
[reviews] [help]

Draft

Bug 987069: [jsdbg2] Unicode characters in script URLs are not correctly encoded in Debugger.Script.url - Sebastian Zartner [:sebo] <sebastianzartner@gmail.com> - 3/24/2014

Attachment 8550523: make ScriptSource filename encoding consistent - Tom Tromey :tromey <ttromey@mozilla.com> - Fri 4:42:00 PM [diff] [details]

Show Quick Help

Navigation: Overview | All Files | nsScriptSecurityManager.cpp | WebSocket.cpp | nsFrameMessageManager.cpp | nsGlobalWindow.cpp | nsJSUtils.cpp | nsScriptLoader.cpp | EventListenerManager.cpp | nsJSProtocolHandler.cpp |
nsNPAPIPlugin.cpp | PromiseCallback.cpp | chrome.ini | test_encoding.html | RuntimeService.cpp | ScriptLoader.cpp | WorkerPrivate.cpp | nsXBLProtoImplField.cpp | nsXBLProtoImplMethod.cpp | nsXBLProtoImplProperty.cpp |
nsXBLPrototypeHandler.cpp | nsXULElement.cpp | XPCShellEnvironment.cpp | CharacterEncoding.h | AsmJSModule.cpp | Eval.cpp | TestingFunctions.cpp | Parser.cpp | Parser.h | TokenStream.h | gdb-tests.cpp |
errorToExceptionEncoding.js | thisFilenameEncoding.js | Object-evalInGlobal-encoding.js | Source-displayURL-encoding.js | display-url-encoding.js | BaselineBailouts.cpp | C1Spewer.cpp | CodeGenerator.cpp | CompileInfo.h |
Ion.cpp | JitFrames.cpp | JitSpewer.cpp | MIR.cpp | RematerializedFrame.cpp | testArrayBufferView.cpp | testChromeBuffer.cpp | testCloneScript.cpp | testEnclosingFunction.cpp | testFreshGlobalEvalRedefinition.cpp |
testJSEvaluateScript.cpp | testMutedErrors.cpp | testPreserveJitCode.cpp | testScriptInfo.cpp | testScriptObject.cpp | testXDR.cpp | tests.cpp | tests.h | jsapi.cpp | jsapi.h | jsexn.cpp | jsfriendapi.cpp | jsfriendapi.h | jsfun.cpp |
jsinfer.cpp | jsobj.cpp | jsopcode.cpp | jsreflect.cpp | jsscript.cpp | jsscript.h | js.cpp | error-encoding.js | reflect-parse.js | CharacterEncoding.cpp | Debugger.cpp | Debugger.h | ErrorObject.cpp | MemoryMetrics.cpp | Probes-inl.h |
Probes.cpp | SPSProfiler.cpp | SavedStacks.cpp | SelfHosting.cpp | Stack.cpp | Stack.h | String.h | TraceLogging.cpp | mozJSComponentLoader.cpp | mozJSSubScriptLoader.cpp | Sandbox.cpp | XPCComponents.cpp |
XPCConvert.cpp | XPCJSRuntime.cpp | XPCShellImpl.cpp | nsXPConnect.cpp | chrome.ini | test_xrayLogEncoding.xul | file_bug987069.js | mochitest.ini | test_bug987069.html | XrayWrapper.cpp | ProxyAutoConfig.cpp |
ThreadStackHelper.cpp

HG changeset patch
User Tom Tromey <tromey@mozilla.com>

Bug 987069 - make ScriptSource filename encoding consistent

dom/base/nsJSUtils.cpp

37 nsJSUtils::GetCallingLocation(JSContext* aContext, nsACString& aFilename,

38 uint32_t* aLineno)

Please add a comment by the declaration of this function indicating that |aFilename| will be filled with a
UTF-8 encoding of the string.

dom/promise/PromiseCallback.cpp

248 Promise* returnedPromise;

249 nsresult r = UNWRAP_OBJECT(Promise, valueObj, returnedPromise);

250

251 if (NS_SUCCEEDED(r) && returnedPromise == mNextPromise) {

252 JS::ConstUTF8CharsZ fileName;

= JS::ConstUTF8CharsZ("") so as to not possibly pass nullptr to JS_NewStringCopyUTF8Z.

dom/promise/tests/test_encoding.html

19 var Cu = Components.utils;

20

21 function runTest() {

22 // Anything outside of ASCII will do here.

23 var URL = "file:///whee\u2708.js";

Please don't use the same URL for the sandbox principal, and for the eval code. They should be different so
we know we're testing the right datum -- namely, the argument to evalInSandbox. I suggest

 var principal = "file:///whee\u2708/";
 var URL = principal + "\uD83D\uDEE7.js";

or something that puts distinct Unicode stuffs in both the principal *and the URL.

Well, actually: if it were me, I wouldn't use file: URLs for this. The problem with file: URLs is that the way
they get mapped to security origins is unspecified across browsers, and our policy, while a relatively
sensible one, isn't the only one on the block. (Specifically, our policy makes file: a multitude of origins, one
per directory. Hence the necessity for URL here to be within the folder delineated by principal.) It would be
better to use an HTTP URL with IDN in it -- say, http://天/ ("http://\u5929/") or http:// / ("http://\uD808
\uDC41/") -- so that you're relying on well-defined semantics here.

