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Preface

These lecture notes provide proofs of some elementary results about linear
partial differential equations in domains in Euclidean space. Chapter 1 is a
review of the prerequisite material from several variable calculus, and also
provides the definitions, and statements of theorems (without proof) of the
main results in measure theory and integration. The main theorem is the
dominated convergence theorem: pointwise convergence of functions, all smaller
than an integrable function, ensures convergence of integrals. Limits of Riemann
sums are poorly behaved under pointwise limits of functions, so the dominated
convergence theorem requires the more sophisticated Lebesgue integration.

Chapters 2 to 3 survey some elementary results about approximation of
rough functions by smooth functions. We often need to allow solutions of
partial differential equations to be poorly behaved functions, for example in
modelling shock waves or explosions. But differential equations are expressed
in terms of derivatives, which only exist for relatively smooth functions. A
large part of our effort is aimed at resolving this paradox. Some functions are
not differentiable strictly speaking, but still behave very much as if they had
derivatives. Expressing a rough function as a limit of smooth functions, we
can think of its derivative as a limit of derivatives of smooth functions. If this
limit exists in a suitable sense, it is called a weak derivative. It can be easier to
solve partial differential equations using weak derivatives. A function is Sobolev
of order k if the function and its various weak derivatives up to order k have
well enough behaved integrals. We will mostly search for solutions to partial
differential equations among Sobolev functions.

When searching for solutions to partial differential equations, we might hope
to explicitly write them down with some formulas. This is rarely possible, but
the cases where we succeed are vital sources of intuition. When this fails, we
might instead construct a scheme which starts with a guess, an approximate
solution, which we can write down, and replace it with a better guess, repeatedly,
aiming to converge to a solution. The Kondrashov–Rellich compactness theorem
tells us when a sequence of Sobolev functions converges to a Sobolev function.
We can often use this to prove convergence of our scheme. We then need to
bridge the gap between derivatives in the weak sense and derivatives in the
usual sense of calculus. The Sobolev embedding theorem states that all Sobolev
functions of high enough order have some number of derivatives which are not
just weak derivatives. If we can find solutions of partial differential equations
in the weak sense (for instance by the Kondrashov–Rellich theorem), then
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Sobolev’s embedding theorem might tell us that they are actually solutions in
the usual sense.
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Chapter 1

Analysis Review

We go over terminology and notation from analysis, including a few results which you
might not have already covered.

Euclidean space

We use the usual terminology and notation of sets without introduction. We
write R to mean the set of all real numbers, C the set of complex numbers.
Suppose that f : X → Y is a map between sets and S ⊂ X is a subset. The
image f(S) of S is the set of all points f(x) for all x ∈ S. The image of f is
f(X). Similarly if T ⊂ Y is a subset, the preimage, f−1T , of T is the set of
points x ∈ X for which f(x) ∈ T . It will often be convenient to avoid choosing
a name for a function, for example writing x 7→ x2 sin x. to mean the function
f : R → R, f(x) = x2 sin x.

The set Rn is the set of all n-tuples

x =


x1
x2
...
xn


of real numbers x1, x2, . . . , xn ∈ R. Following standard practice, we will often
be lazy and write such a tuple horizontally as

x = (x1, x2, . . . , xn) .

We refer to Rn as Euclidean space and to its elements as either points (in which
case we draw them as dots) or as vectors (in which case we draw them as arrows
from the origin). Similarly Cn is the set of all n-tuples of complex numbers.
We refer to Cn as complex Euclidean space.

If x, y ∈ Rn, their inner product or scalar product or dot product is

〈x, y〉 =
∑
i

xiyi.

If z, w ∈ Cn, their inner product is

〈z, w〉 =
∑
a

zaw̄a.
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The length of a vector x ∈ Rn or z ∈ Cn is

‖x‖ =
√
〈x, x〉, ‖z‖ =

√
〈z, z〉.

The distance between two points x, y ∈ Rn is d (x, y) = ‖x− y‖ . The ball or
open ball of radius r around a point x ∈ Rn is the set Br (x) of all points of
Rn of distance less than r from x. The closed ball of radius r around a point
x ∈ Rn is the set B̄r (x) of all points p ∈ Rn of distance less than or equal to r
from x. A set is bounded if it lies in a ball. A map is bounded if its image is
bounded.

1.1 Prove that every box is bounded.

A set U ⊂ Rn is open if it is a union of open balls. The closure S̄ of a set
S ⊂ Rn is the set of all points p so that any open set containing p contains
points of S. The boundary is the set of points p so that any open set around p
contains points of S and points outside of S, i.e. ∂S = S̄ ∩ Rn − S. A domain
is an open set D ⊂ Rn so that ∂D = ∂

(
Rn − D̄

)
.

1.2 Prove that every open ball is a domain.

1.3 Give an example of an open set which is not a domain.

For any real numbers a, b ∈ R, we write [a, b] ⊂ R to mean the set of points
x ∈ R so that a ≤ x ≤ b, and we call [a, b] the closed interval from a to b, etc.
A box in Rn is a subset of the form

X = [a1, b1]× [a2, b2]× · · · × [an, bn] ,

i.e. a product of closed intervals. In other words, a vector x ∈ Rn lies in the
box X just when a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2 and . . . and an ≤ xn ≤ bn.

A set S ⊂ Rn is compact if it is closed and bounded. The image of a compact
set under a continuous map is compact. A cover of a set S is a collection of
sets, say Xa for a ∈ A, so that every point of S lies in at least one of these sets
Xa. For any cover Ua of a compact set S by open sets, S is already covered by
a finite collection of those open sets.

Derivatives

Write ∂i to mean ∂
∂xi

, and similarly write ∂x to mean ∂
∂x , and ∂ij to mean

∂2

∂xi∂xj
and so on. Write df for the “differential”

df = (∂1f, ∂2f, . . . , ∂nf) ,

which we can clearly write as

df =
∑
i

∂f

∂xi
dxi.
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If a = (a1, a2, . . . , an), let

∂a = ∂a1

∂a1x1

∂a2

∂a2x2
. . .

∂an

∂anxn
.

In particular, ∂0f = f . A function f : U → Rp defined on an open set U ⊂ Rq
is Ck if f all derivatives ∂af are defined and continuous for all |a| ≤ k. A
function is C∞, also called smooth, if it is Ck for all k. A function f defined on
any set is Ck if, near each point where f is defined, f can be somehow (in many
ways) extended to a Ck function in some open set around that point (maybe in
different ways around different points). For functions valued in real or complex
numbers or vectors, write f(x) = o (g(x)) to mean that ‖f(x)‖

‖g(x)‖ → 0 as x→ 0.
Similarly, write f(x) = o (g(x))k to mean that ‖f(x)‖

‖g(x)‖k → 0 as x → 0. If
a = (a1, a2, . . . , an) with each aj ≥ 0 an integer, let |a| = a1 + a2 + · · · + an,
a! = a1!a2! . . . an! and for x ∈ Rn let xa = xa1

1 xa2
2 . . . xann . Every Ck function

has a Taylor series
f(x) =

∑
a

∂af(0)x
a

a! + o (x)k .

