 16 /Mo.Bits per pixel
HAXIS = 2 /Ho.dimensions
NAXIS] = 530 /Length X axis
NAXISZ = 530 /Length ¥ axis
DATE = '31/03/97 ' /Date of FITS file creation
ORIGIN = 'CASB -- S5TScI ' jOrigin of FITS image
PLTLASBEL= 'J 8970 ' /Observatory plate label
PLATEID = '0084 ' /GSSS Plate ID
RECION = 'S840 ' /G858 Region Name
DATE-0BS= '28/12/83 ' /UT date of Observation
uT = '13:44:00.00 ' /UT time of observation
EPOCH = 1.9839306005859E+03 /Epoch of plate
PLTRAH = 5 /Plate center BA
PLTRAM = 42 /
PLTRAS = 3.3759050000000E+01 /
PLTDECSN= ' ' /Plate center Dec
PLTDECD = a/
PLTDECM = 1/
PLTDECS = 2.1784400000000E+01 /
EQUINOX = 2.0000000000000E+03 /Julian Reference frame egquinox
EXPOSURE= 5.5000000000000E+01 /Exposure time minutes
BANDPASS= 0 /GS55 Bandpass code
FLTGRADE= 1 /Plate grade
PLTSCALE= 6.7200000000000E+01 /Plate Scale arcsec per mm
SITELAT = '-31:16:24.00 ' /Latitude of Observatory
SITELONG= '+149:03:42.00 ' /Longitude of Observatory
TELESCOP= 'UX Schmidt (new optics)' /Telescope where plate taken
CHPIXl = 7411 /X corner (pixels)
CHPIXZ = 1608 /Y corner
DATATYFE= 'INTEGER*Z ' /Type of Data
SCANIMG = 'S840_0084_00_00.PIM' /Name of original scan
SCANNUM = 0 /Identifies scan of the plate -
DCHOFFED= F /Image repaired for chopping effec 4
DSHEARED= F /Image repaired for shearing effec v
[§ : J 4>
1
| Close y

Illustration 10: ObsCam FITS header window

Page 21 of 71

GUI Tools

GUI Tools

2.3 QExCon

QExCon stands for Queued Execution Control. QExCon is offers the means to operate the
observatory in a completely automated fashion. Using QExCon you define the INDI commands
you want to execute, define the target and any additional constraints for the observation, then
the QExCon device driver will decide the best time to perform the request. Many requests may
be pending simultaneously and the QExCon driver will always attempt to perform each of them at
the best possible time.

2.3.1 Command line arguments

QExCon supports the following command line arguments:

-h h specify direct socket connection to INDI host h, default localhost

-1 display inbound INDI messages for debugging

-0 display outbound INDI messages for debugging

-p p specify direct socket port p, default 7624

-t h s 11 create ssh tunnel to INDI host h, ssh port s (default 22), INDI

port 1 (default 7624) and login account 1. This is the default
connection mode if none of -t, -h or -p are given. This is used to
access an INDI server that is behind a firewall by creating a secure
ssh tunnel. It is necessary to have an account on the INDI server and
be able to log into that account from outside the firewall using ssh.

2.3.2 Main window

The QExCon main window consists of two tabs. One is used to Build a new scheduled observing
request. The other is to View all existing requests. Each tab is divided into two panes. Each pane
may be individually scrolled as necessary to view its contents.

Across the top, accessible from either pane, is a toggle button. This controls whether the QEx
system is running, which means willing and able to schedule and execute requests, or just idle.
Note that even when idle, QEx can accept new requests and respond to queries about what is in
the current request database.

2.3.3 Build tab

The Build tab of QExCon is shown in Illustration 11.

Page 22 of 71

GUI Tools

QExCon: Queue Excution Control - Version 0.91
QEx is Running -- Turn QEx Off

Build Request | View Requests |

RA @ J2000, hours 20 | B
4 Constraints
At Focus position
1 Min salar separation
Focus, um [|
] Max solar altitude
At Pointing offsets) .
1 Min lunar separation
Dec, asec [| :
RA, on sky, asec [| : [} Max lunar illumination
. | [Max lunar altitude
At Stop telescope motion -

[] Min target altitude
) Stop telescope motion — g

At Stow telescope

"] Whether satellite is sunlit

) Stow telescape : Timing
: W UTC Start 2010 1126 5 440
III CELES Tolerance 011
At -2 Exposure settings | [UTC After

Imaging start y, pixels 0 "] UTC Before

Imaging start x, pixels 0 ENEdED 01

Imaging width, pixels 0 L

Overscan width, pixels 0 User

1 to open shutter, else 0 1

Vertical binnng factor 1 Name Elwood

Horizontal binning factor 1] Priority

Overscan height, pixels 0

Imaging height, pixels 0

Exposure time, secs 30

At (D, BOD Control exposure

(@) Start exposure

At Set target cooler temperature

Target temp, C (0 off) | ‘

Illustration 11: QExCon Build Request tab

As | cas & o

The left pane of the Build tab displays all INDI properties on the system. This is not a live display,
such as you might see in ObsCon, but is simply a static list of each property name, including each
element if it is an array. The idea of the QExCon system is to collect any set of INDI commands
and trigger them at some time in the future to perform actions.

Beside each property is a text entry field labeled with “At” or “By”. These fields are for entering
a time difference with respect to the moment when this request is scheduled to be performed. If
a property requires some finite time to accomplish, such as slew to a target or open a roof, then
the label is “By”. If the property event happens essentially instantly, such as closing a camera
shutter, then the label is “At”. For example, if a property such as 1-Wire.Roof.Open, which will be
labeled “By” because it requires some time to perform, is set to 30, it means to issue that
property command such that it will complete 30 seconds before the scheduled time for the
request. Multiple commands may be trigger by listing their time offsets separated by comma. For
example, to trigger a shutter at 0 and 60 seconds after a request is scheduled, use “0,60”.

The right pane of the Build tab lists a set of constraints. When the QExCon control system
chooses a time to run this request, it will attempt to satisfy all of the constraints that are
checked. Turning on more requests gives you more control of the observing circumstances for
this particular request, but turning on fewer constraints will give the scheduler more flexibility to

Page 23 of 71

GUI Tools

compare this request with all others and find a solution that is suitable for more requests over
all. As far as possible consistent with all checked constraints, QExCon will always attempt to
choose a time that places the target as high in the sky as possible.

Fields that require date and time are in UTC and must use format YYYY MM DD HH MM SS.

Fields that require angles may use either the format DD MM SS or decimal degrees. For all time
and angle fields, in addition to a space the separator may also be any non-digit character such as
slash “/”, hyphen “-“ or colon “:”. Tolerance and Duration time fields are in hours or HH MM SS.

The Duration field is always required. It is important to set this field long enough to
accommodate all commands to their completion. Consideration was given to trying to infer the
total duration of a request but this is not possible in the most general case.

Specifying UTC Start instructs the scheduler to attempt executing the request at that time. If
other constraints are also checked then the scheduler will move away from the Start time up to
the specified Tolerance as necessary in order to meet all constraints and avoid other requests
already scheduled.

If the After or Before constraints are specified, then under no circumstances will the request be
executed before or after the specified time, respectively.

In addition to timing and astrophysical constraints, you may also assign a numeric priority to the
request. These have no physical meaning but are simply used by the scheduler to give first
consideration to requests with higher priority. It is expected that a group of users will agree upon
some strategy for a range of values to use. Any real values may be used but always numerically
smaller values have greater priority than larger values. Note that the priority system effectively
becomes meaningless if all requests are assigned the same priority value.

A field is also provided to enter a name for the observation. This is simply recorded and carried
along with the observation request as a helpful convenience, it does not play an active role in the
scheduling algorithm.

Once the properties to be performed have been set in the left pane and all desired constraints are
specified in the right pane, click Submit to enter the request into the QExCon queue. If there are
any errors, they will be shown otherwise the new request is stored in the QExCon database.

Page 24 of 71

GUI Tools
2.3.4 View tab

The View tab is used to inspect and manage the current contents of the QExCon observing queue.
See Illustration 12. The left pane shows a summary of each request, one per line. The information
listed is the time it has been, or was, scheduled, when it was submitted, its current state and the
User name. The possible states are shown in Table 1. Clicking on any request in the left panel
will display the full details of that request in the right panel. Here is shown everything known
about the request. Also shown is a history of each step that occurred in the life time of the
request, including any information about why it may have failed or been rejected.