And, as with all the other tests, it'd be really good to have them test more than just a single character, but
to include non-BMP, multiple UTF-8 character lengths, and combining characters, and so on.

dom/xbl/nsXBLProtoImplMethod.cpp

197

198 JSContext *cx = jsapi.cx();

199 JSAutoCompartment ac(cx, aClassObject);

200 JS::CompileOptions options(cx);

201 options.setFileAndLine(JS::ConstUTF8CharsZ(functionUri.get()),

This functionUri seems to derive from the same half-UTF-8, half-truncated-UTF-16 data as in
nsXBLProtoImplProperty.cpp. Fixing the root problem there, will make this accurate as well.

dom/xbl/nsXBLProtoImplProperty.cpp

196 nsDependentString getter(getterText->GetText());

197 if (!getter.IsEmpty()) {

198 JSAutoCompartment ac(cx, aClassObject);

199 JS::CompileOptions options(cx);

200 options.setFileAndLine(JS::ConstUTF8CharsZ(functionUri.get()), getterText->GetLineNumber())

functionUri derives from aClassStr, which seems to derive from mClassName, which ultimately appears to
derive from one of two places. See NS_NewXBLImpl.

First, most commonly, it could be the binding URI's spec, which is UTF-8-encoded, all good.

Second, it could be the name attribute on the <implementation> element -- <implementation
name="XStringBundle"> being the only instance of this in mozilla-central, as far as I can tell. Which could
contain anything, not just UTF-8. This DOM-land value is UTF-16, so how is it converted to the nsACString
we have here? |impl->mClassName.AssignWithConversion(aClassName);| That corresponds to:

void
nsCString::AssignWithConversion(const nsAString& aData)
{
 LossyCopyUTF16toASCII(aData, *this);
}

And despite what the name says, "toASCII" is really "toLatin1". So the universal problem of interpreting
Latin1 as UTF-8 arises, we have dataloss at least and buffer overread and other considerations at worst.

Given that this value can legitimately be either UTF-8 or not, we need to fix this at the source. Please file a
new bug to do a UTF-16 to UTF-8 conversion in NS_NewXBLImpl for the name="" case, blocking this bug.
We need to get mClassName to a single consistent encoding before we can proceed with this code. It's
drudgery, but not drudgery worse than what you've already done here. The patch and any other related
changes should probably be reviewed by an XBL peer. You could also heckle the original author and have
jst (!) review it. <http://bonsai.mozilla.org/cvsview2.cgi?diff_mode=context&whitespace_mode=show&
root=/cvsroot&subdir=mozilla/content/xbl/src&command=DIFF_FRAMESET&file=nsXBLProtoImpl.cpp&
rev2=1.8&rev1=1.7> (This last suggestion is mostly unserious, although I will probably communicate his
transgressions to him the next time I see him around the office. ;-))

242 nsDependentString setter(setterText->GetText());

243 if (!setter.IsEmpty()) {

244 JSAutoCompartment ac(cx, aClassObject);

245 JS::CompileOptions options(cx);

246 options.setFileAndLine(JS::ConstUTF8CharsZ(functionUri.get()), setterText->GetLineNumber())

Reusing the same inconsistently-encoded string, so the above fix deals with this too.

ipc/testshell/XPCShellEnvironment.cpp

154 if (!str)

Largely fine, but large enough that the remainder is also kinda large. PLEASE, for the love of all that is holy, post subsequent patches as separate patches that apply atop the base patch. It was close to a
week to review this; I'd rather repeat as little of that experience as possible. :-)

I see a couple relatively pervasive assumptions here:

* all __FILE__ paths are pure ASCII, or at least UTF-8-encoded (not specified by C++)

On Linux I think this is true these days. Research suggests it's not entirely the case on OS X, tho. And it's just not at all on Windows. <http://stackoverflow.com/questions/23285759/fopen-file-name-
with-utf8-string-in-windows> However, it seems like most of these uses are going to refer to paths to source files, in a source tree -- and we already require various things about where one puts a source tree
when building. And probably the only way to deal with this is using a full-fledged file abstraction that understands native path encodings, along the lines of nsILocalFile. So this is probably good enough
for now, I guess. But I won't be surprised to find out that requiring UTF-8 here breaks something.

* fprintf(std{err,out}) will interpret output as UTF-8

Most Linux distros will handle UTF-8, and probably OS X does now, and these are probably mostly debugging uses, so what the heck. We probably assume this a whole bunch of other places, what's one more.

Patch Review of Attachment 8550523 for Bug 987069 https://bugzilla.mozilla.org/page.cgi?id=splinter....

1 of 8 01/30/2015 02:57 PM

155 return false;

156 JSAutoByteString filename;

157 filename.encodeUtf8(cx, str);

158 if (!filename)

if (!filename.encodeUtf8...)

js/public/CharacterEncoding.h

109 char *c_str() { return reinterpret_cast<char *>(get()); }

110 };

111

112 /* Similar to UTF8CharsZ, but the chars are const, and allows

113 * assignment. */

Either use //-style comments here, or do

/*
 * Similar to UTF8CharsZ, ...
 * assignment.
 */

for style.

112 /* Similar to UTF8CharsZ, but the chars are const, and allows

113 * assignment. */

114 class ConstUTF8CharsZ

115 {

116 const char *mData;

SpiderMonkey doesn't m/a/s-prefix names, so this should just be data or something.

119 ConstUTF8CharsZ() : mData(nullptr)

120 {

121 }

122

123 explicit ConstUTF8CharsZ(const char *aBytes)

and this bytes

122

123 explicit ConstUTF8CharsZ(const char *aBytes)

124 : mData(aBytes)

125 {

126 }

While it's certainly *convenient* to just make this a 100% lightweight wrapper around a const char*, I think
this is highly likely to make it easy to have misuses, passing Latin1 strings into the constructor. I think we
should add some assertions here that check that the input string is not immediately obviously not UTF-8, by
checking some prefix of the string to see whether it's valid UTF-8 or not.