A function f is C0,α if for every compact set K on which f is defined, there is
a constant C > 0 so that if x and y lie in K and x and y are close enough, then
d (f(x), f(y)) ≤ Cd (x, y)α . Say that f is Ck,α if ∂af is C0,α for all |a| ≤ k.
Similarly, if f is not defined on an open set, we can say f is Ck,α if, near each
point where f is defined, f can be extended to a Ck,α function in some open
set containing that point. For any set X ⊂ Rn, let Ck(X) be the set of all
Ck functions on X, and let Ck,α(X) be the set of all Ck,α functions on X. A
function f is Ckb if it is Ck with all derivatives of order up to k bounded. The
norm of such a function is

‖f‖Ck = sup
|a|≤k

|∂af | .

In this norm, if X = Ū is the closure of a bounded open set, then both of
Ck(X) ⊂ Ckb (U) are complete metric spaces. For any f ∈ Ck,α, let

‖f‖Ck,α =
∑
|a|≤k

sup
x 6=y

d (∂af(x), ∂af(y))
d (x, y)α

.

In this norm, if X = Ū is the closure of a bounded open set, then Ck,α(X) is a
complete metric space.

1.4 If α > 1 prove that f ∈ C0,α just when f is constant.

A sequence of functions f1, f2, . . . is equicontinuous if, for any point s, for
every ε > 0, there is a neighborhood of s so that for every t in that neighborhood,
all of the differences f1(s)− f1(t), f2(s)− f2(t), . . . are smaller in absolute value
than ε.



4 Analysis Review

1.5 Give an example of a sequence of continuous functions which is not equicon-
tinuous.

Theorem 1.1 (Ascoli–Arzelà). If f1, f2, . . . is an equicontinuous sequence of
functions and |f1|, |f2|, . . . are all bounded by the same constant then some
subsequence converges uniformly.

1.6 Suppose that f1, f2, . . . is a sequence of C0,α functions of bounded norm.
Prove that for every β < α, all of the functions f1, f2, . . . belong to C0,β , and
that there is a convergent subsequence in C0,β .

Smooth functions with compact support

The support of a function is the closure of the set of points where the function
doesn’t vanish. A smooth function is called a test function if it has compact
support. Write C∞c for the set of test functions. Note that if D is a domain, a
function on D with compact support must vanish near every point of ∂D. We
say that a sequence f1, f2, · · · ∈ C∞c (U) converges to an element f ∈ C∞c (U)
if there is a compact set K ⊂ U containing the supports of all elements of
the sequence and ∂af1, ∂

af2, · · · → ∂af uniformly, for every multiindex a. For
any two concentric spheres, there is a test function on Rn equal to 1 inside
the smaller sphere, and equal to 0 outside the larger sphere, symmetric under
rotations around the common centre of the spheres, and strictly decreasing along
every radial line out of the centre. One can write down an explicit example of
such a function, via a long but straightforward exercise in cutting and pasting,
using the fact that the function f(x) = e−1/x vanishes at the origin with all
derivatives.

An open cover of a set S ⊂ Rn is a collection of open sets Uα ⊂ Rn so that
S ⊂

⋃
α Uα. A partition of unity on a set S ⊂ Rn is a collection of smooth

functions fα : Rn → [0, 1] so that
1. each point x lies in an open set on which only finitely many of the functions
fα are not everywhere zero and

2.
∑
α fα(x) = 1 at every point x ∈ S.

The partition of unity is subordinate to an open cover {Uα} if every fα is
supported in a compact subset of Uα. If S is a closed set, then every open cover
of S has a partition of unity subordinate to it.

Measure

We will need some facts about Lebesgue measure which you might not have run
into yet; we will just summarise the relevant facts and not prove any of them.
See [1, 2] for excellent introductions. Paradoxically, there is no reasonable way
to assign a volume to every subset of Euclidean space, or to associate an integral
to every function, so we assign volumes and integrals to various sets and to
various functions; luckily among those sets and functions one finds any set or
function that we can explicitly describe or would ever need to think about.



Integration 5

The length of an interval [a, b] or (a, b) or [a, b) or (a, b] is b − a. If we write
a box as a product of intervals, the volume of the box is the product of the
lengths of the intervals. Picture a set S covered by a collection of boxes. By
perhaps replacing these boxes by some smaller ones, we can try to cover S
without very much overlap. The outer measure of a set S ⊂ Rn is the number
V so that we can cover S by a sequence of boxes whose sum of volumes can
be as close as we like to V , but can’t be less than V . The outer measure of
a box turns out to equal its volume. The graph of a map, say f : X → Y ,
where X ⊂ Rp and Y ⊂ Rq, is clearly a subset of Rp+q. If a set S ⊂ Rn
lies in the graph of a continuous map then S has outer measure zero. A set
S ⊂ Rn is measureable if it can be approximated well by open sets, in the sense
that there are open sets U containing S so that U − S has outer measure as
small as we like; clearly open sets are measureable. The complement of any
measureable set is measureable. The union and the intersection of any sequence
of measureable sets is measureable. The outer measure of a measureable set is
called its measure. If a set has outer measure zero, then it is measureable (with
measure zero). Given a sequence of disjoint measureable sets, the measure of
the union is the sum of the measures. If we say that a statement about a point
x is true “almost everywhere”, we mean that the counterexamples form a set of
measure zero.

Integration

We will henceforth treat any two functions as being the same if they agree
everywhere except on a set of measure zero. This has the strange consequence
that when we say a function is continuous or differentiable or bounded, we
really mean that it can be made continuous or differentiable or bounded, after
we modify it on a set of measure zero. When we refer to an upper bound
on a function f , written supx f(x), we really mean the smallest value y0 so
that the set of points x on which f(x) > y0 has measure zero. We will also
be deliberately vague about whether our functions are real-valued or complex-
valued. A function f is Riemann integrable if the usual limits of lower and upper
Riemann sums agree. A function f is measureable if, for any number a, the set
of points x at which f(x) < a is measureable. Suppose that f is a measureable
and nonnegative function on a measureable set X ⊂ Rn. For each t, let f∗(t) be
the measure of f−1(t,∞). Then f∗ is a decreasing function on the real number
line, and so is Riemann integrable; define

∫
f =

∫∞
−∞ f∗(t) dt. A function f is

integrable if it is measureable and |f | has finite integral. If f is real-valued, it
follows that the functions f+(x) = max(0, f(x)) and f−(x) = max(0,−f(x))
are integrable, and we let

∫
f =

∫
f+ −

∫
f−. Similarly, for f complex-valued

f = g + ih with g and h real-valued, set
∫
f =

∫
g + i

∫
h, and similarly if f is

vector-valued.

Theorem 1.2 (The dominated convergence theorem). If f1, f2, . . . is a sequence
of integrable functions on some measureable set, converging pointwise, and
|f1| , |f2| , . . . are all bounded by the same integrable function, then the pointwise
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limit f(x) = limn→∞ fn(x) is integrable and∫
fn →

∫
f as n→∞.

