Hub&Authority Scoring Algorithm Project in Nutch
Yonggiang Li

1 Introduction of Scoring Algorithms in Nutch

The web page scoring algorithms are classified afitdine algorithm and on-line algorithm by
the data visiting styles. And they are also caglassified into content based algorithm and link
structure based algorithm by the scoring strategies

1.1 Off-line Scoring Algorithms

1.1.1 TFIDF Algorithm

TF-IDF scoring algorithm is based on analyzingtdéren frequency (TF) over the inverse
document frequency (IDF). This is a page contesebtalgorithm.

1.1.2 WebGraph and Link Analysis

http://wiki.apache.org/nutch/NewScorihinkRank is a PageRank-like algorithm[1] to scalle

the web pages in the web graph by using iteratieegsses and converge to the final scores for
all web pages. LinkRank has some optimized handbrignore those page links inside the same
domain of a web page and omit reciprocal page logta/een web pages(not very clear, only
count once?). Basically this algorithm is differ&natm OPIC which is an on-line algorithm. We
can see this off-line scoring algorithm is basedhanlink structure of web pages. This method is
different from the content based scoring algorithm.

1.2 On-line Scoring Algorithms

1.2.1 OPIC algorithm in Nutch

http://wiki.apache.org/nutch/FixingOpicScoriAglaptive On-line Page Importance Calculation
algorithm is an on-line scoring algorithm[2]. Tlsisoring algorithm uses cash to measure the
importance of a webpage. Initially every web pagse &n equal amount of cash. The importance
of a webpage is summed by historical cash andufrert cash. The historical cash is the cash
which flows into the web page last time. Wheneveret page is processed, its cash flows into
its outer links and the current cash is depositéalthe historical cash. Then the current cash is
reset to zero. This algorithm is only partially ilqmented in Nutch for some problems. It seems
that this algorithm is not complete and leadingsthproblems.

1.3 Problems and Solutions

Generally the on-line algorithm is more challengihgn off-line algorithm for the real-time

page updating or processing. And the content balggdithm is more efficient but not that
reliable. Because it is easier to analyze the tarourrence than the link graph among all web
pages. But the content based algorithm is moréygadbe cheating by putting more key words
into one page. Then the link structure based dlgoris more reliable. Still this page link based
algorithm faces the cheating challenges of linknigr

In Nutch the major scoring method is the TFIDF alpon. Also a recent plug-in of WebGraph
and Link Analysis based on link structure is impéared. In addition the OPIC algorithm is
implemented partially for many pending problemsc&ese none of content based algorithm and
link structure based algorithm are complete. AsRhafessor advised in the lecture, it is possible
to find a way to combine those two methods together

And the scoring algorithm of hubs and authoriteesuch an algorithm[3]. This algorithm
first utilizes the high efficient content basedalthm to filter the top 200 web pages as the root
set. Then expand the root set to 5,000 base skte lend the algorithm of analyzing hubs and
authorities based on link structure is utilizegtore the highest ranking pages. We can see this
method is very efficient and effective. For peophdy care limited number of web pages.

Still the off-line scoring algorithm is behind thetest web pages several days. It is
promising to utilize the on-line algorithm.

2. Related Work

2.1 Scoring Architecture Design

It's very fortunate that the Nutch 1.1 has impletedrthe scoring algorithm of
WebGraph. The WebGraph does not use the Nutchrparghitecture. It is made to work
within the framework of the Fieldindexer. The ideas that Nutch are supposed to have many
different scoring algorithms to a final score fal@ument in the index. These different
algorithms would be implemented as MapReduce joatsdreated some output. That output
would then be turned into Field objects, usuallthva type of Document Score. These Field
objects would then be aggregated by the Fieldlndiexereate the final document score in the
index. The LinkRank job is an example of just sanhalgorithm. It uses the WebGraph job's
output of Inlinks, Outlinks, and Nodes.