QExCon: Queue Excution Control - Version 0.91
QEx is Running -- Turn QEx Off

Build Request | View Requests

[»

ID: 1230730135
Hame: Elwood
state: Finished
SubmitTime: 2010-11-26 5:42:15.085
ScheduledTime: 2010-11-26 5:45:00.000
StartTime: 2010-11-26 5:43:00.360
EndTime: 2010-11-26 5:46:00.096

Detail Scheduled Time Submit Time State Name

-7 7 —11- 20 et :| [constraints:
[} 2010-11-26 5:22:00.000 2010-11-26 5:20:38.504 Finished Elwood : UTCSTtArt: 2010-11-26 5:44:00.000
1]

Tolerance: 0:01:01

o 2010-11-26 5:42:00.000 2010-11-26 5:40:31.499 Finished Elwood Duration: ©:01:00

® 2010-11-26 5:45:00.000 2010-11-26 5:42:15.085 Finished Elwood INDT Commands:

by t=0 Telescope.SetRADecZK.Dec=10;RA=20

at t=-2 CCDCam.ExpValues.ROI¥Y=0;ROIX=0;ROIW=0;05W=0;Shutter=1;BinH=1
at t=0 CCDCam.EXpGOo.Go=0n

at t=60 CCDCam.EXpGo.Go=0n

History:
2010=11=26 5:42:15.085
Request submitted
2010-11-26 5:43:00.356
scheduled to start at 2010-11-Z6 5:45:00.000
2010-11-26 5:43:00.364
Ccommand #0 Starts in 59.636 s
2010=11-26 5:44:00.003
Sending Telescope.SetRADecZK.Dec=10;RA=2Z0
2010=11-26 5:44:00.003
Command #1 starts in 57.996 s
2010=11=26 5:44:00.0350
Received Telescope.SetRADecZK.RA=20;Dec=10 Busy "Slewing to 20 RA
£010=11=26 5:44:00.450
Received Telescope.SetRADecZK.RA=20;Dec=10 Ok "Tracking 20 RR 10 Oy
2010=11=26 5:44:56.046
sending CCDCam.ExpValues.ROI¥=0;ROIX=0;ROIW=0;05W=0;5hutter=1;BinH|
2010=11=26 5:44:58.046
Command #2 starts in 1.954 s
2010-11-26 5:44:58.097
Received CCDCam.ExpValues.ExpTime=30;ROIW=0;ROIH=0;05W=0;05H=0;B1in|
2010-11-26 5:45:00.051
sending CCDCam.EXpGO.Go=0n
2010=11-26 5:45:00.051
Command #3 starts in 59.949 s
2010=11-26 5:45:00.104
Received CCDCam.ExpGo.Go=0n Busy "Starting 30 sec exp”
2010=11=26 5:45:30.228
Saving fusr/local/octavi/blobs/2010-11-26T05:45:30.fts
2010=11=26 5:45:30.232 o
Received CCDCam.ExpGo.Go=0ff Ok "Exposure complete"
2010=11=26 5:46:00.054
sending CCDCam.ExpGo.Go=0n
2010=11=26 5:46:00.053
Starting final delay of -0.052 s to complete Duration
3 2010-11-26 5:46:00.096 =1
§ Finished -
4] I IDE KD i |]

Illustration 12: QExCon View Requests tab

Page 25 of 71

GUI Tools

Request Meaning Timeline
State color
New Has not yet been scheduled White
Scheduled |Scheduled but not yet executed Yellow
Running Currently being executed Green
Finished Completed successfully Gray
Canceled This request was cancelled Blue
Failed Execution failed for some reason Red

Table 1: QExCon request states

Across the top of the left pane is a timeline showing the status of all requests over the next
twenty four hours. Clicking on a request will show full details on the right. The colors in the
timeline indicate the state of the request, as defined in Table 1.

Also on the right panel are buttons to permanently Delete the request from the QExCon
database and, if it has not yet been fully executed, to Cancel the request.

2.3.5 Scheduling Algorithm

Each time the scheduler needs to decide the next request to execute the indigex process scans all
requests in the database that are in a state of New or Scheduled. The request that ends up sorted
soonest in the future is then executed when its assigned time occurs. The sorting procedure is
performed each time the queue is modified, after each execution completes or after each minute
of idle time. By resorting on a frequent basis, the system accommodates requests that may have
been added, cancelled or deleted and responds to temporal effects such as the current
temperature and humidity (Although not included in this implementation, other temporal effects
such as clouds or seeing could also be accommodated in principle).

The first step of the algorithm is to change all New or Scheduled requests which specify a Start
time plus Tolerance or a Before time that is already in the past to state Failed. Next all remaining
requests in state New or Scheduled are sorted by decreasing priority. All requests at the same
highest priority are assigned as described next, then requests at the next lower priority and so
on. Requests that do not specify a priority explicitly are sorted last. Note that if all requests have
the same Priority then effectively there is no priority effect.

Each request contains a Constraints table. This is a table consisting of 1,440 boolean elements or
“slots”, where each slot corresponds to each minute in the next 24 hours. Each slot in the table is
set to True or False depending on whether all specified constraints for that target are satisfied at
that moment.

Each request also stores the total number of slots that are True in its Constraints table, the
Duration in terms of the number of contiguous slots required, and the index of a Preferred slot
that indicates the moment at which the scheduling algorithm will begin its search. If the UTC
Start constraint in the request is specified then the Preferred slot is simply set from this value,
subject to variation as specified by the Tolerance field. Otherwise, the request must define an
astronomical target, that is, one that is defined using an RA and Dec or using orbital elements, in
which case the Preferred slot is set to correspond to the slot at the moment the target is at its
highest apparent horizon altitude, subject to all other specified constraints. The request is
rejected if it contains neither UTC Start nor an astronomical definition.

Page 26 of 71

GUI Tools

The next step, then, is to compute the information about the target at each slot time, setting the
Constraints table accordingly and determining the number of True slots and the Preferred slot
along the way.

Next, the set of eligible requests is sorted in order of increasing number of True slots in its
Constraints table. In this way requests which are more tightly constrained in time are considered
before requests that may be observed over a wider range of times.

There is also one Master assignment table. This is a table consisting of 1,440 pointers to
requests, where again each pointer corresponds to each minute in the next 24 hours. At the start
of the algorithm, all entries are set to Null. As the scheduling algorithm progresses, this table is
gradually filled in to point to the request scheduled for each time slot as the requests are
assigned. Contiguous entries are assigned to the same request for its Duration.

Finally the algorithm is ready to make assignments to the Master table. Each request is first
attempted to be scheduled at the Preferred time slot. If the Preferred time slot is already
assigned then the surrounding slots before and after are checked in ever expanding moments
away from the Preferred time slot. The request is scheduled at the time which corresponds to the
first slot that qualifies. In order for a slot to qualify, it and sufficient subsequent contiguous slots
to provide for the Duration of the request, must be Null in the Master assigned table. If such a
region is found, a pointer to the request is set in each slot in the Master assigned table to mark
those slots as being unavailable for further assignment and the request state is set to Scheduled.

The algorithm repeats in this way until all requests are either assigned, in which case their state
is set to Scheduled or no assignment was possible in which case they are assigned state New to
be attempted next time.

Note that the scheduling algorithm is never performed if there is currently a request already
running. This is because, as explained next, the QEx system does not know how to gracefully
cancel a request and so there is no point in choosing the next request when it can not be
executed until the current request completes anyway. Thus it can be stated that the QEx system
never decides on its own to Cancel a request, only the operator may do this.

If a running request is canceled, no special processing is performed other than to mark its state
as Canceled and move on to the next request. If special processing is required, for example to
stop the telescope or close the camera shutter, this must be performed by a suitable INDI client
or script outside the scope of QEx. In particular, clients that wish to present urgent Targets Of
Opportunity for execution should first cancel any currently running request, perform any
necessary equipment cleanup actions, then submit the TOO request to QEx for scheduling. Its
selection can be insured by judicious use of the Priority constraint.

2.3.6 QEx.cfg

The QExCon driver requires a configuration file to be set up. The name is gex.cfg and is in the
usual directory, /usr/local/octavi/config. This file defines the following variables.

gpath Specifies the full path of the directory containing the gexcon data base. The
database simply consists of one file per request. The name of the file is the
request ID number followed by the extension .qgex. The contents of the file are
the xml plain text description of the request. The file is updated whenever its
contents change, such as to the change the state.

bpath Specifies the full path of the directory in which any BLOBs received during the
execution of a request for the property named by PropSave (see below) are
stored. Thus, this is typically where image files will be stored.

Page 27 of 71

PropRA

PropDec

PropEDB

PropSave

port

host

GUI Tools

Name of the INDI property that specifies the RA @ J2000 of a fixed
astronomical target. The format is Device.Name.Element. For example, on this
system it should be Telescope.SetRADec2K.RA.

Name of the INDI property that specifies the Dec @ J2000 of a fixed
astronomical target. The format is Device.Name.Element. For example, on this
system it should be Telescope.SetRADec2K.Dec.

Name of the INDI property that specifies an astronomical target using an edb
or TLE specification. The format is Device.Name.Element. For example, on this
system it should be Telescope.SetCatalog.entry.

Name of the INDI property that will contain a BLOB of data as a consequence
of executing a request. Typically it is the property that contains pixels from a
camera or other instrument. The contents of the BLOB are stored in the
directory specified by the bpath variable (see above). The format is
Device.Name.Element. For example, on this system it should be
CCDCam.Pixels.Img.

TCP/IP port number used to connect to the INDI server. The default value is
the standard INDI port 7624.

TCP/IP host name or IP address used to connect to the INDI server. The
default value is localhost.

2.3.7 XML Database Format

Each QExCon database entry is stored in XML format. We describe the format of a request by
way of the example below. Each individual observation request is contained in an element named
INDIObservation. When it is necessary to collect one or more of these into a list, the outermost
list element is named INDISchedules.

Within each INDIObservation are the following subelements.

ID

Constraints

User

INDICommands

This element contains is a unique number assigned to each observing request.
The number is not intended to have any meaning but it can be said it is based
on the time when the request was submitted.

This element contains subelements each of which define the possible
constraints to be applied when scheduling this observation. If a given
constraint is not specified for this request, its element may be absent.

This element contains subelements that contain an identifier for the person or
organization that submitted the request and a priority. If a priority is not
specified for this request, this element may be absent.

This element contains a collection of At or By subelements. These in turn
contain the exact INDINew* commands to be issued when this observation is
executed. It also contains a subelement named Abort. This is the set of INDI
commands that are to be sent if a request that is underway is to be aborted
before it completes.

Page 28 of 71

GUI Tools

Execution This element contains information about when and how the request is being
executed. The state element indicates the current mode of the request. Other
subelements capture when the states will or did change. This element may also
include any number of History sublements each of which contains a brief
description of some event that occurred during the lifetime of this request.

Each history element contains a time attribute to record the moment when the
event occurred.