Theorem 1.3 (Fubini). Suppose that X ⊂ Rp and Y ⊂ Rq are measureable sets.
If f is integrable on X × Y then y 7→ f(x, y) is integrable for all x ∈ X except
on a measure zero set, and x 7→ f(x, y) is integrable for all y ∈ Y except on a
measure zero set and

∫
X×Y f =

∫
X

(∫
Y
f(x, y) dy

)
dx =

∫
Y

(∫
X
f(x, y) dx

)
dy.

For any measureable set X ⊂ Rn, let L1(X) be the set of all integrable
functions on X. We often write L1 if we wish to leave the particular choice of
measureable set X unspecified; in that case we usually mean X = Rn. For p ≥ 1,
let Lp(X) be the set of measureable functions f for which |f |p ∈ L1(X), and let
‖f‖Lp =

(∫
X
|f |p

)1/p
. Similarly, let L∞(X) be the set of bounded measureable

functions, and let ‖f‖L∞ = sup |f | be the uniform norm. If 1 ≤ p ≤ ∞, the
distance between two functions f, g ∈ Lp is ‖f − g‖Lp . With this notion of
distance, the space Lp is a complete metric space, i.e. any Cauchy sequence
converges, i.e. if ‖fj − fk‖Lp → 0 as j, k → ∞, then f1, f2, . . . converges.
Moreover, the convergence of a sequence uj → u in Lp implies that some
subsequence converges pointwise almost everywhere, i.e. there is a subsequence
uj1 , uj2 so that for almost every point x, ujk(x)→ u(x). On any domain, the
test functions are dense in Lp for 1 ≤ p <∞, but not for p =∞; the bounded
C∞ functions are dense in L∞.

Theorem 1.4 (Hölder’s inequality). The “inner product” 〈f, g〉 =
∫
fḡ is

defined for f ∈ Lp and g ∈ Lq as long as 1
p + 1

q = 1, or if p = 1, q = ∞ or
p =∞, q = 1, and

|〈f, g〉| ≤ ‖f‖Lp ‖g‖Lq .

Equality holds if and only if a|f |p = b|g|q for some constants a, b, not both 0.

1.7 Suppose that X is a measureable set of finite measure. Prove that if
1 ≤ p ≤ q ≤ ∞ then Lq(X) ⊂ Lp(X) and there is a number C so that for every
function f ∈ Lq(X), ‖f‖Lq ≤ C ‖f‖Lp . On X = [0, 1] ⊂ R find the best (i.e.
smallest possible) value for C.

1.8 Suppose that we have functions f1, f2, . . . , fk on Rn and that fj ∈ Lpj and
that

1
p1

+ 1
p2

+ · · ·+ 1
pk

= 1.

Use induction and Hölder’s inequality to prove that∫
f1f2 . . . fk ≤ ‖f1‖Lp1 ‖f2‖Lp2 . . . ‖fk‖Lpk .

Theorem 1.5 (Minkowski’s inequality). If f, g ∈ Lp, then ‖f + g‖Lp ≤ ‖f‖Lp+
‖g‖Lp .
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1.9 Prove that for any f ∈ Lp, the linear map g ∈ Lq 7→ 〈g, f〉 is a continuous
linear map.

If U ⊂ Rn is open, write Lploc (U) to mean the functions f so that the
restriction of f to any bounded open set W ⊂ U is in Lp(W ). The largest space
of functions we will ever consider is L1

loc, called the locally integrable functions.
Convergence in Lploc means convergence of the restriction to U in Lp(U) for
every bouned open set U .

1.10 For each positive integer j, let dj be the number of base 10 digits in j.
Let f1, f2, . . . be the sequence of functions

fj(x) =
{

1, if j

101+dj ≤ x ≤
j+1

101+dj ,

0, otherwise.

Draw these functions. Which Lp spaces do these functions belong to? In which
do they have a limit? In which is there a subsequence which has a limit?

Continuity of integrals and differentiation under the integral sign

The dominated converge theorem easily implies:

Theorem 1.6. Suppose that X ⊂ Rp is a measureable set and Y ⊂ Rq is an
arbitrary set, f : X × Y → R, denoted f(x, y), is integrable in x for each y
and is continuous in y, and is bounded: |f(x, y)| ≤ |g(x)| for some integrable
function g. Then

∫
f(x, y) dx is continuous in y.

Theorem 1.7. Suppose that X ⊂ Rp is a measureable set and Y ⊂ R is an
open interval, f : X × Y → R, denoted f(x, y), is integrable in x for each y and
∂f
∂y is integrable in x for each fixed value of y and is bounded: |∂f∂y (x, y)| ≤ |g(x)|
for some integrable function g. Then d

dy

∫
f(x, y) dx =

∫
∂f
∂y dx.

Hypersurfaces

We will summarize some basic results about length of plane curves, area of
surfaces, etc. A Ck surface S ⊂ R3 is a set of points so that, near each point
(x, y, z) ∈ S, the points of S form the graph of a Ck function, say x = f(y, z)
or y = g(x, z) or z = h(x, y). (For example, the sphere x2 + y2 + z2 = 1:
the top is the graph of z =

√
1− x2 − y2, while the bottom is the graph of

z = −
√

1− x2 − y2, and the right half is the graph of x =
√

1− y2 − z2, etc.)
For simplicity, lets assume that S is the graph of z = h(x, y) over some open
set D in the (x, y)-plane, and assume that k ≥ 1. How can we define area? Let
Sε be the set of points of distance at most ε/2 from S. Clearly we would like
to have

Vol (Sε) = εArea (S) + o (ε) . (1.1)
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It turns out that this equation forces us to measure area as: the area of the
surface S is

∫
D

√
1 + ∂xh2 + ∂yh2.

Similarly, a Ck hypersurface S ⊂ Rn+1 is a set of points so that near each
point we can write the surface as the graph of a Ck function, for example as
xn+1 = h (x1, x2, . . . , xn) or similarly for some other coordinate. Suppose that
S is actually the graph of such a function globally, say the graph of h : D → R
where D ⊂ Rn. Any subset X ⊂ S is then the graph of h over a subset X0 ⊂ D.
We then define the hypersurface measure of a measureable subset X ⊂ S to be∫

X0

√
1 + ‖dh‖2

.

It turns out that this is independent of how we choose to write S as the graph
of a function, and the obvious analogue of equation 1.1 on the preceding page
holds. Moreover, even if a Ck hypersurface S can only be written locally as a
graph, we can add up local contributions from such integrals to get a globally
defined hypersurface measure on measureable subsets of S. To define Lebesgue
Lp and Hölder Ck,α functions on hypersurfaces, we follow precisely the same
steps as we did before when we defined integration of functions on measureable
sets in Rn, but now using this hypersurface measure instead of outer measure.