In the case of WebGraph and LinkRank the link asialgcore is actually put back into
the CrawlIDb using the ScoreUpdater job. It is thahed into a BOOST type Field object in the
BasicFields job. From there the FieldIndexer dreRieldFilter plugins create Lucene index
fields from the Nutch Field objects. The booslkfiglter, field-boost, is what actually takes the
boost fields including the linkrank and aggregakesn together for a final score which is set as
the document boost in the index.

The Fieldindexer architecture is simple thoughtake multiple inputs, each of which is
a Text(url) -> Field sequence or map file. Thaskl$ are aggregated by url and then passed to
field filter plugins in the reduce phase. The mhsgare responsible for taking the values out of
the FieldWritable and FieldsWritable objects, ttatisg them to Lucene field objects, and
putting them into the Lucene Document. This isitheitten to the index in the OutputFormat of
the Fieldindexer. See the field-basic and fielddiglugins for examples of how this works.

For the new scoring algorithm of hub&authoritynew MapReduce job is needed. The
WebGraph output could also be used as input insongew job as all of inlinks, outlinks, and
nodes for urls are needed. Have the new job ceeate output such as url -> score. Then itis
to create a MapReduce job similar to BasicField&mrhorFields that turns that into a Field
object of type BOOST. This would then be inpubitite FieldIndexer to create the final
output. Itis also needed to take the approac¢hkifig the new final score by url and putting that
back into the CrawIDb, similar to how the ScoreUpdaoes currently.

2.2.1 Hub and Authority Approach Design

For the new scoring algorithm of hub and authpatpew HubAuthority job of
MapReduce job is designed and implemented. TheGhé&gih output is used as input into this
new job as all of inlinks, outlinks, and nodestdiois are needed. The entire class design of
HubAuthority is shown in Figure 1.

HubAuthoriy

A map-reduce job class is used to initialize
Initializer() values of either hub scores or authority
scores of all webpage nodes

Runinitializer() | A tool class to configure and run Initializer job
\

Counter()

A map-reduce job class is used to count
the entire node number of all webpages

RunCounter() | A tool class to configure and run Counter job

| A map-reduce job class is used to compute
CNodeScoreEvent() | square sum of either hub scores or
| authority scores of all webpage nodes

A tool class to configure and run
RunNodeEvent() CNodeScoreEvent job
A map-reduce job class is used to compute

CNodeEditEvent() the normalized value of either hub scores

| or authority scores of all webpage nodes

. A tool class to configure and
runNodeEditEvent() run CNodeEditEvent job
InueItar A map-reduce job class is used to assign

score from node to inlinks or outlinks

\
Runinverter() | A tool class to configure and run Inverter job

Analyser() A map-re'duce job class is used to compute hub
| or authority scores of each web page node
RunAnalyser() | A tool class to configure and run Analyser job

—— A method is used to compute the authority
Analyse() scores and hub scores for all web pages nodes
I

Figure 1. the HubAuthority class
2.2.2 Data Structure of a Node in the Hub and Authority Approach

Since there are two scores in a nhode in the hdkaathority approach, the current design
with one score can not satisfy the requirementsl #ie Node class is upgraded by adding a new
member variable as shown in Figure 2.

Node

Private int numinlinks = C;

Private int numOutlinks = C;
[

Private float inlinkScore = 1.0f; |// authority score in hub&authority score approach
[

Private float outlinkScore = 1.0f: | // hub score in hub&authority score approach
[

Private Metadata metadata;
|
Figure 2. Upgraded class of Node by adding a nemlinee outlinkScore

2.2.3 Iterative Hub and Authority Algorithm

The iterative computation process is the sameatsritj1] shown in Figure 3.