All references to an absolute date and time use UTC in the format YYYY MM DD HH MM SS.

Page 29 of 71

<| NDI Schedul es>

<| NDI Cbservati on>
<l D>334376768</ | D>
<Constrai nt s>

<M nSol ar Sep>10</ M nSol ar Sep>

<MaxSol ar Al t >- 18</ MaxSol ar Al t >

<M nLunar Sep>30</ M nLunar Sep>

<MaxLunar || | un>50</ MaxLunar !l | une

<MaxLunar Al t >10</ MaxLunar Al t >

<M nTar get Al t >30</ M nTarget Al t >

<Sat | sSunLi t >0</ Sat | sSunLi t >

<UTCStart> 2009 05 13 13 45 00 </ UTCStart>

<Tol erance> 1 0 0 <Tol erance>

<UTCAfter> 2009 05 10 00 00 00 </ UTCAfter>

<UTCBef or e> 2009
<Duration> 0 1 0

</ Constrai nt s>

<User >

<Name>NGC 1332</

GUI Tools

05 15 00 00 00 </ UTCAfter>
<Dur ati on>

Nanme>

<Priority> <Priority>
</ User >
<| NDI Conmands>

<at t="0">

<newSwi t chVect or devi ce=" CCDCanf nanme="ExpGo” >
<oneSwi t ch nane=" G" >0On</ oneSwi t ch>
</ newSwi t chVect or >

</ at >
<at t="-1">

<newNunber Vect or devi ce=" CCDCani nane="ExpVal ues” >

<oneNunber
<oneNunber
<oneNunber
<oneNunber
<oneNunber
<oneNunber
<oneNunber
<oneNunber
<oneNunber
<oneNunber
</ newNunber >
</ at >
<by t="0">

name=" ExpTi ne” >30</ oneNunber >
nane=" RO W >0</ oneNunber >
nane=" RO H' >0</ oneNunber >
nane=" OSW >0</ oneNunber >
nane=" OSH' >0</ oneNunber >
nanme=" Bi nW >1</ oneNunber >
name="Bi nH' >1</ oneNunber >
nane=" RA X" >0</ oneNunber >
nane="RA Y" >0</ oneNunber >
nane="Shutt er” >1</ oneNunber >

<newText Vect or devi ce="Tel escope” nanme="Set Cat al og” >
<oneText nanme="entry” >Mars, P</ oneText >
</ newText Vect or >

</ by>

</ | NDI Commands>
<Executi on>

<St at e> one of:

</ St at e>
<Subm t Ti ne> 2009 05 12 02 05 16 </ Subm tTi ne>
<Schedul edTi me> 2009 05 13 11 34 00 </ Schedul edTi ne>

<StartTi me> 2009

New, Schedul ed, Runni ng, Finished, Cancelled, Failed

05 13 11 33 00 </StartTi me>

<EndTi ne> 2009 05 13 11 33 50 </ EndTi me>
<Hi story tinme="2009 05 13 11 33 00">Start Observati on</Hi story>

</ Executi on>
</ | NDI Qbservati on>

</ I NDI Schedul es>

Page 30 of 71

INDI Properties

3 INDI Properties

This section lists all INDI Devices and their Properties. There is one table per Device. The table
lists the name, type and permission for each Parameter. In addition, Number parameters list the
name and units for each Element; Switch parameters list the rule and name of each switch
Element; and Text parameters list the name and purpose of each Element.

After each parameter is a brief description and the meaning of the four standard INDI States as
they apply to that parameter. Drivers send their parameters with defXXX messages or when they
change unless otherwise noted.

Following the tables is a diagram showing inter-driver communication channels.

Page 31 of 71

3.1 Telescope

INDI Properties

Telescope - telescope control

Name Type Perm Element Units
Pointing Number RO RA2K hours@]2k
Dec2K degs@]2k
RAEOD hours@EOD
DecEOD degs@EOD
HA hours +W
Alt degs up
Az degs E of N
AM air mass
PA PA, degs
XVEL HA vel, °/s
YVEL Dec vel, °/s
Focus nm
JD Time of data

Broadcast current telescope pointing information at approximately 2 Hz.

Idle=no motion OK=tracking Busy=slewing Alert=~fault condition

Focus Number WO position nm
Command a new Focus position.
Idle=no motion OK=in position Busy=moving Alert=fault condition
SetCatalog ‘ Text ‘ WO entry name or edb

Command telescope to track the given catalog or edb format specification.
Idle=no motion OK=in position Busy=moving Alert=not found or bad format.

SetAltAz Number WO Alt degs up
Az degs E of N
Command telescope to slew to the given alt/az.
Idle=no motion OK=in position Busy=moving Alert=fault condition
SetHADec Number WO HA Hours
Dec degrees

Command telescope to slew to the given HA/Dec.

Idle=no motion OK=in position Busy=moving Alert=fault condition

SetVelocity

Number

RW

HA

degs/sec west

Dec

degs/sec north

Page 32 of 71

INDI Properties

Telescope - telescope control

Name Type Perm Element Units
Command telescope to slew at the given velocities.
Idle=no motion OK=at velocity Busy=moving Alert=fault condition
SetRADec2K Number WO RA hours
Dec degs

Command telescope to track the given RA/Dec coordinates at epoch J2000.
Idle=no motion OK=in position Busy=moving Alert=fault condition

Stow Switch WO Go AtMostOne
Command move to standard stow position.
Idle=no motion OK=in position Busy=moving Alert=fault condition
Status Light RO PC480K PC48 OK
IK2200K IK220 OK
EStop Emergency stop
HAPLim HA pos limit
HANLim HA neg limit
DecPLim Dec pos limit
DecNLim Dec neg limit
FocusHomeOK Focus home OK
FocusPLim Focus pos limit
FocusNLim Focus neg limit
Collection of misc telescope system status indicators.
Property status matches highest level of all constituents.
Stop Switch WO Stop AtMostOne
Command an immediate halt to all telescope motion.
Idle=no effect OK=stopped Busy=stopping Alert=fault condition
Offsets Number WO RA arcseconds
Dec arcseconds
Inject offsets to the current target position.
Idle=unknown OK=in effect Busy=taking effect Alert=fault condition
PtgModel Number RW Mode *
XIndex
YIndex
Collimation
Nonperp
PolarH
PolarV
TubeFlex

Page 33 of 71

INDI Properties

Telescope - telescope control

Name Type Perm Element Units

ForkFlex

DecFlex

EllipHS

EllipHC

EllipDecS

EllipDecC

*Mode 0: Compute and return a new model that uses only these non-zero fields.
*Mode 1: install this as the running model and make it the new default.
*Mode 2: install this model as the current candidate.

Idle=unknown OK=accepted Busy=in progress Alert=rejected

PtgStar Number RW Count N..1 or
RA2K hours
Dec2K degrees
HA hours
Dec degrees
X hours
Y degrees
Alt degrees
Az degrees
delHA arcseconds
delDec arcseconds
delAlt arcseconds
delAz arcseconds

One star of a set used in a model. N stars are sent sequentially, decrementing Count from N to
1. 0 means set is empty.
idle=unknown OK=ready Busy=in progress Alert=fault

PtgMark Switch WO Mark AtMostOne

Undo

Reset

Mark (from last SetRADec), Undo last or Reset all stars in model collection.
Idle=unknown OK=accepted Busy=in progress Alert=error.

Page 34 of 71

INDI Properties

3.2 Target
Target - candidate target predictions
Name Type Perm Element Units
AskRADec Number WO RA hours
Dec degs
epoch year or 0=EOD
WantRTS Oorl
WantDesc Oorl
JD @ JD or O=now
ID unique ID

Ask for local info about a target defined by RA/Dec at a given JD. Causes one Info response with
matching ID. Info.Rise/Transet/Set will be filled in unless WantRTS is 0. Causes one InfoDesc
response with matching ID unless WantDesc is 0.

Idle=void OK=valid query Busy=looking Alert=invalid query

AskCatalog Text WO name name”
WantRTS Oorl
WantDesc Oorl
JD @ JD or O=now
ID unique ID

Ask for local info about a target defined by name” at a given JD. Causes one Info response with
matching ID. Info.Rise/Transet/Set will be filled in unless WantRTS is 0. Causes one InfoDesc
response with matching ID unless WantDesc is 0.
“name can be any catalog entry, major planets and moons or XEphem edb specification.

Idle=void OK=valid query Busy=looking Alert=invalid query

Info Number RO RA2K hours@]2k
Dec2K degs@]2k
RAEOD hours@EOD

DecEOD degs@EOD
PMRA “/min on sky
PMDec “/min on sky

HA hours +W
PA paral ang, °+W
Alt degs up

Az degs E of N
AM air mass
Rise! JD*

Page 35 of 71

INDI Properties

Target - candidate target predictions

Name Type Perm Element Units
Transit? JD”
Set? JD*
JD JD of info
ID matching ID

Quantitative response to a previous AskRADec or AskCatalog query. ID matches that in request.

Rise/Transit/Set will be 0 unless query set WantRTS.
Idle=void OK=valid query Busy=working Alert=invalid query;
*-1 = never up, -2 = circumpolar;

!previous rise if up now else next; “next transit after Rise; *next set if up now else previous

InfoDesc

Text

RO

Description

prose

ID

matching ID

Prose description response to a previous AskRADec or AskCatalog query. ID matches that in

Idle=void OK=valid query Busy=looking Alert=invalid query

request.