A vector v is tangent to a hypersurface S at the point p if v = x′(0) for some
C1 curve x(t) so that x(0) = p. If S ⊂ Rn+1 is C1 then the tangent vectors
to S at p form a hyperplane, i.e. a linear subspace of Rn+1 of dimension n,
called the tangent hyperplane. A vector v is perpendicular to a hypersurface S
at a particular point p ∈ S if v is perpendicular to all of the tangent vectors
to S at p. An orientation of a hypersurface is a continuous nowhere vanishing
vector field n of unit vectors perpendicular to the hypersurface. By the implicit
function theorem, if f is a Ck function and we let S be the set of points x at
which both f(x) = 0 and df(x) 6= 0, then S is a Ck hypersurface; moreover S
is orientable, since we can take n = df/ ‖df‖. The hypersurfaces of interest to
us will be boundaries of domains. The boundary of a domain is orientable just
when it is C1.

Theorem 1.8 (Divergence theorem). If D is a domain with C1 boundary and
X is a compactly supported C1 vector field defined on D̄ then∫

∂D

〈X,n〉 =
∫
D

∑
i

∂iXi.

The left hand side is not mysterious: it measures how much X tends to stick
out of the boundary of D. The right hand side is mysterious.

Weak convergence

A Cauchy sequence in a metric space X is a sequence x1, x2, . . . so that, no
matter how close I want the elements of the sequence to be to each other, if I look
out far enough down the sequence, any two of the elements will be no more than



Weak convergence 9

that close to each other. A metric space is complete if every Cauchy sequence
converges. A Banach space is a normed vector space X which is complete,
measuring distance from x to y as ‖x− y‖. All of the spaces Lp(U) on any
open or closed set U ⊂ Rn are Banach spaces. A sequence x1, x2, · · · ∈ X in a
normed vector space converges weakly to an element x ∈ X (called its weak limit
if, for any continuous linear function f : X → R, the numbers f (x1) , f (x2) , . . .
converge to f(x).

1.11 A weakly convergent sequence x1, x2, · · · ∈ X in a normed vector space
has a unique weak limit x, and there is a bound on the norms ‖x1‖ , ‖x2‖ , . . .,
and ‖x‖ ≤ lim inf ‖xj‖.

Theorem 1.9. For any measureable subset X ⊂ Rn and any 1 < p <∞, every
bounded sequence in Lp(X) has a weakly convergent subsequence.

The idea of the proof: pick a bounded sequence h1, h2, · · · ∈ Lp(X). Fix
any one continuous linear function f : Lp(X)→ R; it is bounded on h1, h2, . . .,
so you can pick a subsequence so that the values f (h1) , f (h2) , . . . converge.
Once you have done this for one linear function f , you can repeat the process
for any finite number of such functions. With a little analysis, you can even do
it for an infinite sequence of continuous linear functions f1, f2, . . . : Lp(X)→ R.
But all continuous linear functions on Lp(X) have the form f (h) =

∫
hḡ for a

unique g ∈ Lq(Rn), and there is a countable dense subset of Lq(Rn).





Chapter 2

Approximation and Convolution

Convolution is a process of “smearing out” a function, which is often used to make
smooth approximations to rough functions. We don’t have a clear intuition for rough
functions. To prove a statement about rough functions, often we only need to prove it
for smooth functions and invoke some type of continuity argument.

Approximating integrable functions

Theorem 2.1. Every Riemann integrable function on any compact set is
integrable with integral equal to the limit of Riemann sums.

Proof. Take a Riemann integrable function f on a compact set K ⊂ Rn. Cover

K in a grid of boxes like: For each point x ∈ K, let L(x) to be
the infimum of f(y) over all y in the grid box containing x, and U(x) be the
supremum. So L < f < U . By definition, L and U are integrable functions,
and

∫
L is the lower Riemann sum for this grid, and

∫
U the upper. Since f is

Riemann integrable, L and U pointwise approach f as we refine the grid to a
finer mesh. Clearly L increases as we refine the grid, and U decreases, so we
can apply the dominated convergence theorem to prove that f is integrable
with

∫
f the limit of the Riemann sums.

−3 −2 −1 0 1 2 3
0

0.5

1

-3 -2 -1 0 1 2 3

A set X and its indicator
function 1X

The indicator function of a set X is the function

1X(x) =
{

1 if x ∈ X,
0 otherwise.

A New York function is a finite sum
∑
aj1Xj where the sets Xj are boxes.

Lemma 2.2. Pick p with 1 ≤ p <∞ and an open set U ⊂ Rn. Every function
f ∈ Lp(U) is the limit of (1) a sequence of test functions supported in U , and
(2) a sequence of New York functions supported in U . In other words, the test
functions are dense in Lp(U), as are the New York functions.

An infinitely wide hori-
zontal strip U and var-
ious compact sets Xk
“approximating” it

Proof. The set of test functions is a linear subspace of Lp. Therefore the set of
Lp functions which arise as limits of such functions is also a linear subspace.
(Clearly the same argument works for New York functions.) Take any f ∈ Lp.

11
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We can assume that f is real-valued. Pick a point x0 ∈ U . For each integer
k > 0, let Xk be the set of points x ∈ U so that d (x, x0) ≤ k and so that
d (x, ∂U) ≥ 1/k. Clearly Xk is compact. Let

fk(x) =
{
f(x) if x ∈ Xk,

0 otherwise.

By the dominated convergence theorem, fk → f in Lp. So it suffices to prove
the theorem for functions f ∈ Lp with compact support, so assume f has
compact support.

Next we make a discrete approximation to f , dividing a large range of values
−k2 < y < k2 into small steps of size 1/k and rounding off f to the nearest y
value that lies at one of those steps. By btc denote the largest integer less than
or equal to a real number t. Let

fk(x) =
{
bkf(x)c

k , if |f(x)| < k2,

0 otherwise.

a finite linear combination of indicator functions of bounded measureable sets.
Clearly |fk − f |p ≤ |f |p, so by the dominated convergence theorem, fk → f
in Lp-norm. It suffices to prove the result for indicator functions of bounded
measureable sets f = 1X .

Let W be a open set containing X so that the measure of the difference is
as small as we like. Since X is bounded, we can take W to be bounded. Then
clearly 1W → 1X in Lp as the measure of the difference gets small. So it suffices
to prove the result for indicator functions of bounded open sets f = 1W .

Alternatively, let W be an open set containing Rn−X so that the difference
has measure as small as we like, and let Y = Rn −W . So Y ⊂ X is a closed
set and X − Y has measure as small as we like. As we make that measure
small, 1Y → 1X in Lp. So it suffices to prove the result for f = 1Y the indicator
function of a compact set.

Take a smooth function h : R → R so that h(x) = 1 if x ≤ 0 and h(x) = 0 if
x ≥ 1. Let d(x) be the distance from x to Y and let

fk(x) = h (kd(x)) ;

|fk − f |p goes to zero pointwise and is bounded by |f1|p so by dominated
convergence ‖fk − f‖L1 → 0. So test functions are dense in Lp.