Iterate(G k)
(+: a collection of n linked pages
k: a natural number
Let 2z denote the vector (1,1,1....,1) € R".
Set 2y =2
Set yo 1= 2.
Pord =12k
Apply the T operation to (zi—1,%i-1).
obtaining new z-weights x;.
Apply the O operation to (z, yi—1),
obtaining new y-weights ..
Normalize 2}, obtaining ;.
Normalize ¥}, obtaining ;.
End
Return (zg. y.).
Figure 3. Upgraded class of Node by adding a nemloee outlinkScore

2.2 Focused subgraph generation

Figure 4 shows how to generate a focused subgepif web page links.

\
X Ay ."J
&3\
Entire content based
WWW search engine

ExpandRoot

ontent Focused Graph(
relevant 200 1,000~5,000

pages pages)
Figure 4. how to build a focused subgraph oe emtéle pages

// hash map to hold all root set of page nodes.

HashMap<String, CUrINode> m_rootMap;

// non belonging to the root set.

/I hash map to hold all base set of page nodes

HashMap<String, CUrINode> m_baseMap;

runExtractBaseNodes()

runFilterLinks()

expandRootSet()
I

readRootUrls() A method to read root set o_f urls into the
_| hash map from a urls text file.

CExtractBaseNodes() A map-reduce job class to extract
pages relevant to root set of nodes
A tool class to configure and
run CExtractBaseNodes job

CFilterLinks() A map—reduge_job class to filt_er out
and update inlinkDb and outlinkDb
A tool class to configure and

run CFilterLinks() job

A method to implement the root set
expansion to base set of pages.

Figure 5. the ExpandRoot class

In the implementation all urls relevant to a specjuery are found by using the search
engine. These root set of urls are collected anddsato a text file. Then a class
ExpandRoot(shown in Figure 5.) is used to readdbéeset of urls file into the memory and
saved into a hash map data structure. Then a Mdpdegob of CExtractBaseNodes is used to
traverse all outlinkDb obtained from WebGraph artlaet out all nodes relevant to the root set
of urls. All these extracted relevant nodes andinal root set of urls nodes are put into the base
set. Next another Map-Reduce job of CFilterLinksused to filter out all non-relevant links and

update the outlinkDb and inlinkDb. OutlinkDb iset sf links with keys from which the link is
pointing to another url. InlinkDb is a set of linkéth keys to which the link is pointed from
another url.

3. Test Results

The total number of crawling pages are 50,000. $edion is to test the Hub&Authority
scoring algorithm for some broad topic queries.

3.1 Query “google”

The top results are shown in Figure 6.
~ ~Inutch11 .

% more crawlcwebgraphdbsdump/scores/part—B0060
http: /" sun . /. B.66611716
https:/7s=s1. B.6661191
rAspagead2 .googlesyndication.comspageadsshow_ads . js 8.15175152

A google—analytics .comsurchin. js B.046885278

A w3 lorgSlconssvalid—xhtmliB B.84475293

Ao gqoogle .coms BoBITPLEYLS

tAfajax . googleapis . .comsajaxs libs A joguerys1l .3 2/ Jaquery.min. js B.6839262336
Ao rdpress Corgs B.6827661862

A . mysgl . coms B.@23129586

Figure 6. the query results of “google”

The top 2 results are two invalid urls, causedhiglid outlinks. When | hard coded to
filter out these two invalid urls, the scoring rigsare not as reasonable as above results. And
some other unexpected pages like *.js should berdidl out. Anyway we still find
“www.google.corfiis on the top 5 search results.

3.2 Query “manufacturer”

Figure 6 shows the query results of “manufacturis very reasonable to notice that
many well-known manufacturers are listed on theaogs.

