
Hub&Authority Scoring Algorithm Project in Nutch
Yongqiang Li

1 Introduction of Scoring Algorithms in Nutch

The web page scoring algorithms are classified into off-line algorithm and on-line algorithm by
the data visiting styles. And they are also can be classified into content based algorithm and link
structure based algorithm by the scoring strategies.

1.1 Off-line Scoring Algorithms
1.1.1 TFIDF Algorithm
TF-IDF scoring algorithm is based on analyzing the term frequency (TF) over the inverse
document frequency (IDF). This is a page content based algorithm.

1.1.2 WebGraph and Link Analysis
http://wiki.apache.org/nutch/NewScoring LinkRank is a PageRank-like algorithm[1] to score all
the web pages in the web graph by using iterative processes and converge to the final scores for
all web pages. LinkRank has some optimized handling to ignore those page links inside the same
domain of a web page and omit reciprocal page links between web pages(not very clear, only
count once?). Basically this algorithm is different from OPIC which is an on-line algorithm. We
can see this off-line scoring algorithm is based on the link structure of web pages. This method is
different from the content based scoring algorithm.

1.2 On-line Scoring Algorithms
1.2.1 OPIC algorithm in Nutch
http://wiki.apache.org/nutch/FixingOpicScoring Adaptive On-line Page Importance Calculation
algorithm is an on-line scoring algorithm[2]. This scoring algorithm uses cash to measure the
importance of a webpage. Initially every web page has an equal amount of cash. The importance
of a webpage is summed by historical cash and the current cash. The historical cash is the cash
which flows into the web page last time. Whenever a web page is processed, its cash flows into
its outer links and the current cash is deposited into the historical cash. Then the current cash is
reset to zero. This algorithm is only partially implemented in Nutch for some problems. It seems
that this algorithm is not complete and leading those problems.

1.3 Problems and Solutions
Generally the on-line algorithm is more challenging than off-line algorithm for the real-time
page updating or processing. And the content based algorithm is more efficient but not that
reliable. Because it is easier to analyze the term occurrence than the link graph among all web
pages. But the content based algorithm is more easily to be cheating by putting more key words
into one page. Then the link structure based algorithm is more reliable. Still this page link based
algorithm faces the cheating challenges of link farms.
In Nutch the major scoring method is the TFIDF algorithm. Also a recent plug-in of WebGraph
and Link Analysis based on link structure is implemented. In addition the OPIC algorithm is
implemented partially for many pending problems. Because none of content based algorithm and
link structure based algorithm are complete. As the Professor advised in the lecture, it is possible
to find a way to combine those two methods together.

And the scoring algorithm of hubs and authorities is such an algorithm[3]. This algorithm
first utilizes the high efficient content based algorithm to filter the top 200 web pages as the root
set. Then expand the root set to 5,000 base set. In the end the algorithm of analyzing hubs and
authorities based on link structure is utilized to score the highest ranking pages. We can see this
method is very efficient and effective. For people only care limited number of web pages.

Still the off-line scoring algorithm is behind the latest web pages several days. It is
promising to utilize the on-line algorithm.

2. Related Work

2.1 Scoring Architecture Design

It’s very fortunate that the Nutch 1.1 has implemented the scoring algorithm of
WebGraph. The WebGraph does not use the Nutch plugin architecture. It is made to work
within the framework of the FieldIndexer. The idea was that Nutch are supposed to have many
different scoring algorithms to a final score for a document in the index. These different
algorithms would be implemented as MapReduce jobs that created some output. That output
would then be turned into Field objects, usually with a type of Document Score. These Field
objects would then be aggregated by the FieldIndexer to create the final document score in the
index. The LinkRank job is an example of just such an algorithm. It uses the WebGraph job's
output of Inlinks, Outlinks, and Nodes.

In the case of WebGraph and LinkRank the link analysis score is actually put back into
the CrawlDb using the ScoreUpdater job. It is then pulled into a BOOST type Field object in the
BasicFields job. From there the FieldIndexer and the FieldFilter plugins create Lucene index
fields from the Nutch Field objects. The boost field filter, field-boost, is what actually takes the
boost fields including the linkrank and aggregates them together for a final score which is set as
the document boost in the index.
 The FieldIndexer architecture is simple though. It take multiple inputs, each of which is
a Text(url) -> Field sequence or map file. These fields are aggregated by url and then passed to
field filter plugins in the reduce phase. The plugins are responsible for taking the values out of
the FieldWritable and FieldsWritable objects, translating them to Lucene field objects, and
putting them into the Lucene Document. This is then written to the index in the OutputFormat of
the FieldIndexer. See the field-basic and field-boost plugins for examples of how this works.
 For the new scoring algorithm of hub&authority, a new MapReduce job is needed. The
WebGraph output could also be used as input into this new job as all of inlinks, outlinks, and
nodes for urls are needed. Have the new job create some output such as url -> score. Then it is
to create a MapReduce job similar to BasicFields or AnchorFields that turns that into a Field
object of type BOOST. This would then be input into the FieldIndexer to create the final
output. It is also needed to take the approach of taking the new final score by url and putting that
back into the CrawlDb, similar to how the ScoreUpdater does currently.