As for New York functions, as above it suffices to prove the result for
indicator functions of bounded open sets, say f = 1U . Draw a very large box,
and cut it into a very fine mesh. Let X be the union of all of the grid boxes
of this mesh that live entirely inside U . Every point of U lies in some such a
grid box, for some fine enough mesh inscribed into a large enough box, so as
we refine the mesh and make the box larger, 1X will approach 1U pointwise,
and so in Lp (by the dominated convergence theorem).
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2.1 Suppose that U,U∗ ⊂ Rn are open sets and F : U → U∗ is a C1 map with
C1 inverse. For any f ∈ L1(U∗), prove that x 7→ f(F (x)) |detF ′(x)| ∈ L1(U)
and Prove that ∫

U

f(F (x)) |detF ′(x)| =
∫
U∗
f.

Hint: you already know this is true for continuous functions with compact
support, using the Riemann integral, from your earlier analysis courses.

Theorem 2.3 (Continuity of translation). Suppose that 1 ≤ p <∞. For any
f ∈ Lp, ‖f(x+ y)− f(x)‖Lp → 0 as y → 0.

Proof. The set of functions f for which this result is true is a linear subspace of
Lp: just imagine adding or scaling. Suppose that the result is true for f in some
dense linear subspace of Lp. Then for any f , take some sequence f1, f2, . . . in
that subspace so that fj → f in Lp and

‖f(x+ y)− f(x)‖Lp
≤ ‖f(x+ y)− fj(x+ y)‖Lp + ‖fj(x+ y)− fj(x)‖Lp + ‖fj(x)− f(x)‖Lp ;

take j → ∞. So it suffices to prove the result for the indicator function of a
box, for which it is easy to picture and check explicitly.

Convolution

If f ∈ Lp(Rn) and g ∈ Lq(Rn) with 1
p + 1

q = 0, let

f ∗g =
∫
Rn
f(y)g(x− y) dy.

The function g appears in the integral translated, and Lebesgue norms are
translation invariant, so by Hölder’s inequality

‖f ∗g‖L∞ ≤ ‖f‖Lp ‖g‖Lq .

Similarly if we let p = 1 and q =∞. Imagine listening to a conversation through
a wall. We let f(t) be the sound (i.e. density of air approaching the wall, at time
t). Then the sound you hear through the wall is not f(t), but some muffling of
f(t), because the sound bounces around inside the wall for a little while. So at
time t you hear an average of values of f at times earlier than t, say∫

R
f(s)g(t− s) ds,

where g(t − s) represents how much signal gets through at time t from the
sound made at time s. So g(t) represents how much signal gets through at time
t from the sound made at time s = 0. This f ∗g represents f “smeared out” by
averaging against g.
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Lemma 2.4. f ∗g = g∗f

Proof. Change variable by z = x−y:
∫
Rn f(y)g(x−y) dy =

∫
Rn f(x− z)g(z) dz.

By the dominated convergence theorem, if f is continuous and bounded and
g ∈ L1 then f ∗g is continuous.

2.2 If g is C1 with bounded derivative and f ∈ L1, prove that the dominated
convergence theorem allows us to differentiate under the integral sign to reveal
that

∂i (f ∗g) = f ∗∂ig.

Similarly, if g ∈ C∞ and all derivatives of g are bounded, then

f ∗∂ag = ∂af ∗g,

so that f ∗g ∈ C∞ with all derivatives bounded.

Lemma 2.5. If f, g ∈ L1 then f ∗g ∈ L1 and ‖f ∗g‖L1 ≤ ‖f‖L1 ‖g‖L1 .

Proof. By Fubini’s theorem (theorem 1.3),

‖f ∗g‖L1 ≤
∫ (∫

|f(y)g(x− y)| dy
)
dx,

=
∫ (∫

|f(y)g(x− y)| dx
)
dy,

=
∫
|f(y)|

(∫
|g(x− y)| dx

)
dy,

=
∫
|f(y)| ‖g‖L1 dy,

= ‖f‖L1 ‖g‖L1 .

2.3 Suppose that f, g, h ∈ L1. Let k(x) = h̄(−x). Use Fubini’s theorem to
prove that 〈f ∗h, g〉 = 〈f, k∗g〉.

2.4 Prove that f and g are integrable, then
∫
f ∗g =

∫
f
∫
g.

Theorem 2.6 (Hausdorff–Young inequality). If f ∈ L1 and g ∈ Lp, then
f ∗g ∈ Lp and ‖f ∗g‖Lp ≤ ‖f‖L1 ‖g‖Lp .

Proof. Since |f ∗g| ≤ |f |∗|g|, we can assume that f and g are nonnegative. We
can also assume that p > 1, since the result for p = 1 is our previous lemma. If
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p =∞,

f ∗g(x) ≤
∫
‖f‖L∞ g(x− y) dy,

= ‖f‖L∞
∫
g(x− y) dy,

= ‖f‖L∞ ‖g‖L1 .

So we can assume that 1 < p <∞. Take q so that 1
p + 1

q = 1. Then

f ∗g(x) =
∫
f(y) g(x− y)1/p g(x− y)1/q dy,

to which we apply Hölder’s inequality

≤
(∫

f(y)p g(x− y) dy,
)1/p(∫

g(x− y) dy,
)1/q

,

= ((fp)∗g) (x)1/p ‖g‖1/q
L1 .

In this series of inequalities, take the first expression and the last each to the
power of p:

(f ∗g(x))p ≤ fp∗g(x) ‖g‖p/qL1 .

Integrate

‖f ∗g‖pLp ≤‖g‖
p/q
L1

∫
fp∗g,

= ‖g‖p/qL1

∫
fp
∫
g

= ‖f‖pLp ‖g‖
1+p/q
L1 ,

= ‖f‖pLp ‖g‖
p
L1 .

Take p-th roots.

Approximation of the identity

Theorem 2.7. Suppose that f ∈ L1(Rn) and that
∫
f = 1. Let fε(x) =

ε−nf
(
x
ε

)
. For any p with 1 ≤ p <∞, and for any g ∈ Lp(Rn), let gε = fε∗g.

Then gε → g in Lp as ε→ 0. The same is true in L∞ if g is continuous.

Proof. Suppose that 1
p + 1

q = 1 and as usual if p = ∞ then set q = 1, and
if p = 1 then set q = ∞. Writing f as a difference of nonnegative integrable
functions, it suffices to prove the result for f ≥ 0. Start with 1 ≤ p < ∞.
Clearly

g(x) =
∫
g(x)fε(y) dy.
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Therefore

|gε(x)− g(x)| =
∣∣∣∣∫ (g(x− y)− g(x))fε(y) dy

∣∣∣∣ ,
=
∣∣∣∣∫ (g(x− εy)− g(x))f(y) dy

∣∣∣∣ ,
and factoring f into two pieces (and if p = 1, let 1/q = 0)

≤
∫
|g(x− εy)− g(x)| f(y)1/pf(y)1/q dy.

Apply Hölder’s inequality, and then raise both sides to the p-th power and
integrate:∫

|gε − g|p ≤
∫ {(∫

|g(x− εy)− g(x)|p f(y) dy
)(∫

f(y) dy
)p/q}

dx,

=
∫∫
|g(x− εy)− g(x)|p f(y) dy dx,

=
∫∫
|g(x− εy)− g(x)|p dxf(y) dy.