Page 36 of 71

3.3 Environment

INDI Properties

Environment - local current and historical conditions

Name Type Perm Element Units
Now Number RO AirTemp °C
DewPoint °C
WindChill °C
AirPressure hPa
Humidity %
WindDir degs E of N
WindSpeed mps
WindGust mps
RainAccum YTD mm
RainDetected Oorl
EField V/m
EField]D JD
Broadcast current environmental stats every five seconds.
Idle=not available OK=valid and in safe range Busy=updating Alert=out of range
AskEnv Number WO JD @ JD or O=now
ID unique ID

Ask for environmental stats from logs nearest to the given JD. Causes one JDEnv response with

matching ID.
Idle=void OK=valid query Busy=looking Alert=invalid query

JDEnv Number RO AirTemp °C
DewPoint °C
WindChill °C

AirPressure hPa
Humidity %
WindDir degs E of N

WindSpeed mps
WindGust mps

RainAccum YTD mm

RainDetected Oorl
EField V/m
EField]D JD
JD JD

Page 37 of 71

INDI Properties

Environment - local current and historical conditions

Name Type Perm Element Units

ID matching ID

Historical environmental stats for the given JD. Caused by AskEnv with matching ID.
Idle=void OK=valid query Busy=looking Alert=invalid query

WAOverride Switch WO ‘ Override AtMostOne

May be used by clients to implement a Now “Weather Alert Override”. The only functionality
provided by the driver is to time out back to Off after a configurable time period.
Idle=no “Override” OK=(unused) Busy=updating Alert="0Override” in effect

Limits Number RO MaxHumidity %

MaxWindSpeed mps

Report maximum safe operating conditions. Sent once per successful connection.
Idle=void OK=valid query Busy=looking Alert=unavailable

Page 38 of 71

INDI Properties

3.4 Time
Time - current observatory time and circumstances
Name Type Perm Element Units
Now Number RO JD Julian Date
UTC UTC, hours
UTCDate UTC date*
LT local time, hours
LST sidereal, hours
MoonAz degs E of N
MoonAlt degs up
MoonElong degs E of sun
MoonPA paral ang, °+W
SunAz degs E of N
SunAlt degs up

Broadcast current time and sun/moon info at 2 Hz.

Idle=unknown time OK=accurate Busy=acquiring Alert=time may be incorrect

* packed as (year*10000) + (month*100) + (day)

Location Number RO Latitude degs +N
Longitude degs +E
Elevation m
MagDecl degs mag-true

Observatory location. Sent once per connection.

Idle=unknown OK=accurate Busy=acquiring Alert=location may be incorrect

Site

Text

RO

Name

site name

Observatory site name.

Idle=unknown site OK=accurate Busy=acquiring Alert=name may be incorrect

Events Number RO MoonRise' JD*
MoonSet? JD*

Dawn'! JD*

SunRise’ JD*

SunSet? JD*

Dusk? JD*

Sun and moon rise/set information. Sent once per connection and when any value changes.
Idle=unknown time OK=accurate Busy=acquiring Alert=info may be incorrect

* .
-1 = never up -2 = circumpolar

!previous rise/dawn if up now else next; next set/dusk if up now else previous

Page 39 of 71

INDI Properties

3.5 CCDCam

CCDCam - camera control

Name Type Perm Element Units
MaxValues Number RO ExpTime seconds

ROIW raw pixels
ROIH raw pixels
OSwW overscan pixels
OSH overscan pixels
BinW horizontal binning
BinH vertical binning

Shutter whether present

MinTemp Min cooler, C

Report maximum values for each camera operating parameter.
Idle=unknown OK=valid Busy=looking up Alert=fault

ExpValues Number WO ExpTime seconds
ROIW raw pixels
ROIH raw pixels
OSW overscan pixels
OSH overscan pixels
BinW horizontal binning
BinH vertical binning
ROIX raw pixels
ROIY raw pixels

Shutter whether to open
Type IMTYPE *

Set parameters for subsequent exposures. ROIW/H set to 0 implies full frame.
Idle=unknown OK=valid Busy=checking Alert=invalid parameters for this camera
* How IMTYPE FITS field will be set: 1=Bias 2=Dark 3=Flat 4=Science else not set

Mode Switch RW HiSpeed 10fMany

LoNoise

Select hi speed or low noise mode for subsequent exposures.
Idle=unknown OK=valid Busy=checking Alert=invalid parameter for this camera

Shutter ‘ Switch ‘ WO ‘ Open ‘ AtMostOne

Directly control shutter. May not work on some cameras when exposure is in progress.
Idle=no action OK=in position Busy=in progress Alert=error

ExpGo . Switch RW | Go | AtMostOne

Page 40 of 71

INDI Properties

CCDCam - camera control

Name Type Perm Element Units

Send with Go=0n to start an exposure as per last set of ExpValues. Send with Go=O0ff to abort.
Idle=no activity OK=complete Busy=in progress Alert=error

Pixels BLOB RO Img FITS file

FITS file sent when ExpGo completes.
Idle=no file OK=file ok Busy=working Alert=error

Page 41 of 71

INDI Properties

3.6 CCDChiller

CCDChiller
Name Type Perm Element Units
Running Switch WO Run AtMostOne

Set whether cooler is running or in standby mode.
Idle=unknown OK=command accepted Busy=setting mode Alert=error

Remote ‘ Switch ‘ WO ‘ On ‘ AtMostOne

Set whether cooler is in remote or local (front panel) mode.
Idle=unknown OK=command accepted Busy=setting mode Alert=error

SetTemp ‘ Number ‘ WO ‘ Target ‘ °C

Set target cooler set-point temperature.
Idle=unknown OK=target accepted Busy=checking target Alert=error

CurrentTarget ‘ Number ‘ RO ‘ Target ‘ °C

Report current target set-point temperature.
Idle=unknown OK=valid Busy=checking target Alert=error

TempNow ‘ Number ‘ RO ‘ Temp ‘ °C

Report current cooler temperature.
Idle=unknown OK=cooler at target temperature Busy=seeking target temperature Alert=error

Status Light RO TankLow Tank level low
FanFail Fan failed
PumpPFail Pump failed
RTDOpen RTD open
RTDShort RTD shorted

Report cooler status flags.
Property status matches highest level of all constituents.

Page 42 of 71

INDI Properties

3.7 1-Wire

Various devices on 1-wire bus via HA7Net

Name Type Perm Element Units
Now Number RO Humidity1 %
DewPoint1 °C
Templ °C
Humidity2 %
DewPoint2 °C
Temp?2 °C
Humidity3 %
DewPoint3 °C
Temp3 °C
Temp4 °C
Temp5 °C
RoofOpen *
RamOpen *

Broadcast current stats whenever they change.
*-1 = midway 0 = closed 1 = open
Idle=not available OK=valid Busy=updating Alert=error

JDAsk Number WO JD @ JD or O=now
ID unique ID
Ask for historical Now stats nearest the given JD. Causes one AtJD response with matching ID.
Idle=void OK=valid query Busy=looking Alert=invalid query
At]JD Number RO Humidity1 %
DewPointl °C
Templ °C
Humidity?2 %
DewPoint2 °C
Temp?2 °C
Humidity3 %
DewPoint3 °C
Temp3 °C
Temp4 °C
Temp5 °C
RoofOpen *

Page 43 of 71

INDI Properties

Various devices on 1-wire bus via HA7Net

Name Type Perm Element Units
RamOpen *
JD JD
ID matching ID

Historical Now data at the given JD. Caused by JDAsk with matching ID.
*-1 = midway 0 = closed 1 = open
Idle=void OK=valid query Busy=looking Alert=invalid query

Roof ‘ Switch ‘ WO ‘ Open ‘ AtMostOne

Open or Close Roof
Idle=unknown state OK=accurate Busy=command in progress Alert=error

Ram ‘ Switch ‘ WO ‘ Open ‘ AtMostOne

Open or Close Ram
Idle=unknown state OK=accurate Busy=command in progress Alert=error

Heaters ‘ Switch ‘ WO ‘ On ‘ AtMostOne

Turn Heaters On or Off
Idle=unknown state OK=accurate Busy=command in progress Alert=error

Fans ‘ Switch ‘ WO ‘ On ‘ AtMostOne

Turn Fans On or Off
Idle=unknown state OK=accurate Busy=command in progress Alert=error

Blind | Switch | WO | Open | AtMostOne

Open or Close lens blind
Idle=unknown state OK=accurate Busy=command in progress Alert=error

Page 44 of 71

INDI Properties

3.8 UPS
UPS - current state of Uninterruptable Power Supply
Name Type Perm Element Units
Status Number RO Battery Percent charged
MainsOK lorO

Current state of UPS.

Idle=unknown site OK=accurate Busy=updating Alert=battery below minimum

Page 45 of 71

INDI Properties

3.9 AC
AC - current state of Air Conditioning Unit
Name Type Perm Element Units
Current Number RO Temp Current temp
Set Set point

Current status.
Idle=unknown site OK=accurate Busy=acquiring Alert=error

Set Number WO Set Set point

Set a new target temperature.
Idle=unknown site OK=accepted Busy=in progress Alert=error

Page 46 of 71

INDI Properties

3.10 QEx
Qex - Queued Execution
Name Type Perm Element Units
Submit BLOB WO Request xml

Submit one new request. XML is packaged as a BLOB.
Idle=unknown OK=command accepted Busy=checking Alert=error

Schedules ‘ BLOB ‘ RO ‘ All ‘ xml

Report a complete set of all requests in database. XML is packaged as a BLOB.
Idle=unknown OK=valid Busy=in progress Alert=error

Delete ‘ Number ‘ WO ‘ ID ‘ Request ID

Delete the request with the given ID, Cancel is currently running.
Idle=unknown OK=valid Busy=deleting Alert=error

Cancel ‘ Number ‘ WO ‘ ID ‘ Request ID

Cancel the request with the given ID.
Idle=unknown OK=cancelled Busy=canceling Alert=error

Run | Switch | RW | On | AtMost1

Turn QEx schedule execution system on or off.
Idle=Off OK=0n but not executing a request Busy=executing a request Alert=error

Page 47 of 71

3.11 Driver Intercommunication

INDI Properties

Drivers communicate among themselves to perform coordinated operations, as show in
Illustration 13. The FLI camera driver listens for meteorological data from the MAWS driver,
building conditions from the 1-Wire driver and telescope pointing data from the Tel driver in
order to add these values to the FITS image header. The Tel driver listens for meteorological
data from the MAWS driver to compute the refraction model. The MAWS driver also listens to the
Previstorm electric field sensor and the UPS in order to issue a Weather alert if any of these are
active. The 1-Wire driver listens to the MAWS driver for Weather Alerts to automatically close

the roof and ram.

