
__
 Combining PKI and Smart Cards with W3C’s WebCrypto V0.5 1/2

Combining PKI and Smart Cards

with W3C’s WebCrypto

Background: In many parts of the world proprietary browser “plugins” have been deployed in order to provide missing
browser PKI-functionality like the ability to sign transactions etc. Although indeed working, these plugins share a number
of weaknesses like:

 Highly platform-dependent making them expensive to roll out to consumers

 Typically run with the same privileges as local applications

 Requiring users to perform explicit installs which may not be allowed on enterprise-managed computers

The W3C WebCrypto [http://www.w3.org/TR/WebCryptoAPI] WG has (among numerous of other things) taken on
this as a target.

The following specification outlines a foundation for creating lightweight JS/HTML5-based “plugins” having similar
functionality as the proprietary plugin schemes, but without the mentioned disadvantages using an X.509-based extension
mechanism.

Preconditions

This specification depends on that the user has one or more X.509 certificates supplied in a smart card, “soft token”, or in
an embedded SE (Security Element). One of the many possibilities that have been mentioned is that the user in some way
grants unknown code (or sites) access to specific keys. This is of course technically feasible but confronts users with
questions and decisions they are less likely to understand the consequences of.

To facilitate a more manageable access control model, this specification builds on the current WebCrypto API specification
which indirectly mandates that keys residing in platform-wide keystores are inaccessible from WebCrypto, while introducing
a mechanism that enables such keys to optionally ”transcend” through the use of a dedicated X.509 extension holding a
target domain (or a set of domains).

Users should (as with “native” WebCrypto keys), not need to explicitly grant privileges to code or keys, but rather be able
aborting the entire operation which should be a part of any well-designed application.

Of course nothing stops a browser-vendor introducing an opt-in dialog possibly including a “don’t ask me again” option.

Out of Scope – Key Initialization

Provisioning keys in smart cards etc. is something entirely different to “using” keys and is out of scope for this specification.

Cross Origin Operation

A core WebCrypto feature is the reliance on SOP (Same Origin Policy) for protecting keys from unauthorized access. To
facilitate cross-origin-operations postMessage()operations can be used like already is the case for native WebCrypto

keys.

X.509 Domain Indicator Extension

The exact format is yet to be defined but it does only have to provide UTF8 string(s) of the target domain(s), like
example.com.

Extended API

On the next page there a short description of the additional API methods required by this specification.

This specification is essentially a souped-up version of a scheme originally proposed by
Samuel Erdtman of NexusSafe.

This specification is hereby

put in the public domain

http://www.w3.org/TR/WebCryptoAPI

__
 Combining PKI and Smart Cards with W3C’s WebCrypto V0.5 2/2

API Examples

The following section contains a few examples on how the WebCrypto API could be augmented to support the described

extension scheme. Here supplied in Java-notation rather than Web-IDL.

Finding Keys

Assuming that the keys we are interested in reside in the browser/platform/system keystore we need a platform-

independent way of finding them.

 import window.crypto.subtle.*;

 Key[] our_keys = KeyStore.enumerateKeys(KeyStore.PLATFORM);

 if (our_keys.length == 0)

 {

 fail and exit…

 }

 Key key = our_keys[0]; // Select a key to use, here just the first one

The call to enumerateKeys() will only return keys having an X.509 domain indicator extension matching the invoking

domain.

Using Keys

Now we are ready using the “regular” WebCrypto API:

 crypto.subtle.sign(AlgorithmIdentifier, key.privateKey, Data2Sign).then (function (etc….

Key Attributes

Many “plugin” applications presumably need to find out various and usually composite key attributes like associated X.509

certificates, supported algorithms, etc. Something like the following should be appropriate:

 KeyAttribute key_attr = key.getKeyAttribute(AttributeTypeURI);

Key Authorization

Some keys will require authorization by a PIN before they can be used. PINs may be gathered by the invoking application.

When the user clicks OK or similar, the authorization data would be transferred to the target key (before invoking any

standard WebCrypto operations), through the use of an additional method implied by this specification:

 key.authorize(AuthorizationData);

If an application provides no explicit authorization data for a key that needs authorization, the browser should automatically

request the user for key authorization through a system-specific pop-up dialog launched immediately before the actual

crypto-operation is to be performed.

Privacy and Security Considerations

The described scheme doesn’t appear to significantly depart privacy- or security-wise from the original WebCrypto API:
Nothing prevents malicious issuers from subjecting their clients to various attacks or misfortunes.

Author

Anders Rundgren, anders.rundgren.net@gmail.

A WebCrypto implementation must distinguish between keys associated with KeyStore

and keys having “web-storage” since access control must be enforced for every call

One could imagine supporting a

discriminating argument like

SMARTCARD or a bit-field with

attributes like CONNECTED,

EMBEDDED, HARDWARE etc.

mailto:anders.rundgren.net@gmail