My eyes glazed over a bit reading this patch, so I wrote some code that can be used to sanity-check
incoming strings here -- and anywhere else that's supposed to take exactly UTF-8 input (although in general
we want to throw the C++ type system at such places). I'll upload it here once I've posted this review.

128 const void *get() const { return mData; }

129

130 const char *c_str() const { return mData; }

131

132 operator bool() const { return mData != nullptr; }

explicit operator bool() -- otherwise you can do bizarre things like 1 + ConstUTF8CharsZ() and it'll go
through this conversion (!).

220 /*

221 * Like UTF8CharsToNewTwoByteCharsZ, but for ConstUTF8CharsZ.

222 */

223 extern TwoByteCharsZ

224 UTF8CharsToNewTwoByteCharsZ(JSContext *cx, const ConstUTF8CharsZ &utf8, size_t *outlen);

Why can't these new methods return TwoByteChars, as a single data structure pairing pointer and length?
Done this way users can have pointer and length decohere from each other, which seems bad.

I think we should fully duplicate the comment by the other method here, with appropriate changes. Better
to duplicate, and be absolutely precise about behavior, to help readability, than to cut a corner and save on
code. Readability trumps code size here.

231 extern TwoByteCharsZ

232 LossyUTF8CharsToNewTwoByteCharsZ(JSContext *cx, const UTF8Chars utf8, size_t *outlen);

233

234 extern TwoByteCharsZ

235 LossyUTF8CharsToNewTwoByteCharsZ(JSContext *cx, const ConstUTF8CharsZ &utf8, size_t *outlen);

Same comments as above -- we should probably duplicate comments a bit harder.

js/src/builtin/TestingFunctions.cpp

1814

1815 char *buf = JS::FormatStackDump(cx, nullptr, showArgs, showLocals, showThisProps);

1816 RootedString str(cx);

1817 if (!(str = JS_NewStringCopyZUTF8(cx, JS::ConstUTF8CharsZ(buf))))

1818 return false;

The presence of |showArgs| there is a tell: if you can include arguments, that probably means you can
include strings, and that means you have to deal with the full Unicode gamut. Which means either |buf| is
UTF-8 and we're okay, *or* it's Latin1 and we're not. It turns out we're not okay here. (I am shocked,
shocked I say!)

js> ((a) => { return getBacktrace({ args: true }); })("\u99BA\u99DB\u99DB\u99EE\u99F1")
"0 anonymous(a = \"\xBA\xDB\xDB\xEE\xF1\") [\"typein\":15]\n1 <TOP LEVEL> [\"typein\":15]\n"

Notice how our careful, pretty, shiny (...ish) 99s there disappeared to leave us with BADBEEF1. Heck,
come to think of it, you can give functions non-Latin1 names, too, to produce the same effect, or just
mess with people:

js> (function \u1242\u1245\u1245\u1246() { return getBacktrace(); })()
"0 BEEF() [\"typein\":7]\n1 <TOP LEVEL> [\"typein\":7]\n"

But. Later comments on FormatStackDump in this review suggest that you "changed" FormatStackDump
to be UTF-8 when file names were inserted in it. So the change here is okay -- but, you need to audit and
fix the rest of FormatStackDump to produce UTF-8, for this bit of this to be correct. Please do so.

js/src/jit-test/tests/basic/errorToExceptionEncoding.js

1 // Test that encoding of file name is preserved by thisFilename.

2

3 // Anything outside of ASCII will do.

4 let name = "file:///whee\u2708.js";

Same multiplicity of things comment as I made elsewhere about BMP/non-BMP and combining characters
and all that.

js/src/jit-test/tests/basic/thisFilenameEncoding.js

1 // Test that encoding of file name is preserved by thisFilename.

2

3 // Anything outside of ASCII will do.

4 let name = "file:///whee\u2708.js";

While true, it seems like it'd be good to have both BMP and non-BMP versions here. Also we should consider
combining characters, with BMP and with non-BMP characters (are there composed forms that are
non-BMP?) -- check that composed forms, decomposed forms, all that jazz are all left (I would assume,
correct me if I'm wrong!) as-is by all our code.

js/src/jit-test/tests/debug/Object-evalInGlobal-encoding.js

5 var dbg = new Debugger;

6 var gw = dbg.addDebuggee(g);

7

8 // Anything outside of ASCII will do.

9 let name = "file:///whee\u2708.js";

Same non-BMP, combining characters gamut.

js/src/jit-test/tests/debug/Source-displayURL-encoding.js

4 let dbg = new Debugger();

5 let gw = dbg.addDebuggee(g);

6

7 // Anything outside of ASCII will do.

8 let name = "file:///whee\u2708.js";

Patch Review of Attachment 8550523 for Bug 987069 https://bugzilla.mozilla.org/page.cgi?id=splinter....

2 of 8 01/30/2015 02:57 PM

Same non-BMP, combining characters gamut.

js/src/jit-test/tests/saved-stacks/display-url-encoding.js

1 // Test that saved stacks don't mangle the encoding of the source.

2

3 // Anything outside of ASCII will do.

4 let name = "file:///whee\u2708.js";

Same non-BMP, combining characters gamut.

js/src/jit/BaselineBailouts.cpp

1145 cx->runtime()->spsProfiler.updatePC(script, script->code());

1146 }

1147

1148 // Register bailout with profiler.