Pointing stats, OBJECT

> Tel

Building ‘
conditions
> FLI
Y
Mets
1-Wire - MAWS
, WX alert
WX alert
UPS

Mets

Illustration 13: Inter-driver communication

In addition to these connections, the gexcon driver also functions as a client. By this means it is
able to issue all the same commands as any other client and thus operate all equipment at the

observatory.

Page 48 of 71

Command Line Programs

4 Command Line Programs

This section lists the major command line programs. Each command will also provide a summary
of itself when run with the --help command line option.

4.1 getINDI

getINDI connects to an indiserver and reports the current value of one or more properties.
Values can be printed with or without corresponding names. getINDI can also be used to monitor
for changes in property values for an extended period.

NAMVE
getI NDI - get INDI property val ues

SYNCPSI S
getINDI [options] [device.property.elenent ...]

DESCRI PTI ON
getINDI connects to an indiserver and reports the current val ue of one
or nore properties. Each property is specified using three conponents
inthe form

devi ce. property. el enent
Any conponent may be an asterisk, "*", to serve as a wild card and
match all properties in that conponent of the specification. If no
property is specified, then all properties match, ie, it is as if the
specification "*.*.*" were given
The | ast conponent of the property specification is usually the el enent
nane, but nmay be a reserved nane to indicate an attribute of the
property as a whole. These reserved nanes are as foll ows:
_LABEL report the label attribute
_GROUP report the group attribute
_STATE report the state attribute
_PERM report the permission attribute
_T0O report the timeout attribute
_TS report the timestanp attribute

OPTI ONS
-1 print just the value if expectiong exactly one matching
property
-d <f> wuse file descriptor f already open as a socket to the
indiserver. This is useful for scripts to make a session
connection one tine then reuse it for each invocation. If the

Page 49 of 71

QUTPUT

Command Line Programs

file descriptor seens to be being closed, check that the close-
on-exec flag is off; for exanple in perl use sonething like:

#! [usr/ bi n/ perl

use Socket;

use Fcntl;

socket (SOCK, PF_I NET, SOCK _STREAM get prot obynanme('tcp'));
connect (SOCK, sockaddr in(7624,inet_aton('local host')));
fentl (SOCK, F_SETFD, 0) ;

$directfd = fil eno(SOCK);

%rops = split (/[=0/, “getIND -d $directfd);

-h <h> connect to alternate host h; the default is |ocal host.

-m continues to nonitor for subsequent changes to each specified
property.

-p <p> connect using alternate port p; the default is 7624.

-q SuUppress some error nessages.

-w Usual |y only readabl e properties are showm. If this flag is
set, then all properties, including those that are wite-only,
are shown.

-t <t> wait no longer than t seconds to gather the values for all the
specified properties; the default is 2 seconds.

-V generate additional information on stderr. This is cumul ative
in that specifying nore -v options will generate nore output.

FORMVAT
For properties that are not BLOBs, the output of getIND is one line
per property. Unless the -1 option is given, each line is of the form

property=val ue
A property that is a BLOB is saved in a file nane

device. property.elenent.format. Z conpression is handl ed automatically,
other formats are | eft unchanged.

EXIT STATUS

The get I NDI programexits with a status of 0 if it suceeded in finding
the value for each specified property. It exits with 1 if there was at
| east one property for which no value was found within the given
timeout period. It exits with 2 if there was sonme other error such as
not being able to connect to the indiserver

EXAMPLES

In a perl script, gather all properties for the default indiserver and
save themin an associative array %rops which can then be used to | ook
up a property val ue by nane:

Page 50 of 71

Command Line Programs
%rops = split (/[=0/, “getIND ");
Wait up to ten seconds to get the values of all properties fromthe
Mount device on the given host and non-standard port:
getINDI -h indihost -p 7655 -t 10 "Mount.*.*"
Print just current value of the wind speed elenent fromthe weather
devi ce:
getNDI -1 Weat her. W nd. Speed
SEE ALSO

eval I NDI, set| NDI
http://ww. cl ear skyi nstitute.conl | NDI/INDI. pdf

4.2 setINDI

setINDI connects to an indiserver and sends commands to set new values for specified
properties. When a property is an array that contains multiple elements, all elements are updated
atomically.

NAVE
setINDI - set one or nore witable IND property val ues

SYNOPSI S
setINDI [options] {[type] device.property.el[;e2...]=vl[;v2...]}
setINDI [options] {[type] device.property.el=vl[;e2=v2...]} ...

DESCRI PTI ON
set I NDI connects to an indiserver and sends commands to set new val ues
for specified properties. Each property is specified using three
components foll owed by the new value in the follow ng form

devi ce. property. el enent =val ue

Since in elenent may be an array, the syntax allows for multiple
el ements for one property to be specified sinultaneously in either of
two forns. One formlists each el enent nane separated by sem col ons,
then an equal sign, then each correspondi ng val ue al so separated by
sem colons. The other formlists each el enent=val ue together, each pair
separated by a senpbcolon. In either form all elenents are updated
atom cal ly.

OPTI ONS

-d <f> wuse file descriptor f already open as a socket to the

Page 51 of 71

TYPE

Command Line Programs

indiserver. This is useful for scripts to make a session
connection one tinme then reuse it for each invocation. If the
file descriptor seens to be being closed, check that the close-
on-exec flag is off; for exanple in perl use something |ike:

#! [usr/ bi n/ perl

use Socket ;

use Fcntl;

socket (SOCK, PF_|I NET, SOCK STREAM get protobynanme('tcp'));
connect (SOCK, sockaddr _in(7624,inet_aton('local host')));
fentl (SOCK, F_SETFD, 0) ;

$directfd = fil eno(SOCK);

& unindi ("./setINDI", "-d", "$directfd", "x.y.z=10");

& unindi ("./setINDI", "-d", "$directfd", "a.b.c=hello");

sub runindi { if (fork()) { wait(); } else { exec @; } }

-h <h> connect to alternate host h; the default is |ocal host.
-p <p> connect using alternate port p; the default is 7624.
-q Suppress sone error nessages.

-t <t> wait no longer than t seconds to acconplish setting the new
val ues; the default is 2 seconds.

-V generate additional information on stderr. Additional v's
report successively nore information.

Each property nmay optionally be preceded by a type code:

-X next property is of type Text
-n next property is of type Number
-S next property is of type Switch

If all properties are preceded by their type code, then a round trip to
the server to discover their definitions is avoided and the session is
much nmore efficient. However, this also precludes any error checking so
each type indicated nmust in fact be correct or the commands wll be
silently ignored.

When devel opi ng a script of commands, one strategy is to use getIND to
get the exact property definitions one tinme, try the desired comuands
wi thout the type codes to benefit fromerror checking, then add the
type codes in the final optinized version

Page 52 of 71

Command Line Programs

EXIT STATUS
The setI NDI programexits with a status of O if it succeeded in sending
the commands to set new val ues for each specified property. It exits
with 1 if there was at |east one property for which a value could not
be set within the given timeout period. It exits with 2 if there was
some other error such as not being able to connect to the indiserver.

EXAMPLES
Send new |l at/l ong nuneric | ocation values atomically to the Munt
driver:

setINDI ' Mount. Location. Latitude; Longi t ude=30; 100’

Sane, but with alternative syntax and indicate type for greater
efficiency:

setINDI -n 'Mount. Location. Latitude=30; Longi t ude=100'
SEE ALSO

eval I NDI, get| NDI
http://ww. cl ear skyi nstitute.conl | NDI/INDI. pdf

4.3 evalINDI

evalINDI connects to an indiserver and listens for the the values of properties used as operands
in an arbitrary mathematical expression then uses these values to evaluate the expression. The
arithmetic expression follows the general syntax used in the C programming language.

NANVE

eval INDI - eval uate an expression of INDI property val ues
SYNCPSI S

eval I NDI [options] [exp]
DESCRI PTI ON

eval I NDI connects to an indiserver and listens for the val ues of
properties to evaluate an arithmetic expression. Each property is
speci fied using three conponents encl osed in double quotes in the
following form

"devi ce. property. el ement”
The | ast conponent of the property specification is usually the el enent
nane, but nmay be a reserved nane to indicate an attribute of the
property as a whole. These reserved nanes are as follows:
_STATE the state attribute, where for the purposes of evaluation
the usual keywords ldle, Ok, Busy and Alert are converted
to the numeric values of 0, 1, 2 and 3 respectively.

_TS evaluate the timestanp attribute as the number of UN X

Page 53 of 71

Command Line Programs

seconds from epoch

Switch vectors evalute to O or 1 based on the state values of Of and
On, respectively. Light vectors evaluate to 0-3 sinmilarly to the
keywor ds descri bed above for _STATE

The arithnetic expression, exp, follows the formof that used in the C
programm ng | anguage. The operators supported incl ude:

b+ - *] && || >>= == 1= < <=
and the mathematical functions supported include:

sin(rad) cos(rad) tan(rad) asin(x) acos(x) atan(x) atan2(y, x)
abs(x) degrad(deg) raddeg(rad) floor(x) log(x) |0gl0(x) exp(x)
sqrt(x) pow(Xx, exp)

The val ue of Pl can be specified using a constant named "pi"

OPTI ONS
-b Ring the term nal bell when expression evaluates as true.