2.2.1 Hub and Authority Approach Design
 For the new scoring algorithm of hub and authority, a new HubAuthority job of
MapReduce job is designed and implemented. The WebGraph output is used as input into this
new job as all of inlinks, outlinks, and nodes for urls are needed. The entire class design of
HubAuthority is shown in Figure 1.

HubAuthoriy

Analyse()
A method is used to compute the authority

scores and hub scores for all web pages nodes

Counter()
A map-reduce job class is used to count

the entire node number of all webpages

CNodeScoreEvent()

A map-reduce job class is used to compute

square sum of either hub scores or

authority scores of all webpage nodes

runNodeEditEvent()

RunCounter() A tool class to configure and run Counter job

RunNodeEvent()
A tool class to configure and run

CNodeScoreEvent job

CNodeEditEvent()
A map-reduce job class is used to compute

the normalized value of either hub scores

or authority scores of all webpage nodes

A tool class to configure and

run CNodeEditEvent job

Initializer()
A map-reduce job class is used to initialize

values of either hub scores or authority

scores of all webpage nodes

RunInitializer() A tool class to configure and run Initializer job

Inverter()
A map-reduce job class is used to assign

score from node to inlinks or outlinks

RunInverter() A tool class to configure and run Inverter job

Analyser() A map-reduce job class is used to compute hub

or authority scores of each web page node

RunAnalyser() A tool class to configure and run Analyser job

Figure 1. the HubAuthority class

2.2.2 Data Structure of a Node in the Hub and Authority Approach

 Since there are two scores in a node in the hub and authority approach, the current design
with one score can not satisfy the requirements. And the Node class is upgraded by adding a new
member variable as shown in Figure 2.

Figure 2. Upgraded class of Node by adding a new member outlinkScore

2.2.3 Iterative Hub and Authority Algorithm

The iterative computation process is the same as that in [1] shown in Figure 3.

Figure 3. Upgraded class of Node by adding a new member outlinkScore

2.2 Focused subgraph generation

Figure 4 shows how to generate a focused subgraph set of web page links.

Figure 4. how to build a focused subgraph oe entire web pages

ExpandRoot

readRootUrls()
A method to read root set of urls into the

hash map from a urls text file.

runExtractBaseNodes()

CExtractBaseNodes() A map-reduce job class to extract

pages relevant to root set of nodes

A tool class to configure and

run CExtractBaseNodes job

expandRootSet()
A method to implement the root set

expansion to base set of pages.

HashMap<String, CUrlNode> m_rootMap;

// hash map to hold all root set of page nodes.

HashMap<String, CUrlNode> m_baseMap;

// hash map to hold all base set of page nodes

// non belonging to the root set.

runFilterLinks()

CFilterLinks() A map-reduce job class to filter out

and update inlinkDb and outlinkDb

A tool class to configure and

run CFilterLinks() job

Figure 5. the ExpandRoot class

 In the implementation all urls relevant to a specific query are found by using the search
engine. These root set of urls are collected and saved into a text file. Then a class
ExpandRoot(shown in Figure 5.) is used to read the root set of urls file into the memory and
saved into a hash map data structure. Then a Map-Reduce job of CExtractBaseNodes is used to
traverse all outlinkDb obtained from WebGraph and extract out all nodes relevant to the root set
of urls. All these extracted relevant nodes and original root set of urls nodes are put into the base
set. Next another Map-Reduce job of CFilterLinks is used to filter out all non-relevant links and

update the outlinkDb and inlinkDb. OutlinkDb is a set of links with keys from which the link is
pointing to another url. InlinkDb is a set of links with keys to which the link is pointed from
another url.

3. Test Results

The total number of crawling pages are 50,000. This section is to test the Hub&Authority
scoring algorithm for some broad topic queries.

3.1 Query “google”

The top results are shown in Figure 6.