1149 const char *filename = script->filename().c_str();

It's far from clear that it's okay for this UTF-8 string to flow into the uses below. Please add comments by
SPSProfiler::setEventMarker to clarify that the provided function is invoked with a UTF-8 string, and by
js::RegisterRuntimeProfilingEventMarker that calls it.

As for whether all the different markers are fine.

It looks like &ProfilerJSEventMarker from toolkit/profiler/PseudoStack.h is okay -- that spews through a
JSStreamWriter that treats the string as UTF-8.

And it looks like &PrintProfilerEvents_Callback from the JS shell is also fine, as it just fprintfs.

So I think this is just a doc fix, no more.

js/src/jit/C1Spewer.cpp

34

35 fprintf(spewout_, "begin_compilation\n");

36 if (script) {

37 fprintf(spewout_, " name \"%s:%d\"\n", script->filename().c_str(), (int)script->lineno());

38 fprintf(spewout_, " method \"%s:%d\"\n", script->filename().c_str(), (int)script->lineno());

While you're touching this, mind switching the linenos to PRIuSIZE in mozilla/SizePrintfMacros.h and
removing casts?

js/src/jit/CodeGenerator.cpp

3770 #ifdef DEBUG

3771 const char *filename = nullptr;

3772 unsigned lineNumber = 0, columnNumber = 0;

3773 if (current->mir()->info().script()) {

3774 filename = current->mir()->info().script()->filename().c_str();

So I went to search for filename() in this file to double-check context, and I discovered at least one,
probably more, calls to filename() that are then passed as arguments to JitSpew, then JS_snprintf, and
maybe others -- ellipsis functiosn. This doesn't really work, as non-POD objects can't be passed to ellipsis
notation per C++11 (a DR adjusted this to allow compiler-dependent behavior, but extracting out a const
char* for an argument not of that type probably is UB as well).

clang at least has a warning/error if you do this -- I suggest compiling a debug build with clang and seeing
where you hit errors, then fixing them in a *separate* patch atop this one. (I'm already well into this
patch, would rather not discard my work.)

7187 code->setHasBytecodeMap();

7188 }

7189

7190 if (cx->runtime()->spsProfiler.enabled()) {

7191 const char *filename = script->filename().c_str();

This flows into JitSpew which seems, laboriously, to flow into fprintf, so is okay. Right?

js/src/jit/JitFrames.cpp

2492 fprintf(stderr, " global frame, no callee\n");

2493 }

2494

2495 fprintf(stderr, " file %s line %u\n",

2496 script()->filename().c_str(), (unsigned) script()->lineno());

Again use PRIuSIZE here, since you're touching it.

2541 fprintf(stderr, " global frame, no callee\n");

2542 }

2543

2544 fprintf(stderr, " file %s line %u\n",

2545 script()->filename().c_str(), (unsigned) script()->lineno());

And here.

js/src/jit/RematerializedFrame.cpp

166 fprintf(stderr, " global frame, no callee\n");

167 }

168

169 fprintf(stderr, " file %s line %u offset %zu\n",

170 script()->filename().c_str(), (unsigned) script()->lineno(),

Change "%zu" to "%" PRIuSIZE with SizePrintfMacros.h, same as mentioned elsewhere. Whoever wrote this
must not have realized that MSVC doesn't support any %z specifiers. :-(

js/src/jsapi-tests/testArrayBufferView.cpp

93 static const char code[] = "new DataView(new ArrayBuffer(8))";

94

95 JS::Rooted<JS::Value> val(cx);

96 JS::CompileOptions opts(cx);

97 if (!JS::Evaluate(cx, global, opts.setFileAndLine(JS::ConstUTF8CharsZ(__FILE__), __LINE__),

Hmm. Nothing guarantees a particular charset for __FILE__. But I'm not sure there's really anything we can
do about that in any event. :-\

js/src/jsapi.cpp

3940 JS::OwningCompileOptions::setFile(JSContext *cx, const ConstUTF8CharsZ &f)

3941 {

3942 char *copy = nullptr;

3943 if (f) {

3944 copy = JS_strdup(cx, f.c_str());

I can't remember my C++, we can make that |const char *copy| (and assign T* into const T*) to make
clear we're never writing into its contents, right? Please do so if it compiles.

3982

3983 bool

3984 JS::OwningCompileOptions::setIntroducerFilename(JSContext *cx, const ConstUTF8CharsZ &s)

3985 {

3986 char *copy = nullptr;

Again const char* if you can.

4716 {

4717 AssertHeapIsIdle(cx);

4718 CHECK_REQUEST(cx);

4719 if (!s || !*(s.c_str()))

4720 return cx->runtime()->emptyString;

MOZ_ASSERT(s.get(), "null chars passed to JS_NewStringCopyUTF8Z");

And for the other,

 if (s.c_str()[0] == '\0')
 return cx->runtime()->emptyString;

seems a little more readable to me.

I see the convert-null-to-empty-string behavior is what JS_NewStringCopyZ does, but that seems like a
bad API. We should get away from nullptr having that meaning in new APIs, rather complaining early and
often about what seems frequently likely to be a mistake.

js/src/jsapi.h

3613 extern JS_PUBLIC_API(JSObject *)

3614 JS_GetGlobalFromScript(JSScript *script);

3615

3616 extern JS_PUBLIC_API(JS::ConstUTF8CharsZ)

3617 JS_GetScriptFilename(JSScript *script);

I guess this is no less clear about ownership than the existing method is. Alas, but okay.