But
∫
|g(x− εy)− g(x)|p dx → 0 pointwise in y as ε → 0 by continuity of

translation (theorem 2.3 on page 13), and is bounded by 2 ‖g‖pLp as a function
of y, so the dominated convergence theorem says that

∫
|gε − g|p → 0.

Next, try p =∞, and assume g continuous. As above,

|gε(x)− g(x)| =
∫
|g(x− εy)− g(x)| f(y) dy.

Pick a large closed ball B̄. The part of the integral occuring over B̄ gets small,
because g(x− εy) converges to g uniformly on B̄ by continuity. The part of the
integral away from there gets small because g is uniformly bounded, and f is
integrable so has small integral on Rn − B̄ for large enough B̄.

The Gaussian is the function f(x) = e−‖x‖
2
, also called a bell curve. Any

translate or rescaling of this function will also be called a Gaussian, i.e. the
functions ae−b‖x−x0‖2 , for b > 0 and x0 ∈ Rn.

Lemma 2.8. Every h ∈ Lp(Rn), if 1 ≤ p < ∞, is the limit of a sequence of
functions h1, h2, . . . where each hj is a finite sum of Gaussians. In other words,
the Gaussians span a dense linear subspace of Lp.

Proof. Rescale a Gaussian f to have
∫
f = 1. We can assume that h is a test

function, because such functions are dense in Lp by lemma 2.2 on page 11.
Then for any h ∈ Lp, fε∗h→ h in Lp. This convolution is

fε∗h =
∫
fε(x− y)h(y) dy.



Approximation of the identity 17

Since h is continuous with compact support, we can approximate this integral
with a Riemann sum: a finite sum of Gaussians.

Theorem 2.9. Suppose that U ⊂ Rn is an open set and g ∈ Lploc (U). Extend
g to be 0 outside of U , so g ∈ Lp(Rn). Let f be a test function with

∫
f = 1

vanishing outside the unit ball, let fε(x) = ε−nf(x/ε), and let

gε = fε∗g.

Then gε is C∞; if U is bounded then gε is a test function. Moreover gε → g in
Lploc (U) as ε→ 0+.

Proof. The proof is the same as theorem 2.7 on page 15 above.

2.5 Suppose that K ⊂ Rn is a compact set and U ⊂ Rn is an open set
containing K. Prove that there is a test function f supported in U so that
0 ≤ f ≤ 1 and f = 1 at every point of K.





Chapter 3

Sobolev spaces

Sobolev spaces are spaces of functions whose derivatives up to some order live in Lp.
They are the right place to look for solutions to many differential equations.

Weak derivatives

Many functions don’t have derivatives at some points. We need a weaker notion
of derivative, which pays less attention to poorly behaved points. First, suppose
we have a differentiable function: if f is a C1 function on R, then for any test
function φ, ∫ ∞

−∞
f ′φ = −

∫ ∞
−∞

fφ′,

by integration by parts, and using the fact that φ vanishes outside some interval.
Similarly, if f is a C1 function on Rn, then∫

(∂if)φ = −
∫
f (∂iφ)

and more generally if f is Ck, then∫
(∂af)φ = (−1)|a|

∫
f∂aφ.

−1 0 1
0

0.5

1

Consider the function f(x) = |x|α, for some positive constant α, 0 < α < 1.
Then f(x) is not differentiable at x = 0 (the graph of f is a cusp), but still if
we differentiate away from 0, we find

f ′(x) = α sgn(x)|x|α−1.

Note that f ′ is a locally integrable function, but if α < 1 then f ′ has an infinite
spike at x = 0.

−1 0 1

−1
0
1

Nevertheless, it is easy to check that integration by parts works fine:∫ ∞
−∞

f ′φ = −
∫ ∞
−∞

fφ′,

for any test function φ.

19
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f(x) =
∑
k
| sin(kx)|α

k!

We say that a locally integrable function g is a weak derivative of a locally
integrable function f , symbollically g = ∂af , if∫

f∂aφ = (−1)a
∫
gφ,

for any test function φ.

3.1 Prove that f only has one such weak derivative ∂af , i.e. any two locally
integrable functions g and h so that

∫
g∂aφ =

∫
h∂aφ for every test function φ

must satisfy g = h (except perhaps on a set of measure zero, but of course we
identify such functions anyway).

Derivatives in the usual sense will be called strong derivatives. A more
serious example: pick a constant 0 < α < 1 and let

f(x) =
∑
k

| sin(kx)|α

k! .

One easily checks that f(x) has weak derivative

f ′(x) =
∑
k

sgn(x) cos (kx) | sin(kx)|α−1

(k − 1)! .

This function f ′(x) has a spike going to ±∞ at every point x where x is any
rational multiple of π, but f ′ is well defined away from those points and locally
integrable. Those points form a dense but measure zero set. A picture of f ′
looks like spikes going to ±∞ all over the place, and f is not differentiable (in
the usual, strong, sense) anywhere.
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2 | sin(x/2)|α

−10 −5 0 5 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
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3.2 Prove that the Heaviside function

f(x) =
{

0, if x ≤ 0 ,
1, if x > 0,

does not have a weak derivative in L1
loc.

3.3 Let f1 : [0, 1] → R be the piecewise linear function with values f(0) =
1, f(1/3) = 1, f(1/2) = 0, f(2/3) = 1, f(1) = 1 and linear in between each of
these points. Inductively, let

fk+1(x) =


fk(3x), if 0 ≤ x ≤ 1/3,
fk(x), if 1/3 ≤ x ≤ 2/3,
fk (3 (x− 2/3)) , if 2/3 ≤ x ≤ 1.

Draw f1, f2, f3. Let f(x) = limk→∞ fk(x). Prove that f(x) has a weak deriva-
tive in L∞([0, 1]) which is discontinuous on an uncountable set of points.

Weak derivatives sound complicated. Avoid them: first prove that smooth
functions are dense in whatever function space we want to work in, and from
then on we only need to prove theorems about smooth functions, using usual
derivatives, and (if the statements in the theorems behave well under taking
limits) the proof is done for the whole function space.

Theorem 3.1. Suppose that U ⊂ Rn is an open set. Suppose that g ∈ L1
loc (U)

has a weak derivative ∂ag ∈ L1
locU . Suppose that f is a test function with∫

f = 1 and let fε(x) = ε−nf(x/ε). Then fε ∗g ∈ C∞(U) and ∂a (fε∗g) =
(∂afε)∗g = fε∗∂ag. As ε → 0+, ∂a (fε∗g) → ∂ag in L1

loc (U). In particular,
smooth functions are dense in the space of locally integrable functions with any
number of prescribed weak derivatives.