Figure 6. the query results of “google”

 The top 2 results are two invalid urls, caused by invalid outlinks. When I hard coded to
filter out these two invalid urls, the scoring results are not as reasonable as above results. And
some other unexpected pages like *.js should be filtered out. Anyway we still find
“www.google.com” is on the top 5 search results.

3.2 Query “manufacturer”

Figure 6 shows the query results of “manufacturer”. It is very reasonable to notice that
many well-known manufacturers are listed on the top ones.

Figure 6. the query results of “manufacturer”

3.3 Score all urls

Figure 7 shows the scoring results of all urls.

Figure 6. the query results of “manufacturer”

We noticed some popular website, such as www.google.com and www.facebook.org are listed
above.

4. Conclusions

From this course project of hub&authority scoring algorithm implementation in Nutch

1.1, it is noticed that this hub&authority is a promising scoring algorithm to score those broad
topic query. Since this scoring approach is based on link structure approach, it requires the base
set of nodes to have dense enough links. Many pages are out linking to some advertisements and
non-relevant pages to the query. In my course project only 50,000 urls are crawled, it needs to
crawl the entire web to verify the effectiveness of this hub&authority algorithm. Currently this
hub&authority scoring algorithm is a little slow.

5. Acknowledgement
 Here I want to acknowledge Professor Mattmann, I could not achieve the current status
without his guide. Also I want to acknowledge committer Dennis Kubes, without his
instructional explanation I can not obtain above design of the scoring architecture for the
authorities and hubs approach.

References:

[1] S. Brin, L. Page, \Anatomy of a Large-Scale HypertextualWeb Search Engine," Proc. 7th
International World Wide Web Conference, 1998.
[2] S. Abiteboul, M. Preda, and G. Cobena. Adaptive on-line page importance computation. In
Proceedings of WWW Conference, May 2003.
[3] Kleinberg, J. M., Authoritative sources in a hyperlinked environment, J. ACM 46, 604–632
(1999).

Appendix:

Here is the checklist of the added new source code files and Nutch development version:

• Nutch version is version 1.1
• The newly added Class checklist is shown in Table 1.

Table 1
Class Name location function
ExpandRoot org.apache.nutch.scoring.webgraph.ExpandRoot Generate a base set from a

root set of urls and update
the inlinkDb and outlinkDb

HubAuthority org.apache.nutch.scoring.webgraph.HubAuthority Iterate to use
Hub&Authority approach to
score the pages for a given
broad topic query

QueryList org.apache.nutch.searcher.QueryList Generate a root set of urls
for a given broad topic
query

• The modified Class checklist is shown in Table 2.
Table 2

Class Name location function
Node org.apache.nutch.scoring.webgraph.Node Data structure of a web page

• How to use commands of and QueryList , ExpandRoot and HubAuthority.

The usage is very similar to the linkrank of webGrpah as shown in
http://wiki.apache.org/nutch/NewScoringIndexingExample?highlight=%28FieldIndexer%29
Figure 4 shows the commandlines to use HubAuthority
$bin/nutch inject crawl/crawldb crawl/urls/
$bin/nutch generate crawl/crawldb/ crawl/segments
$bin/nutch fetch crawl/segments/20090306093949/
$bin/nutch updatedb crawl/crawldb/ crawl/segments/20090306093949/
$bin/nutch invertlinks crawl/linkdb -dir crawl/segments
$bin/nutch index crawl/indexes crawl/crawldb crawl/linkdb crawl/segments/*
$bin/nutch org.apache.nutch.searcher.QueryList query crawl/urls.txt
$bin/nutch org.apache.nutch.scoring.webgraph.WebGraph -segment
crawl/segments/20090306093949/ -webgraphdb crawl/webgraphdb
$bin/nutch org.apache.nutch.scoring.webgraph.ExpandRoot -webgraphdb

crawl/webgraphdb/ -rootset crawl/rootUrls.txt
$bin/nutch org.apache.nutch.scoring.webgraph.Loops -webgraphdb
crawl/webgraphdb/
$bin/nutch org.apache.nutch.scoring.webgraph.HubAuthority -webgraphdb
crawl/webgraphdb/
$bin/nutch org.apache.nutch.scoring.webgraph.ScoreUpdater -crawldb
crawl/crawldb -webgraphdb crawl/webgraphdb/
$bin/nutch org.apache.nutch.scoring.webgraph.NodeDumper -scores -topn 1000 -
webgraphdb crawl/webgraphdb/ -output crawl/webgraphdb/dump/scores

Figure 4. commandlines