Patch Review of Attachment 8550523 for Bug 987069 https://bugzilla.mozilla.org/page.cgi?id=splinter....

3 of 8 01/30/2015 02:57 PM

3695 // purpose.

3696 ReadOnlyCompileOptions()

3697 : mutedErrors_(false),

3698 filename_(),

3699 introducerFilename_(),

Remove these, it's implied by C++ and seems nicer to not say anything when null-initializing is the
obvious expected behavior for a smart-ish pointer.

3805 /* These setters make copies of their string arguments, and are fallible. */

3806 bool setFile(JSContext *cx, const ConstUTF8CharsZ &f);

3807 bool setFileAndLine(JSContext *cx, const ConstUTF8CharsZ &f, unsigned l);

3808 bool setSourceMapURL(JSContext *cx, const char16_t *s);

3809 bool setIntroducerFilename(JSContext *cx, const ConstUTF8CharsZ &s);

We should add UniquePtr-style versions of these at some point so that callers that have just created a
string don't have to have it copied again. I wonder if that'd need bug 1035966 (which is doable now that
we have actual nullptr on all supported compilers), or if we would want to use some mechanism not
exactly UniquePtr for that...

Or there's that "make this all JSString*" approach that seems most ideal to me, and doesn't UniquePtr
anything, but requires making this stuff GC-correct, which is non-trivial enough to certainly be deferrable
past fixing the issue here. ψ.

3963 JS::MutableHandleScript script);

3964

3965 extern JS_PUBLIC_API(bool)

3966 Compile(JSContext *cx, JS::HandleObject obj, const ReadOnlyCompileOptions &options, const JS::ConstUTF8CharsZ &filename,

3967 JS::MutableHandleScript script);

Line-wrapping point is at 99ch, so this is far over-long and needs rewrapping.

4240 extern JS_PUBLIC_API(JSString *)

4241 JS_NewStringCopyZ(JSContext *cx, const char *s);

4242

4243 extern JS_PUBLIC_API(JSString *)

4244 JS_NewStringCopyZUTF8(JSContext *cx, const JS::ConstUTF8CharsZ &s);

I think JS_NewStringCopyUTF8Z seems more consistent with the type name. The Z is a terminator -- it
belongs at end of the name. And logically, we're accepting UTF-8 data, that's null-terminated. That lines
up best with *UTF8Z for the name.

js/src/jsexn.cpp

296 return nullptr;

297 }

298 /* Second, try the actual filename. */

299 else if (const char *filename = i.scriptFilename().c_str()) {

300 if (!sb.append(filename, strlen(filename)))

This treats the filename as Latin1, not as Unicode. Should be visible in new Error().stack, very clearly. This
should have a test for it, assuming (as seems likely) that it has none now.

Let's add (in a separate bug/patch, blocking this bug) StringBuffer::appendUTF8(const char*) and
StringBuffer::appendUTF8(JS::ConstUTF8CharsZ) methods. For starters just have them use
InflateUTF8StringToBuffer in the stupidest way possible, into a buffer of 16-bit characters, then append
that. We can have another bug after that to do something cleaner, that doesn't require extra temporary
storage.

Also please file a bug to rename StringBuffer::append(const char*) to StringBuffer::appendLatin1(const
char*). That rename can (and *should*) happen after all this bug and patchwork wraps up.

721

722 if (reportp && reportp->filename) {

723 filename = strrchr(reportp->filename.c_str(), '/');

724 if (filename)

725 filename++;

I guess we're going to just hope that addons don't have too many Unicode-named files, because we're
changing the histogram key we're using here. Had to happen eventually, I guess. And maybe this is purely
for our own edification, and we can suck up the change on our own.

js/src/jsfriendapi.cpp

701

702 RootedObject scopeChain(cx, iter.scopeChain(cx));

703 JSAutoCompartment ac(cx, scopeChain);

704

705 const char *filename = script->filename().c_str();

Oh blah, this is why you changed that one use of this in TestingFunctions.cpp. Bleargh. Congratulations on
getting to audit all the code used by FormatStackDump to make it all consistently UTF-8! :-\ We can't have
it be half-Latin1, half-UTF-8, because then it's neither.

js/src/jsfriendapi.h

415 * Set |*src| and |*length| to refer to the source code for |filename|.

416 * On success, the caller owns the buffer to which |*src| points, and

417 * should use JS_free to free it.

418 */

419 virtual bool load(JSContext *cx, const JS::ConstUTF8CharsZ &filename, char16_t **src, size_t *length) = 0;

Hmm, at some point we should make this return some sort of TwoByteChars containing a UniquePtr. Or
make it return a JSString* if we can get all these filename bits to use that representation instead. Not now,
of course.

js/src/jsinfer.cpp

219 unsigned JSScript::id() {

220 if (!id_) {

221 id_ = ++compartment()->types.scriptCount;

222 InferSpew(ISpewOps, "script #%u: %p %s:%d",

223 id_, this, filename() ? filename() : JS::ConstUTF8CharsZ("<null>"), lineno());

PRIuSIZE, and fix the ridiculously non-standard formatting while you're here:

unsigned
JSScript::id()
{
 if (!id_) {
...

Oh, this also looks like a place that's passing a non-POD to varargs.