Proof. Theorem 2.9 on page 17 tells us that fε∗g ∈ C∞(U) . Differentiation
under the integral sign shows that ∂a(fε∗g) = (∂afε)∗g. Note that ∂yif(x−y) =
−∂xif(x− y). By induction, ∂ayf(x− y) = (−1)|a|∂axf(x− y). Therefore

(∂afε)∗g(x) =
∫
∂axfε(x− y)g(y) dy,

=(−1)|a|
∫
∂ayfε(x− y)g(y) dy,

=
∫
fε(x− y)∂ayg(y) dy,

=fε∗∂ag.

Theorem 2.9 on page 17 now applies to fε∗∂ag.

We want the freedom to approach a function with weak derivative along a
sequence of smooth functions, not necessarily just by convolution.
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Theorem 3.2. Suppose that f1, f2, . . . is a sequence of smooth functions con-
verging in L1

loc (U) and that ∂afj also converges in L1
loc (U). Then limj ∂

afj =
∂a limj fj .

Proof. Let f = limj fj and g = limj ∂
afj . For any test function φ, the compact

support of φ ensures that φg and φ∂afj lie in L1(U) , and the Hölder inequality
applied to

∫
φ (g − ∂afj) ensures that∫

φg = lim
j

∫
φ (∂afj) ,

=(−1)|a| lim
j

∫
fj∂

aφ,

but then Hölder again gives us

=(−1)|a|
∫
f∂aφ.

Sobolev spaces

If U ⊂ Rn is an open set, the Sobolev space Lpk(U) to be the set of all functions
f ∈ Lp so that f has weak derivative ∂af ∈ Lp for any a with |a| ≤ k. The
Sobolev norm of a function f ∈ Lpk(U) is

‖f‖Lpk =

∑
|a|≤k

‖∂af‖pLp

1/p

.

Clearly · · · ⊂ Lp2 ⊂ Lp1 ⊂ Lp0 = Lp. If U is a bounded open set, then q ≥ p
implies Lq(U) ⊂ Lp(U), and so as we raise either p or k, Lpk(U) gets smaller, a
more restrictive Sobolev space. It follows immediately from the completeness
of the Lp spaces and the Hölder inequality that each Sobolev space is complete
in its norm.

3.4 For each real number α, what Sobolev spaces does |x|αe−x2 belong to?

In the study of partial differential equations we are most often faced with
a sequence of functions in a Sobolev space, which might only converge to a
function in another, less restrictive Sobolev space. The two main theorems
about Sobolev spaces tells us (1) when a Sobolev function is continuous (or more
generally, when it is Ck) and (2) when a sequence of functions in one Sobolev
space must converge to a function, but perhaps in different, less restrictive
Sobolev space.

3.5 Use theorem 1.9 on page 9 to prove that every bounded sequence in Lpk(U)
has a convergent subsequence.
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Density of the test functions

Lemma 3.3. If 1 ≤ p <∞ then C∞ (Rn) ∩ Lpk(Rn) is dense in Lpk(Rn) .

Proof. Take a function g ∈ Lpk(Rn) and a test function f with
∫
f = 1. Let

fε(x) = ε−nf(x/ε) and gε = fε∗g. Theorem 3.1 on page 22 shows that gε is
smooth and, as ε→ 0, the various derivatives of gε will converge in L1

loc to the
corresponding weak derivatives of g. Theorem 2.7 on page 15 proves that they
converge in Lp.

Theorem 3.4. If 1 ≤ p <∞ then the test functions are dense in Lpk(Rn) .

Proof. By lemma 3.3, it suffices to prove density of the test functions among
C∞(Rn) ∩ Lpk(Rn) . Pick a smooth function g ∈ C∞(Rn) ∩ Lpk(Rn) and a test
function f so that 0 ≤ f ≤ 1 and f equals 1 near the origin. Let fε(x) = f(εx)
and gε = fεg. So gε(x) = g(x) in the ball of radius ε−1. By the dominated
convergence theorem, gε → g in Lp. By the product rule,

∂igε = fε∂ig + ε∂if(εx)g.

As ε→ 0, fε∂ig → ∂ig by the dominated convergence theorem. We can apply
Hölder’s inequality to ε∂if(εx)g, because the derivatives of f have the same
height no matter what ε, so this vanishes with ε. By induction, the same tricks
work for derivatives of all orders.

3.6 Prove that the smooth functions are not dense in the Hölder space C0,1 (R)
by: (1) showing that f(x) = |x| belongs to this space, but that (2) if g is any
function belonging to this space and g is differentiable at 0, say with g′(0) ≥ 0,
then

|(f(x) + g(x))− (f(0) + g(0))|
|x|

has limit as x→ 0− given by g′(0) + 1, while if g′(0) ≤ 0 then as x→ 0+ it has
limit |g′(0)|+ 1. Carry out a similar trick to prove that smooth functions are
not dense in C0,α for 0 < α < 1.

Sensitivity to small bumps and high frequencies
−1 0 1

0

0.5

1

f(x)
f(x/ε)

Pick any function f and rescale it: define fε(x) = f(x/ε). More generally,
suppose that we have some operation Tε taking some functions f to functions
Tεf , where the operation depends on some parameters ε in some space Rk.
Write Tεf as fε, a parameterized family of functions. Suppose that X is some
space of functions, equipped with some norm. Pick some f ∈ X for which fε is
defined and lies in X for arbitrarily small values of ε. Imagine that we find that

‖fε‖X = a(f) + o (1)
|ε|β

as |ε| → 0.
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Suppose that this equation persists with the same β for any such f , and there
is some f for which a(f) 6= 0. The number β is the sensitivity to the operation
Tε. Some function spaces X won’t have a defined sensitivity to that operation,
because we can’t carry out the operation on any functions and still stay in X,
or because there is no such number β.

If Tεf(x) = f(x/ε), the associated sensitivity is the sensitivity to small
bumps of X, which we denote by σX. By the chain rule, ∂ifε(x) = ∂if(εx)/ε,
derivatives scale by factors of ε−1: σCk = k. Similarly,

‖fε‖Ck,α =
‖f‖Ck,α + o (1)

εk+α

so σCk,α = k + α. Lets find the sensitivity to small bumps of each Sobolev
space. Our integrands are

|∂afε(x)|p = |∂
af(x/ε)|p

εp|a|
.

Integrating, when we rescale x we rescale all of Rn, so rescale volumes by εn:∫
|∂afε(x)|p =

∫
|∂af |p

εp|a|−n
.

Taking p-th roots, (∫
|∂afε(x)|p

)1/p
=
(∫
|∂af(x)|

)1/p

ε|a|−n/p
.

As ε→ 0, ignoring the lower order terms, we get

‖fε‖Lpk =
‖f‖Lpk + o (1)

εk−n/p
.

So σLpk(Rn) = k − n
p . This roughly tells us to expect that functions in Lpk have

k weak derivatives but only k − n
p strong derivatives.

−1 0 1
0

0.5

1

f(x)
f(εx)

Pick any function f and rescale it the other way: define Tεf(x) = f(εx).
For functions f defined in all of Rn, this defines a sensitivity. The associated
sensitivity is the sensitivity to large humps of X, which we denote by λX. By
the chain rule, ∂ifε(x) = ε∂if(εx), derivatives scale by factors of ε, so the
zeroth derivative contributes the most: λCk = 0. Similarly,

‖fε‖Ck,α = εα (‖f‖Ck,α + o (1))

so λCk,α = −α.