-d <f> wuse file descriptor f already open as a socket to the
indiserver. This is useful for scripts to make a session
connection one time then reuse it for each invocation. If the
file descriptor seens to be being closed, check that the close-
on-exec flag is off; for exanmple in perl use sonething like:

#!/ usr/ bi n/ perl

use Socket ;

use Fcntl;

socket (SOCK, PF_I NET, SOCK STREAM get protobynanme('tcp'));
connect (SOCK, sockaddr in(7624,inet_aton('local host')));
fentl (SOCK, F_SETFD, 0) ;

$directfd = fil eno(SOCK);

& unindi ("./evalINDI", "-d", "$directfd", "\"x.y.z\"==1");
sub runindi { if (fork()) { wait(); } else { exec @; } }

-e print each updated expression value after each eval uation
-f print the final expression value

-h <h> connect to alternate host h; the default is |ocal host.

- read the expression fromstdin

-0 print each operand each time it changes value in the form
property=val ue

-p <p> connect using alternate port p; the default is 7624.

Page 54 of 71

Command Line Programs

-q suppress some error nessages.

-t <t> wait no longer than t seconds to gather the initial values for
all the specified properties; 0 neans forever, the default is 2
seconds.

-V generate additional information on stderr. This is cunmulative
in that specifying nore -v options will generate nore output.

-w eval uate the expression as nmany tinmes as necessary until it
eval uates to a val ue other than zero.

EXI T STATUS
The eval INDI programexits with a statis of 0 if the expression
evaluates to non-0. It exits with 1 if the expression evaluated to O.
It exits with 2 if there was sone other error such as not being able to
connect to the indiserver.

EXAMPLES
Print 0/1 whether the Front or Rear elenents of the Security property
are in a state of Alert:

eval INDI -f ""Security.Security.Front"==3 ||
"Security. Security. Rear"==3'

Exit O if the Security property as a whole is in a state of Ck:
eval INDI ' "Security.Security. STATE'==1'

Wait forever for RA and Dec to be near zero and watch their val ues as
t hey change:

eval INDI -t 0 -wo 'abs("Munt.EqJ2K RA")<.01 &&
abs(" Mount . EqJ2K. Dec") <. 01’

Wait forever for the wind speed to becone | arger than 50:
eval INDI -t 0 -w '"Wather. W nd. Speed" >50'

SEE ALSO
get I NDI, setl| NDI

4.4 indiserver

Indiserver provides network access to INDI drivers from INDI clients. Indiserver can be run
manually from a command line during driver development but on a fully operational system it is
run automatically at system startup via script such as /usr/local/octavi/runindi.

Page 55 of 71

Command Line Programs

NANMVE
i ndi server - provide socket access to one or nore |local or renote | NDI
drivers

SYNOPSI S
i ndi server [options] driver [driver ...]

DESCRI PTI ON
i ndiserver is a TCP server that provides network access to any numnber
of local INDI Driver programs or |NDI Devices running on other
i ndi servers in a chained fashion

OPTI ONS
-l dir enables logging all driver and internal nessages to files in
the given directory, otherwise they go to stderr. The file is
named YYYY-MM DD.islog and thus begi ns anew each day. Each | og
entry consists of the tinestanp, the device and t he nessage.

-mm speci fies the nmaxi mum nunber of negabytes a client is allowed
to get behind reading. If the client queue exceeds this anount,
the client is killed. The default value is 50 MB

-pp specifies that the indiserver listen to port p, instead of the
default standard INDI port of 7624.

-V arranges for additional trace information to be printed to
stderr. These are cumul ative. One (-v) reports each client
connect and di sconnect and driver snoops. Two (-vv) adds key
i nformati on about each nessage being sent or received in the
formof the client channel or device nane; the toplevel |NDI
XM. el ement; the device, property nane, state, perm and nessage
attributes as appropriate; then the nane and val ue of each
array nenber of the IND elenment. Three (-vvv) adds the
compl ete XML nessage

DRI VER
Each additional argunment can be either the name of a | ocal programto
run or a specification of an INDI Device on a renote indiserver
A local programis specified as the path name of the execuble to run
(not the name of the Device it inplenents). The programis presuned to
i npl ement the INDI protocol on its stdin and stdout channels to
i mpl ement exactly one Device. The program may send ad-hoc out - of - band
error or trace messages to its stderr, each line of which will be
prefixed with the name of the Device and a tinmestanp then is nmerged in
with the indiserver's stderr.

A renpte Device is given in the form device@ost[:port], where device
is the INDI device already avail able on another running instance of

i ndi server, host is the TCP host name on which said instance is running
and the optional port is the port on which to connect if other than the
standard port 7624. Again, renote connections specify the name of the
Devi ce, irrespective of the name of its local driver program

Indiserver will attenpt to restart a driver that dies. Automatically

Page 56 of 71

Command Line Programs

restarting drivers helps create a nore robust environment for clients,
and allows for easily killing and restarting a driver any nunber of
times during driver devel opnent without also killing indiserver and
restarting clients.

I ndi server queues nessages separately for each client and driver in an
attenpt to avoid slow consuners fromeffecting faster consuners
However, if a client ever gets nore than 50MB behind in its queue (or
as set using -n), it is considered hopelessly slow and is shut down.

EXI T STATUS
indiserver is intended to run forever and so never exits normally. If
it does exit, it prints a nmessage to stderr and exits with status 1.

EXAMPLES
In the follow ng discussion, suppose there are driver prograns naned
cam security, ota and tnount which inplement |IND devices Canera,
Security, OTA and Munt, respectively.

Renot e i ndi server connections are useful in several scenarios. One
possibility is to allow Drivers to run on platforns nost appropriate to
the hardware they are controlling and yet be conbined with Devices on
other platforms. For exanple, suppose a canera device requires a
speci al hardware connection and dedi cated processing so its driver is
run on hostl. Ot her devices are sinpler and can be run on host2. In
this case, the camera device m ght be run as follows (the pronpt
denotes the host name):

host1: indi server cam
and conbined with other drivers as foll ows:
host2: indi server Canmera@ostl ota tnount

In this way an INDI client connecting to host2 seenlessly sees all the
devi ces Camera, OTA and Munt.

Anot her situation is to nanage which Devices are available to
connecting INDI clients depending on how they connect. Suppose a third
i ndiserver is started as foll ows:

host 2: indiserver -p 7625 security Canera@ost1l OTA@ost 2
Mount @ost 2

An INDI client connecting to port 7625 on host2 will now al so see the

Security device in addition to the other devices (presumably this port
woul d be hidden by firewall technol ogy).

SEE ALSO
eval INDI, getINDlI, setl| NDI

Page 57 of 71

Command Line Programs

4.5 pc48

This program allows direct control of the PC48. When run with no arguments it serves as a
simple bridge, sending all characters read from stdin to the PC48 and sending all characters read
from the PC48 to stdout. By sending commands to stdin it is possible to build simple scripts of
command segences. The program will ignore input lines that begin with the '#' character. This is
to allow adding comments within a script file of commands. As a special case, an input line
consisting of a single '!' character will display the control registers of the PC48.

The program also supports one command line switch, -r, which causes an initial reset of the PC48
before allowing normal commands. Any other command line argument will report a summary of
usage and short list of some of the most frequently used PC48 commands.

It is possible to log to a file all commands going to and from the PC48, not only from this program
but all programs on the system such as the inditel telescope control process. Whether or not
logging is performed is controlled by the file /tmp/pc48lock. Logging is enabled if this file exists,
contains at least one character and the first character is '1'. All other conditions, including not
existing at all or other contents, result in no logging.

Turning logging on and off can thus be accomplished from a command line using the following
example commands:

echo 1 > /tmp/pc48lock to turn on logging
echo 0 > /tmp/pc48lock to turn off logging

The log file itself is $OBSHOME/logs/PC48/<ISO-DATE>.log. There is one line per transaction.
Each line begins with the UTC date. Following that everything sent to the PC48 is preceded with
the character '>'. Everything received from the PC48 is preceded by the character '<'.

4.6 ik220con and ik220load

This program connects to the Heidenhain encoder controller, performs an initial setup, then goes
into an infinite loop displaying the current values of the encoders. Each line of the loop output
contains the following fields:

Axis channel number. This project has assigned channel 0 to HA, and channel 1 to Dec.
number of times the encoder returned the exact same value

The UNIX time in seconds since Jan 1, 1970

The current encoder count value

The encoder status, where 0 indicates normal operation. See Heidenhain documentation
for other status values.

The ik220con command has one optional command line argument of -s which can specify a delay,
in ms, between sample reports.

In order for ik220con to function correctly, the k220 linux driver module must be loaded. This
module is normally loaded automatically when the system is booted. It can also be loaded
manually using the command $OBSHOME/bin/ik220load.

Note that there can not be more than one process reading the encoders at one time. This means,
for example, you may not use this program while the inditel driver process is running.

Page 58 of 71

Software Configuration

5 Software Configuration

This section describes how the software is arranged both in terms of static disk files and in terms
of dynamic operation, shown in Illustration 14. Relative path names are with respect to the
OBSHOME environment variable which is /usr/local/octavi by default.