5226 else if (script->isForEval())

5227 fprintf(stderr, "Eval");

5228 else

5229 fprintf(stderr, "Main");

5230 fprintf(stderr, " #%u %s:%d ", script->id(), script->filename().c_str(), (int) script->lineno());

PRIuSIZE

js/src/jsobj.cpp

3767 }

3768 if (fun->hasScript()) {

3769 JSScript *script = fun->nonLazyScript();

3770 fprintf(stderr, " (%s:%d)",

3771 script->filename() ? script->filename().c_str() : "", (int) script->lineno());

Fix the lineno() bit to PRIuSIZE while you're here?

4004 }

4005 fputc('\n', stderr);

4006

4007 fprintf(stderr, "file %s line %u\n",

4008 i.script()->filename().c_str(), (unsigned) i.script()->lineno());

And here.

4050 depth, (i.isJit() ? 0 : i.interpFrame()), filename, line,

4051 script, script->pcToOffset(i.pc()));

4052 }

4053 fprintf(stdout, "%s", sprinter.string());

4054 #ifdef XP_WIN32

Immediately below this is

 OutputDebugStringA(sprinter.string());

which won't handle UTF-8. On the other hand. <https://msdn.microsoft.com/en-us/library/windows

Patch Review of Attachment 8550523 for Bug 987069 https://bugzilla.mozilla.org/page.cgi?id=splinter....

4 of 8 01/30/2015 02:57 PM

/desktop/aa363362%28v=vs.85%29.aspx> says that the method won't handle all Unicode characters, so
we lose no matter what we do. So that's good enough -- but please add a comment saying that even
OutputDebugStringW won't handle all Unicode characters, so we're just going to not care that this method
drops even more of them.

js/src/jsopcode.cpp

292

293 fprintf(stdout, "--- SCRIPT %s:%d ---\n", script->filename().c_str(), (int) script->lineno());

294 js_DumpPCCounts(cx, script, &sprinter);

295 fputs(sprinter.string(), stdout);

296 fprintf(stdout, "--- END SCRIPT %s:%d ---\n", script->filename().c_str(), (int) script->lineno());

Make these both PRIuSIZE as well.

2143

2144 AppendJSONProperty(buf, "file", NO_COMMA);

2145 JSString *str = NewStringCopyZUTF8<CanGC>(cx, script->filename());

2146 if (!str || !(str = StringToSource(cx, str)))

2147 return nullptr;

Make the declaration here a RootedString, please. I'm mildly surprised there's no rooting hazard flagged
here.

js/src/jsreflect.cpp

3422 RootedString src(cx, ToString<CanGC>(cx, args[0]));

3423 if (!src)

3424 return false;

3425

3426 ScopedJSFreePtr<char> filenameChars;

Change this to UniquePtr<char[], JS::FreePolicy> while you're here. You'll have to change the assignment
below to a .reset(...), but otherwise it should all be identical.

3424 return false;

3425

3426 ScopedJSFreePtr<char> filenameChars;

3427 RootedValue filename(cx);

3428 filename.setNull();

Instead of |filename| as RootedValue, make it RootedString. |RootedString filename(cx);| will be initialized
to nullptr, then you can make the argument type HandleString, then use |if (str)| to determine whether to
atomize and set the member variable.

3464 RootedString str(cx, ToString<CanGC>(cx, prop));

3465 if (!str)

3466 return false;

3467

3468 filename.setString(str);

filename as RootedString lets us just ToString directly into it and eliminate the |str| here.

js/src/jsscript.cpp

2038 char *formatted = FormatIntroducedFilename(cx, filename, options.introductionLineno,

2039 options.introductionType);

2040 if (!formatted)

2041 return false;

2042 filename_.reset(formatted);

Add a comment by filename_ indicating that its contents are UTF-8, please.

js/src/shell/js.cpp

849 return false;

850 }

851 JSAutoByteString filename;

852 filename.encodeUtf8(cx, str);

853 if (!filename)

if (!filename.encodeUtf8(cx, str))
 return false;

913 return false;

914 char *fileName = fileNameBytes.encodeUtf8(cx, s);

915 if (!fileName)

916 return false;

917 options.setFile(JS::ConstUTF8CharsZ(fileName));

if (!fileNameBytes.encodeUtf8(cx, s))
 return false;
options.setFile(JS::ConstUTF8CharsZ(fileNameBytes.ptr()));

1459 return false;

1460 args[0].setString(str);

1461 JSAutoByteString filename;

1462 filename.encodeUtf8(cx, str);

1463 if (!filename)

Same

JSAutoByteString filename;
if (!filename.encodeUtf8(cx, str))
 return false;

dance.

1478 int64_t startClock = PRMJ_Now();

1479 {

1480 JS::CompileOptions options(cx);

1481 options.setIntroductionType("js shell run")

1482 .setFileAndLine(JS::ConstUTF8CharsZ(filename.ptr()), 1)

I don't believe this is right -- above filename is constructed using (JSContext*, HandleString), which calls
JS_EncodeString, which does EncodeLatin1. Make that

JSAutoByteString filename;
if (!filename.encodeUtf8(cx, str))
 return false;

instead, then this will be okay.

2357 return false;

2358 JSAutoByteString filename;

2359 filename.encodeUtf8(cx, str);

2360 if (!filename)

2361 return false;

Same

JSABS filename;
if (!...)
 return false;

nit.

js/src/tests/js1_5/Exceptions/error-encoding.js

2

3 // Test that Error.fileName is consistently encoded.

4

5 // Anything outside of ASCII will do here.