5 more crawls/webgraphdb/dump/scores/part—B80688
https=-/-s=1. B.4383241

http: ./ uu .~ B.4383241
http:/wuw._pacetech.com/” A.A8?46674
http: /- wuw.usa.canon.com”’ B.A8746674
http:/7www.vinten.coms B.88746674
http:/Auuw.zZoone .com” B.A87466874

http: swuw.tiffen.coms B.08746674
http:/7wuw._telemetricsinc .coms H.B8946074
http: -/~ wuw.aaton.com”’ B.A87466874

http: 2w steadytracker.coms B.887460674
http: A wuw.sony.com’ B.A87466874

http: - wuw.anvilcaze.com” B.A8746674
http: 7w . apgcases .coms’ A.A8?46674
http: -/ wuw.arri.com”’ B.A87466874

http: 2w avvideo.cons B.889746674
http:/~wuw.barbi=zon.com” B.A8%46674
http: . wuw._bogenphoto.com” B.A8746674
http:/7wuw._sekonic.coms B_HE8746674

http: -/~ wuw.bulbtronics .com” B.88746674
http:/www.chapman—leonard.coms B.889466874
http:/“wuw.chimeralighting.com” B.889466874
http: swuw.chyron.coms B.08746674
http:/7wuw.citytheatrical .coms H.B8946074
http:/wuw.claypaky._its B.08746674
http:/www.clearcom.coms B.887460674
http:/wuw.colortran.com” B.A8%46674
http: -/ wuw.cool-lux.com” B.A8746674
http:/swuw.da—lite.comns B_B8946674
http:/wuw.dar.uk.coms B.88746674

http: /v .dedolight .com” B.887460674
http: -/ wuw.panasonic.comsbroadcast.” B.88%46674
http: v . freefind.com” B.A8740674
http: v fujifilm.com” B.A8460674
http: -/ wuww.glidecam.com” B.A8746674
http: ./ wm . rosco..com”’ B.R87466874

http: wuw_hdal.com B.A87466874

http: swuw_highend.coms B.08746674

Figure 6. the query results of “manufacturer”
3.3 Score all urls

Figure 7 shows the scoring results of all urls.

= =fnutch11 !EE

5 more crawls/webgraphdb/dump/scores/part—BBERE
http: /A v ./ B.7049385
https:-/ssl. B.78454425
rA20own load .macromedia.comspubsshockwave scabhsf lash/zuf lash.cah

rAspagead? .googlesyndication.comspageadsshow_ads.js B.842457804

A, adobe comAgosgetf lashplaver BH.H2826939

Aoummu . google—analytics comsurchin. js B.0133696816

tAse7 laddthis comsJe 258 /addthis_widget.js= H.BATA?7187

A meu . google .coms jsapi 8.8E7e 745585

rAfajax . googleapis..comsajaxs libs A jguerys1l 3.2/ jgquery.omin. js B.867961392
A addthis .comsbookmark. php B.8672559174

rAsvalidater . wld.orgschecksreferer B.08066058184

A Jigsaw. wld orgsess—validatorschecksreferer B.BB6526673

sA2%meu . facebook.comshome - php? B.88h352804
rAssearch.dntracker.comstagssvs.js H.BB6B321754

A . macromedia.consgosgetf lashplaver B.AEL8546043

tAsedge cquantserve .comsguant - Js B.0A5515658

tAajax googleapis .comsajaxslibs A jguerusl 4. 2/ jquery _min. js B.8685379929
sAmeu s Joemla.orgy BOBESA????4

tAvwidgets ctwing.coms Jo2 widget . js BH.BESAT4266

tA21lite . piclens . .comscurrent /piclens_optimized.js B.AECE1%6084

rAse? addthis.coms je 280 addthis_widget.js B.8046877582

A facebook. coms B_B0432 78555

Ao rdpress . orgs 6.BE4R557753

A5 liveinternet s ruse lick B.8@837483566

A sparvtner . googleadservices .con/gampad/google_service.js B.BA37154397

£

Figure 6. the query results of “manufacturer”

We noticed some popular website, suclwvasv.google.comandwww.facebook.orare listed
above.