. . [—
init I [etc/inittab
R
runindi
Internet port PO . B e
7624 > indiserver — logs/IS/YYYY-MM-DD.islog
N
> inditime 7___config/lationg.cfg
obscon i« *
T _—
> inditarget catalogs/*.edb
,,,,,,,,,,, . T o ——
obscam l< e inditel config/tel.cfg
> indifli
getINDI |« -
—_— =
1 config/1-wire.cfg
. > indi1-wire | e—
hd ™| logs/1-wire/HYYYYMMDD.log
» indiccdchiller config/chiller.cfg
R ————
Key: > indimaws - - ?
process ™ logs/WX/WXYYYYMMDD.log
o _
> indiac config/ac.cfg
GUI . _ T
> indiups config/ups.cfg
— stdio e ——
g forklexec > indigex config/qex.cfg

—» Fileilo

I ¢ Ethernet

Illustration 14: System processes and files

Page 59 of 71

Software Configuration

5.1 Boot sequence

When the system is booted, runindi is executed at runlevel 5 via init from an entry in /etc/inittab.
This starts the indiserver which starts each INDI driver. Indiserver and all drivers are expected
to run forever. If any driver ever exits for any reason, it will be restarted immediately by
indiserver. If indiserver itself ever exits, all its drivers will exit and indiserver will be restarted
via runindi via init. The entry in /etc/inittab is as follows:

i ndi:5:respawn:su -s /bin/sh indi /usr/local/octavi/bin/runindi

If it ever becomes necessary to kill indiserver and keep it off, it will not work to just kill
indiserver because init will start it again immediately via runindi. The correct way is to create a
temporary file named /tmp/noindi and then kill indiserver as follows:

$ touch /tnp/noindi
$ sudo killall indiserver

When the runindi script sees this file it will just sleep for several seconds and exit, which thus
repeats indefinitely until the file is gone. To allow indiserver to run again, rm /tmp/noindi and
runindi will then go ahead and start indiserver as usual. See runindi for details.

5.2 File system layout

The environment variable OBSHOME defines the root directory for a tree of all system files. By
default it is set to /usr/local/octavi. This tree is organized into the subdirectories described in
Table 2.

/usr/local/octavi Subdirectory Contents
auxil Supporting files
bin Executables and scripts
catalogs Catalogs
config System configuration files
logs System log files, including weather data
man Man pages for indi related commands

Table 2: /usr/local/octavi contents

Auxil includes such files as models of natural satellites and geomagnetic declination.

Bin includes all indi programs and supporting tools, including drivers, obscon, the command line
tools and the runindi boot script.

Catalogs include basic NGC, IC, Sky2000.

Page 60 of 71

Software Configuration

Config contains configuration files used by the INDI drivers. If it is desired to change any
parameters, edit the file then kill the driver(s) that read it which will cause them to be
automatically restarted and reread the new configuration.

Man contains UNIX style manual pages for the INDI scripting commands. To be accessible from
the shell the path should be added to our MANPATH environment variable. For example, using
csh syntax: setenv MANPATH “${MANPATH}:${OBSHOME}/man”.

Logs contains subdirectories IS, PC48, WX and 1-wire.

e IS contains a trace record of all messages sent to INDI clients and diagnostic information
from drivers. A fresh log is begun each day. The name of each file is of the form YYYY-
MM-DD.islog. Each entry in the log begins with a time stamp in UTC.

e PCA48 contains all traffic to and from the motion controller. Whether or not logging is
performed is determined by the file /tmp/pc48lock. See §4.5 for more information.

e WX contains all weather statistics, both inside and outside the dome. A fresh log is begun
each day. The name of each file is of the form WXYYYYMMDD.log. The format of the WX
statistics files is fixed-width columns as defined in Table 3; all times are UTC.

e 1-wire contains the statistics from the four temperature and humidity sensors and roof
and ram open or close status. A fresh log is begun each day. The name of each file is of
the form 1WYYYYMMDD .log. The format is fixed-width columns as defined in Table 4; all
times are UTC.

Page 61 of 71

Column |Field description

1 Year

2 Month

3 Day

4 Hour

5 Minute

6 Second

7 JD

8 unixtime

9 Air temperature, C

10 Humidity, %

11 Dew point, C

12 Wind chill, C

13 Air pressure, hPa

14 Rain detected, 0 or 1

15 Rain accumulation, YTD, mm
16 Wind speed, m/s

17 Wind direction, degrees E of N
18 Recent wind max, m/s

19 Electric field strength, V/m
20 JD of most recent E Field value

Table 3: WX Weather log file format

Page 62 of 71

Software Configuration

Software Configuration

Column |Field description

1 Year

2 Month

3 Day

4 Hour

5 Minute

6 Second

7 JD

8 unixtime

9 Humidity 1, %

10 Dew Point 1, C

11 Temperature 1, C

12 Humidity 2, %

13 Dew Point 2, C

14 Temperature 2, C

15 Temperature 3, C

16 Temperature 4, C

17 Roof status: -1 = midway, 0 = closed, 1= open
18 Ram status (same codes as Roof)

Table 4: 1-wire log file format

5.3 Building from Source Code

Login as user indi. This will set the OBSHOME, CVS RSH and CVSROOT environment variables
properly. OBSHOME is the global system directory for the executables and supporting files. It is
normally set to /usr/local/octavi. The CVS variables are used to access the master repository
maintained by Clear Sky Institute, Inc. Accessing this repository requires an account on the CSI
servers.

The master source tree is in ~/octavi. If this directory does not already exist, download a new
copy using the following command (access to the CSI servers will be required):

% cvs co octavi

Once the source tree is installed, subsequent updates are managed by the script
~/octavi/bin/buildall. This script has the following optional arguments:

-u freshen the local copy from the CSI repository
-C remove all local temporary and derived files by invoking make clobber
-b build all programs in the local source tree by invoking make passl-6 in order.

Page 63 of 71

Software Configuration

-1 install the executables in the global OBSHOME tree by invoking make install.

For example, to update the source tree and build and install everything use the following
command:

% ~/octavi/bin/buildall -u -b -i

This works by checking the entire src tree looking for Makefiles that contain standardized
targets. Each Makefile may contain one or more of the following targets. The passn targets are
used to perform sequential operations during the build process.

clobber This target removes all temporary and all derived files from this directory, leaving
only files that constitute original material.

passl Perform any necessary pre-build steps.

pass2 Build documentation.

pass3 Builds libraries.

pass4 Build daemon processes and device drivers.

passd Build command line programs.

pass6 Build GUI programs.

install ~ This target installs everything in the global OBSHOME tree.

Page 64 of 71

Hardware Connections

6 Hardware Connections

This section describes how the software assumes the hardware is connected. The overall
topology is shown in Illustration 15.

TAI Roof/Ram
Roof/Ram 8558 g open/close o
GE) sense TAI2 9’5
(]
S . 1-wire T4 T5 H1 H2 ¢
Camera s & g <= - HA7Net2 52
o 22 & 22 23 £ 5 <
= n O'= = 0 (0] L o
5 Ex 0 &E Ep E RJ11 Hub
. 0 H3 1-wire — TAI
S 8558
. P HA7Net1 TAI1
| = 9 e
o)
§ E ® X 1038 Y Z
3|53 T [swen | .
°
| :
e e el Ethernet ‘
vy VLinx l
e WO Intesis I
gg R RS485 | 240VAC
L
o Chiler | =~ UPS Vaisala | | AC |
s

Illustration 15: Overall electrical diagram

All equipment within the bold outline should be located within a shielded aluminum case. The
case should be well connected to building ground. Devices with overlapping voltage ranges
should share power supplies where ever possible to save space. All ethernet and 1-wire cables
that penetrate the case should go through RJ45 bulkhead connectors; note that the 4-pin 1-wire
modular connectors can use the same pass through part as the 8-wire ethernet connectors.
Similarly all other cabling should go through circular twist-lock or threaded connectors. See
following sections for specific pin assignments and further details as appropriate.

Page 65 of 71

Hardware Connections

6.1 PC48 Motion Controller

The PC48 is an ISA motion controller board installed in the main computer chassis. It must be set
to bus address 360, with the lower 8 user bits jumpered as input, the upper 8 as output.

The HA motor is connected to the X axis via an AVS servo amplifier, with positive and negative
limit switches that connect to ground when active on both the AVS and the 1038 DB9. The

number of steps per revolution is defined by the parameter mxspr in the file tel.cfg, with sign
positive if counts increase with HA.

The Dec motor is connected to the Y axis via an AVS servo amplifier, with positive and negative
limit switches that connect to ground when active on both the AVS and 1038 DB9. The number of

steps per revolution is defined by the parameter myspr in the file tel.cfg, with sign positive if
counts increase with Dec.

The HA and Dec control loops must be properly tuned for proper performance. Each control loop
commands its axis to a velocity equal to the velocity of the target plus an amount proportional to

the following error. The constant of proportionality is Kxp and Kyp, respectively. The maximum

Téleo Eby as dhacoelisradiomee tedvias thor Zactisaxistis ppsitifie by NagwbivAdtinak, MyibekemnthAymax.
connect to ground when active. One of the limit switches is also wired to be the home switch. In

the tel.cfg configuration file, parameter fhnlim sets which limit is acting as home. The first time a
focus position is commanded the focus motor will first be homed to the specified limit position
then the position will be located. From then on homing is not performed unless the inditel driver

is restarted. The parameter fspum sets the number of steps/um of travel; fvmax and famax set the
maximum velocity, in steps-s?, and acceleration, in steps-s?, respectively. The acceleration should
be sufficiently large that the motor does not coast too far into the limit switches when activated.
The focus motor is connected to the Z axis via an AMCI stepper controller. The positive and
negative limit lines go low when active and are connected to the PC48 DB9. The home line is
connected in parallel with the negative limit switch.