6 var URL = "file:///whee\u2708.js";

Same non-BMP, combining characters stuff.

js/src/tests/js1_8_5/extensions/reflect-parse.js

1050

1051 Pattern({ source: "quad.js", start: { line: 1, column: 20 }, end: { line: 1, column: 29 } }).match(fourAC.loc);

1052

1053 // Bug 987069: encoding of the URL. Anything outside of ASCII will do.

1054 const URL = "file:///whee\u2708.js"

Non-BMP, combining characters.

js/src/vm/CharacterEncoding.cpp

327

328 return true;

329 }

330

331 template <InflateUTF8Action action>

Patch Review of Attachment 8550523 for Bug 987069 https://bugzilla.mozilla.org/page.cgi?id=splinter....

5 of 8 01/30/2015 02:57 PM

Capitalize Action, as a template parameter name, please. Not universal, but very very close to it.

js/src/vm/Debugger.cpp

3390 /* Compute urlCString and displayURLChars, if a url or displayURL was

3391 * given respectively. */

3392 if (url.isString()) {

3393 RootedString str(cx, url.toString());

3394 if (!urlCString.encodeUtf8(cx, str))

Please adjust the comment by urlCString, too:

 /* url as a UTF-8 C string. */
 JSAutoByteString urlCString;

or something along those lines. This is another place where JSString* would make things oh so much
simpler. But for later.

4224 if (script->scriptSource()->introducerFilename())

4225 filename = script->scriptSource()->introducerFilename();

4226 else

4227 filename = script->filename();

4228 str = NewStringCopyZUTF8<CanGC>(cx, filename);

Move the declaration down to here, and put a blank line above this, for breathing space.

6013 if (!v.isUndefined()) {

6014 RootedString url_str(cx, ToString<CanGC>(cx, v));

6015 if (!url_str)

6016 return false;

6017 url = url_bytes.encodeUtf8(cx, url_str);

This |url| variable seems to be largely someone's failure to understand that JSAutoByteString has a ptr()
method to get the string. Please remove the |url| variable, rename |url_bytes| to |url|, and just use
|url.ptr()| further down in this method.

Oh, make it

if (!url_bytes.encodeUtf8(cx, url_str))
 return false;

as there's no need for an assignment, then null-checking that variable.

js/src/vm/MemoryMetrics.cpp

449

450 rtStats->runtime.scriptSourceInfo.add(info);

451

452 if (granularity == FineGrained) {

453 const char* filename = ss->filename().c_str();

Can you propagate ConstUTF8CharsZ down into the type of the allScriptSources map here, and
NotableStringInfo implicated by it? Everything looks fine in the users as far as encoding goes
(nsIMemoryReporterCallback::callback accepts an AUTF8String path), but better to be more explicit about it.

js/src/vm/Probes.cpp

46 if (!script)

47 return probes::nullName;

48 if (!script->filename())

49 return probes::anonymousName;

50 return script->filename().c_str();

I'm going to pretend that DTrace is fine accepting UTF-8 here, because cursory anecdotal searching
suggests DTrace is all-UTF-8 for string arguments. If that's wrong, someone else can determine it at that
time, given DTrace is relatively underused last I knew.

js/src/vm/SPSProfiler.cpp

272 // Get the function name, if any.

273 JSAtom *atom = maybeFun ? maybeFun->displayAtom() : nullptr;

274

275 // Get the script filename, if any, and its length.

276 const char *filename = script->filename().c_str();

Please convert this to a ConstUTF8CharsZ. This use flows onward to a bunch of random code that would be
much clearer with a better type.

As for whether all that code is copacetic with this. This is unclear to me. This flows into ProfileEntry structs
and a bunch of other places, including Breakpad code -- that largely doesn't examine it for encoding
purposes, but I may have missed something. Please ask someone familiar with Breakpad to review all the
uses of ProfileEntry::label() to ensure they're all fine accepting UTF-8 data. The use in tools/profiler
/BreakpadSampler.cpp is the one that has me most potentially worried about introducing UTF-8 here, where
it might possibly have not been understood before.

js/src/vm/SavedStacks.cpp

679 if (const char16_t *displayURL = iter.scriptDisplayURL()) {

680 locationp->source = AtomizeChars(cx, displayURL, js_strlen(displayURL));

681 } else {

682 JS::ConstUTF8CharsZ filename = iter.scriptFilename();

683 if (filename) {

if (JS::ConstUTF8CharsZ filename = iter.scriptFilename()) {

687 return false;

688 locationp->source = AtomizeChars(cx, chars.get(), len);

689 js_free(chars.get());

690 } else {

691 locationp->source = Atomize(cx, "", 0);

You can just assign cx->names().empty at this point.

709 if (const char16_t *displayURL = iter.scriptDisplayURL()) {

710 source = AtomizeChars(cx, displayURL, js_strlen(displayURL));

711 } else {

712 JS::ConstUTF8CharsZ filename = script->filename();

713 if (filename) {

Same if (...) { as above.

713 if (filename) {

714 size_t len;

715 // We use the lossy variant here because it cannot GC.

716 // This avoids a rooting hazard for 'key'.

717 JS::TwoByteCharsZ chars = LossyUTF8CharsToNewTwoByteCharsZ(cx, filename, &len);

I don't particularly understand this. Why is it okay to be lossy here, versus sucking it up to always be
correct, even if extra work is required to keep |key| in acceptable shape about GC hazards? I don't
understand this well enough to propose the solution, myself -- but we should have one. Pretty sure it's not
okay to randomly lose data here.