4. Conclusions

From this course project of hub&authority scorimgoaithm implementation in Nutch
1.1, it is noticed that this hub&authority is a prigsing scoring algorithm to score those broad
topic query. Since this scoring approach is baselihé& structure approach, it requires the base
set of nodes to have dense enough links. Many pargesut linking to some advertisements and
non-relevant pages to the query. In my course prajely 50,000 urls are crawled, it needs to
crawl the entire web to verify the effectivenessho$ hub&authority algorithm. Currently this
hub&authority scoring algorithm is a little slow.

5. Acknowledgement

Here | want to acknowledge Professor Mattmanwould not achieve the current status
without his guide. Also | want to acknowledge cortiariDennis Kubes, without his
instructional explanation | can not obtain abovsigie of the scoring architecture for the
authorities and hubs approach.

References:

[1] S. Brin, L. Page, \Anatomy of a Large-Scale EgpxtualWeb Search Engindfoc. 7th
International World Wide Web Conference, 1998.

[2] S. Abiteboul, M. Preda, and G. Cobena. Adaptimdine page importance computation. In
Proceedings of WMV Conference, May 2003.

[3] Kleinberg, J. M., Authoritative sources in apeylinked environment, J. ACM 46, 604—632
(1999).

Appendix:
Here is the checklist of the added new source Gteeand Nutch development version:

e Nutch version is version 1.1
* The newly added Class checklist is shown in Table 1

Table 1

Class Name location function

ExpandRoot | org.apache.nutch.scoring.webgraph.ExpandRoot Genettaase set from a
root set of urls and update
the inlinkDb and outlinkDb

HubAuthority | org.apache.nutch.scoring.webgraph.HubAutharitgrate to use
Hub&Authority approach to
score the pages for a givern
broad topic query

QueryList org.apache.nutch.searcher.QueryList Generate asebaoff urls
for a given broad topic
query
» The modified Class checklist is shown in Table 2.
Table 2
Class Name | location function
Node org.apache.nutch.scoring.webgraph.Node Data streiofua web page

* How to use commands of and QueryList , ExpandRodtHubAuthority.

The usage is very similar to the linkrank of web&r@as shown in
http://wiki.apache.org/nutch/NewScoringIndexingExd@?highlight=%28FieldIndexer%29
Figure 4 shows the commandlines to use HubAuthority

$bin/ nutch inject crawl/craw db craw /url s/

$bi n/ nutch generate craw /crawl db/ craw /segnments

$bi n/ nutch fetch craw / segment s/ 20090306093949/

$bi n/ nut ch updatedb craw /crawl db/ craw / segnent s/ 20090306093949/

$bin/ nutch invertlinks crawl/linkdb -dir craw /segnents

$bi n/ nutch index craw /i ndexes crawl/crawl db craw /1 inkdb craw /segnments/*
$bi n/ nutch org. apache. nutch. searcher. QueryLi st query craw /urls.txt

$bi n/ nut ch org. apache. nut ch. scori ng. webgr aph. WebGr aph - segment

crawl / segnent s/ 20090306093949/ -webgraphdb craw / webgr aphdb

$bi n/ nut ch org. apache. nut ch. scori ng. webgr aph. ExpandRoot -webgr aphdb

crawl / webgr aphdb/ -rootset crawl/rootUrls.txt

$bi n/ nut ch org. apache. nut ch. scori ng. webgr aph. Loops -webgraphdb

craw / webgr aphdb/

$bi n/ nut ch org. apache. nut ch. scori ng. webgr aph. HubAut hority -webgraphdb

crawl / webgr aphdb/

$bi n/ nut ch org. apache. nut ch. scori ng. webgr aph. Scor eUpdat er -craw db

crawl / crawl db -webgraphdb craw / webgraphdb/

$bi n/ nut ch org. apache. nut ch. scori ng. webgr aph. NodeDunper -scores -topn 1000 -
webgr aphdb craw / webgr aphdb/ -out put craw /webgraphdb/ dunp/ scores

Figure 4. commandlines