6.2 Emergency Stop

An observatory emergency stop line can be sensed by the control system on the input line defined

by EStoplIBit in tel.cfg, which is bit 0 by default. While E-Stop is present, the control system will
command both telescope axes to stop and will indicate E-Stop is active on the GUI display of
ObsCon. But in addition it is expected that the E-Stop line is also wired directly to the AVS power
supply to stop the mount drive motors. It may also be wired to the roof and ram power supply to
stop their motions if desired.

Illustration 16 shows a concept circuit. The idea is to provide a series loop circuit that must
remain closed in order for power to reach the AVS servos controlling the telescope motors. If this
circuit is open for any reason power is removed and the telescope must stop. Using a closed loop
provides a degree of fail-safe operation because a fault anywhere in the loop, such as a broken
wire, bad connector or stuck switch, activates the stop action and is immediately apparent.

All switches in the loop are normally closed and the normally open relay contacts are used. Four
of the switches in the loop are strategically placed on the telescope mount so they open when the
telescope is at an extreme position and must not move any further. Two of the switches are of the
red mushroom style used as industrial emergency stop switches, mounted on the wall of the
telescope and control rooms. A third relay is placed in the loop that connects to the PC48 I/O pin

Page 66 of 71

Hardware Connections

0 to allow the control system to know when the emergency stop has been activated. Relays to cut
power to the roof and ram could also be added conceptually as shown. Relay power is not
specified but is expected to be whatever is suitable for the relay coils chosen for the project.

HA AVS | DecAVS | | Roof/Ram |
H/;-ﬁ/J o L g

o T —

u Relay Power u u
Control Telescope
ontrc JE] %} room
foom .) mushroom
. All switches N-C switch

switch

| | | |
. | o e |l o e | o . | o
|
HA + HA - Dec + Dec -
Limit switches

Hlustration 16: E Stop concept diagram

6.3 Roof and Ram Control

The Roof and Ram controller is connected to a TAI8558 1-wire relay and sense module. There is
one relay for each of four functions: Roof open, Roof close, Ram open and Ram close. There is
one input line to sense each of these functions as well. This TAI8558 is on its own HA7Net in
order to reduce 1-wire cable lengths. Network configuration parameters are defined in the 1-
wire.cfg configuration file. The relay and sense connections are assigned according to Tables 5
and 6, respectively. Note that each input opto isolated line requires a pullup resistor to a source
of voltage, simple circuit closure is not enough. The same power supply used for the TAI may be
used for this purpose also. The software assumes that the sensors are shorted (no voltage) when
active.

Relay output Purpose
Jack
J6 2-3 Roof close
J7 2-3 Roof open
J8 2-3 Ram close
J9 2-3 Ram open

Table 5: Roof control relay assignments

Page 67 of 71

Hardware Connections

Opto isolated Purpose
input Jack
J2 Roof is open
J3 Roof is closed
J4 Ram end is open
J5 Ram end is closed

Table 6: Roof sense input assignments

6.4 OTA Equipment

The optical tube assembly contains fans, heaters and a cover blind connected to a TAI8558 relay
module on the 1-wire bus. Network configuration parameters are defined in the configuration file
1-wire.cfg. Table 7 shows the assignments of the TAI relays to each function.

Relay output Purpose
Jack
J6 2-3 Fans
J7 2-3 Heaters
J8 2-3 Blind open
J9 2-3 Blind close

Table 7: OTA Fans, heaters and blind assignments

The TAI5885 is located inside the main case, and only the switched power lines run to the
equipment.

6.5 1IK220 Encoder Input

The two Heidenhain absolute encoders on the mount are connected to an IK220 PCI card
installed in the computer chassis. Since they are absolute encoders, no homing sequence is
required. Each encoder provides 25 bits of angular precision, or 25.89 counts per arc seconds.

The HA encoder is connected to the axis specified by the parameter named exaxis in tel.cfg. The
Dec encoder is connected to the axis specified by eyaxis. These are 0 and 1 by default,

respectively. The parameters exspr and eyspr specify the number of steps per complete revolution
of the axes, respectively. The signs are positive for increasing HA and Dec. The reference

6.6 Camera Chiller

The camera can be cooled by an auxiliary Lytron Thermocube 200 chiller. Its serial control line is
connected to the control computer via a MOXA RS232-ethernet converter. The MOXA is mounted
inside the chiller and derives power from the chiller. The network address for the MOXA is

Page 68 of 71

Hardware Connections

defined in the chiller.cfg configuration file. The file also contains the parameters ontarget for

setting the temperature difference considered to be on target and check for setting how often to
poll the chiller for status information.

6.7 UPS

The UPS is connected to the system via ethernet. The IP address is defined in the ups.cfg
configuration file. The file also contains the parameter hol dt i me which defines how long the UPS
is allowed to be on battery before shutting down the telescope.

6.8 Air Conditioner

A Mitsubishi air conditioner is connected to an Intesis ME-AC-MBS-1 Modbus controller then to
the INDI network via a VLinx ESP901 RS485-ethernet converter. The IP address of the VLinx is
defined in the ac.cfg configuration file. The VLinx should be configured with DIP switches all off,
Port 4000, timeouts 0, connection mode Server, RS485, 9600 baud, 8-1/N/N, both Hex delimiters
0, Force transmit 1, internal 485 bias jumpers removed. The Intesis should be configured with P5
1000, P6 0000, P7 10000000, JP2 and JP3 installed. Connect VLinx and Intesis together with two
wires, connecting A-B and B-A.

6.9 Temperature and Humidity Sensors

Two temperature and two humidity sensors are connected via one HA7Net’ using 1-wire® buses.
The HA7Net forms a bridge between the 1-wire bus and the observatory ethernet LAN. Any
sensor based on the HIH-4000 humidity sensor, manufactured by Honeywell, and using the
DS2438 IC from Dallas Semiconductors, will work. Network configuration parameters are
defined in the 1-wire.cfg configuration file.

6.10 Camera

The system supports one CCD camera made by Finger Lakes Instrumentation® connected via any
available USB port. If camera performance is less than expected, try using a different USB port.
The power supply for the camera is located inside the main equipment box.

6.11 Cabling and Grounding

All cabling from the main equipment box destined for the telescope should be fastened to the
main telescope support beam and routed towards the south end of the hour angle gimbal bearing
where the HA motor is located. Cables that then continue on should be fastened to the gimbal
and routed towards the east declination bearing where the Dec motor is located. Cables that then
continue on to the optical tube assembly should be routed to their final destination. All cabling
should be fastened securely and neatly into bundles. Cables should be grouped into separate low
voltage signaling and high power bundles. Cable bundles that pass by the HA or Dec bearing
should be formed into a loop with the minimum length necessary that safely avoids any contact
with moving parts.

7 http://embeddeddatasystems.com/page/EDS/PROD/HA/HA7Net
8 http://www.maxim-ic.com/products/1-wire
9 http://www.fli-cam.com

Page 69 of 71

http://www.aagelectronica.com/pdf%20docs/hih4000.pdf
http://www.aagelectronica.com/pdf%20docs/DS2438.pdf

Hardware Connections

All equipment should be connected to the building lightning ground bus bar which should be
separate from the electrical supply ground. All ground connections should be made with heavy
copper strap and connected using teethed lock washers. All ground straps should be as short and
direct as possible. A separate ground strap should be installed around both the Dec and HA
bearings so stray current is not required to flow through the bearing itself. All paint must be
removed around ground mounting holes and the metal cleaned of all grease and debris before the
bolt, lock washer and nut are tightened for the last time. Once tightened, the connection should
never be loosened again to help maintain a gas tight corrosion resistant connection.

Page 70 of 71

Document History

7 Document History

Version Date Author Changes

1.0 2007-6-20 |E.C.Downey |original draft

1.1 2007-7-20 |E.C.Downey |Start overview. Add more devices. Start CL section.
1.2 2007-12-9 |E.C.Downey |Add Camera.Shutter

1.3 2007-12-30 |E.C.Downey |Add hardware and software sections

1.4 2008-1-25 |E.C.Downey |Update Environment driver; add Telescope.SetVelocity
1.5 2008-2-1 E.C.Downey | Update diagrams.

1.6 2008-11-28 |E.C.Downey | Minor edits before site visit.

1.7 2008-12-16 |E.C.Downey | Update hardware description

1.8 2008-12-29 |[E.C.Downey |Time.Location.Longitude is +E. Roof/Ram wiring.

0.8 2009-5-29 |E.C.Downey |Roll back this numbering; start section for gexcon.
0.8.1 2009-8-29 |E.C.Downey |Put TAI8558 for roof on its own HA7Net

0.8.2 2009-9-13 |E.C.Downey |Update gex scheduling algorithm

0.8.3 2009-10-8 |E.C.Downey |Add CCDChiller.Remote property.

0.84 2009-11-28 |[E.C.Downey |Add 1-wire to driver diagram. Add Tel.Pointing.PA/X/YVel
0.8.5 2009-12-28 |[E.C.Downey |Add build instructions. Add CCDCam.ExpValues.Type
0.8.6 2010-02-14 |E.C.Downey |Add 1-wire H3

0.8.7 2010-08-29 |[E.C.Downey |Add SatlsSunLit QEX constraint

0.8.8 2010-09-06 |E.C.Downey |Describe QEx canceling; change PropPix to PropSave.
0.8.9 2010-09-12 |E.C.Downey | Define /tmp/noindi

0.9.0 2010-09-30 |[E.C.Downey |Add Environment.{Now,JDEnv}.{EField,EField]D}
0.9.1 2010-11-07 |[E.C.Downey |Add man pages, roof/ram to estop.

0.9.2 2010-12-9 |E.C.Downey |Env; SW Arch; initial PM strategy

0.9.3 2010-12-15 |[E.C.Downey |AC; PM terms; Add UPS to WX alert; set/get -q

Page 71 of 71