719 return false;

720 source = AtomizeChars(cx, chars.get(), len);

721 js_free(chars.get());

722 } else {

723 source = Atomize(cx, "", 0);

And cx->names().empty again.

js/src/vm/SelfHosting.cpp

1111 char *filename = getenv("MOZ_SELFHOSTEDJS");

1112 if (filename) {

1113 RootedScript script(cx);

1114 if (Compile(cx, shg, options, JS::ConstUTF8CharsZ(filename), &script))

1115 ok = Execute(cx, script, *shg.get(), rv.address());

This is an environment variable, so it could have unknown encoding. But it's also a debugging facility, so
this is probably good enough. Add a comment here noting that we're okay with it for this reason.

js/src/vm/TraceLogging.cpp

459 TraceLoggerEventPayload *

460 TraceLoggerThread::getOrCreateEventPayload(TraceLoggerTextId type,

461 const JS::ReadOnlyCompileOptions &script)

462 {

463 return getOrCreateEventPayload(type, script.filename().c_str(), script.lineno, script.column, &script);

I don't think this works.

The filename here is inserted into a TraceLoggerEventPayload, that's inserted into an extraTextId hash.
That's consulted by TraceLoggerThread::eventText. And that's used by
TraceLoggerThread::extractScriptDetails which exposes that text, which is used at least by

Patch Review of Attachment 8550523 for Bug 987069 https://bugzilla.mozilla.org/page.cgi?id=splinter....

6 of 8 01/30/2015 02:57 PM

Debugger::drainTraceLoggerScriptCalls that passes the exposed const char* to JSAPI as if it were Latin-1
strings. (I haven't tracked any other uses of this bit of use of the string.)

And later in gOCEP, the string created here is interpolated into |str| passed in |graph->addTextId(textId,
str);|. That method does |js::FileEscapedString(dictFile, text, strlen(text), '"')| with |text == str|. And
FileEscapedString doesn't understand UTF-8 input.

As for how to deal with this. Um. I guess track harder into users/callers? And probably someone who
understands TraceLogger code should review this portion of changes, to be sure the utomst extents have
been correctly changed. And probably ConstUTF8CharsZ should be used as a type in at least some of these
data structures here.

js/xpconnect/src/XPCShellImpl.cpp

321 return false;

322 }

323 JS::CompileOptions options(cx);

324 options.setUTF8(true)

325 .setFileAndLine(JS::ConstUTF8CharsZ(filename.ptr()), 1)

JSABS filename;
if (!filename.encodeUtf8(cx, str))
 return false;

above this, else this is wrong.

824 JS_BeginRequest(cx);

825

826 JS::CompileOptions options(cx);

827 options.setUTF8(true)

828 .setFileAndLine(JS::ConstUTF8CharsZ(filename), 1)

...so I guess we're also assuming that commandline arguments (or at least paths) are UTF-8 as well. Given
this is mostly for in-tree paths, or paths to files in trees, or test harness stuff, okay. But put a comment by
this to clarify that assumption.

js/xpconnect/tests/chrome/test_xrayLogEncoding.xul

45 };

46

47 theconsole.registerListener(listener);

48

49 var myURL = "file:///whee✈.js";

As usual it'd be really really really nice to test a larger variety of URLs with non-BMP, combining characters,
etc. here.

js/xpconnect/tests/mochitest/test_bug987069.html

12

13 /** Test for Bug 987069 **/

14

15 var theurl = "http://sub1.ält.example.org:8000/tests/js/xpconnect/tests/mochitest/file_bug987069.js";

16 SimpleTest.waitForExplicitFinish();

Again fine, just test a few more domains, please. If you need more -- I don't think we have any that are
non-BMP yet, or that contain combining characters -- you can add them to build/pgo/server-locations.txt, as
subdomains underneath example.com.

xpcom/threads/ThreadStackHelper.cpp

584 MOZ_ASSERT(aEntry->script());

585

586 const char* label;

587 if (IsChromeJSScript(aEntry->script())) {

588 const char* filename = JS_GetScriptFilename(aEntry->script()).c_str();

It looks to me like we append this to the stack vector at the end of this function. As far as I can tell, that
vector gets used -- at an absolute minimum -- by toolkit/components/telemetry
/Telemetry.cpp:CreateJSHangStack, which interprets each element of the vector as a Latin1 string. So I
think this is okay as far as this *immediate* code is concerned, but I think you need to track down all the
consumers of |mStackToFill| and ensure they all are comfortable with UTF-8 input and won't mangle it into
mojibake.

Please get a peer from this code, and probably from telemetry as well, to review the relevant portions of the
additional changes you'll need to make to address this. I'd like to look, but ultimately this particular UTF-8
string flows into a very wide-open set of uses that I can't easily identify and, therefore, that I'm not truly
competent to review.

Flags: Requestee:

ttromey: review -
superreview

a11y‑review

ui‑review

feedback

approval‑mozilla‑aurora

approval‑mozilla‑beta

approval‑mozilla‑release

approval‑mozilla‑esr31

approval‑mozilla‑b2g30

approval‑mozilla‑b2g32

approval‑mozilla‑b2g34

approval‑mozilla‑b2g37

sec‑approval

Patch Review of Attachment 8550523 for Bug 987069 https://bugzilla.mozilla.org/page.cgi?id=splinter....

7 of 8 01/30/2015 02:57 PM

Publish Cancel

qa‑approval

checkin

addl. review

Powered by Splinter

Privacy Policy

Patch Review of Attachment 8550523 for Bug 987069 https://bugzilla.mozilla.org/page.cgi?id=splinter....

8 of 8 01/30/2015 02:57 PM