3.7 Explain why, in any bounded domain containing the origin, the “sensitivity
to large humps” doesn’t actually define a sensitivity on Sobolev spaces. Hint:
try the bounded domain 0 ≤ x ≤ 1 in R. Nonetheless we persist to use the
notation λX even in bounded domains.
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But λLpk(Rn) = n
p , so we use the notation λX to mean n

p for any Sobolev
space X = Lpk.

If we pick a vector ξ ∈ Rn and let

fε(x) = e2πi〈ξ,x〉/εf(x),

the associated sensitivity is the sensitivity to high frequencies of X, which we
denote γ = φX.

3.8 Prove for functions in Rn:

σ λ φ

Lpk k − n
p

n
p k

Ck k 0 k

Ck,α k + α −α k

and consequently σ + λ = φ for all of these function spaces.

If X and Y are function spaces (i.e. vector spaces of functions), equipped
with norms, X is embedded in Y if X is a linear subspace of Y and that there is
a constant C so that, for every f ∈ X, ‖f‖Y ≤ C ‖f‖X . The minimum possible
value of C is the best constant of the embedding. If furthermore every bounded
sequence in X has a convergent subsequence in Y , we say that X ⊂ Y is a
compactly embedded subspace.

3.9 Prove L∞([0, 1]) ⊂ L1([0, 1]) is embedded, with best constant C = 1.

3.10 If X ⊂ Rn is a set of finite volume, use the Hölder inequality to prove
that Lq(X) ⊂ Lp(X) is embedded, for 1 ≤ p ≤ q. Find the best constant in
terms of the volume of X.

We expect that if Y is less sensitive than X, then Y tolerates more functions
than X does, i.e. is willing to contain more functions.

Lemma 3.5. If X ⊂ Y is embedded and both of X and Y have sensitivities to
some family of operations Tε (for example: small bumps, large humps or high
frequencies), then the sensitivities of Y are less than or equal to those of X.

Proof. If σX < σY , then we can scale ε→ 0 and the ratio ‖fε‖Y / ‖fε‖X grows
like a negative power of ε. Embedding of X ⊂ Y says that ‖fε‖Y ≤ C ‖fε‖X ,
i.e. ‖fε‖Y / ‖fε‖X ≤ C, not like a negative power of ε. The same argument
works for the other sensitivities.

In a bounded domain, functions in Lp, as we increase p, are more tightly
controlled with thinner spikes. Each Lp space is embedded in every Lp−ε space
for ε > 0: the smaller p gets, the wider the spikes can be.
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Imagine that we want to see if some Sobolev space X = Lp0
k0

(U) is embedded
inside some other Sobolev space Y = Lp1

k1
(U), or Hölder space Y = Ck1,α1

(
Ū
)
.

Roughly speaking (although this is not quite true), if the sensitivities of X are
bigger than those of Y , then we expect that X is embedded in Y . If Ū is a
bounded domain, and if we are willing to decrease k0 to some smaller value
k1, we might be able to increase p0 to some slightly larger value p1 and still
obtain an embedding. Note that this goes against the grain, since increasing p0
to p1 is not an embedding of Lp spaces. In other words, we trade off: we lose
derivatives (k0 > k1) but gain control on the spikes (p0 < p1).

Theorem 3.6 (The Sobolev embedding theorem). Suppose that Ū ⊂ Rn is a
compact domain with C1 boundary, and X is a Sobolev space with λX > 0 and
Y is a Sobolev or Hölder space or a space of functions with bounded derivatives,
i.e. Lpk(U) with 1 ≤ p ≤ ∞ or Ck,α

(
Ū
)
with 0 < α < 1 or Ckb

(
Ū
)
. If the

sensitivities of Y are all less than or equal to those of X and
1. λY ≥ 0 and

a) σX > φY or
b) σX = φY and λX = n or
c) λY > 0 and

i. σX = φY or
ii. φX > φY or
iii. λX = n

or
2. λY < 0 and λX > 0 and σX > φY > σX − 1

then X ⊂ Y is an embedded subspace.

Theorem 3.7 (The Kondrashov–Rellich compactness theorem). If the ≥ signs
governing the sensitivities in the Sobolev embedding theorem are > signs, then
the embedding is compact.

3.11 Suppose that Lp0
k0

(U) ⊂ Lp1
k1

(U) is an embedding; prove that Lp0
k0+1(U) ⊂

Lp1
k1+1(U) is too.

3.12 Suppose that Lp0
k0

(U) ⊂ Ck1,α1(U) is an embedding; prove that Lp0
k0+1(U) ⊂

Ck1+1,α1(U) is too.

The fundamental theorem of calculus in one variable

Lemma 3.8. Suppose that f ∈ L1
1(R). Then f is bounded and continuous and

f(x)→ 0 as x→∞ and as x→ −∞. Moreover, ‖f‖C0 ≤ ‖f‖L1 ≤ ‖f‖L1
1
, so

L1
1(R) ⊂ C0

b (R) is an embedded subspace.

Proof. Assume that f is a test function. By the fundamental theorem of calculus

f (x1)− f (x0) =
∫ x1

x0

f ′(u) du.
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Therefore

|f (x1)− f (x0)| ≤
∫ x1

x0

|f ′(u)| du,

≤
∫ ∞
−∞
|f ′(u)| du,

= ‖f ′‖L1 .

If we take x0 outside of the support of f , we find |f(x)| ≤ ‖f ′‖L1 . Taking
supremum,

‖f‖C0 ≤ ‖f ′‖L1 ≤ ‖f‖L1 + ‖f ′‖L1 = ‖f‖L1
1
.

Take limits of test functions; we leave the reader to prove that the test functions
are dense among the bounded continuous functions that vanish as x→ ±∞.

3.13 The proof above does not provide the best constant. Let g = f ′ and let
g+ = min(0, g) and g− = min(0,−g). Then g = g+ − g−. Assuming f has
compact support, integrate g to show that

∫
g+ =

∫
g− = 1

2
∫
g+ +g− = 1

2
∫
|f ′|.

Show then that ‖f‖C0 ≤ 1
2 ‖f

′‖L1 .

3.14 Prove that Lk+1
1 (R) ⊂ Ckb (R) is an embedded subspace and that the first

k derivatives of any f ∈ Lk+1
1 (R) vanish at x = ±∞.
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Fourier Transforms

Distributions are like functions but with mild singularities, sometimes singular enough
that they can only be represented as “limiting behaviours” of functions. The Fourier
transform of a function f is another function f̂ , which tells us how f is “built up” as
a “sum” of sine and cosine waves of various frequencies.

Schwartz functions

A function f is rapidly decreasing if xaf is bounded for any a. A Schwartz
function is a function f so that all of its derivatives ∂af are rapidly decreasing.
Let S be the set of Schwartz functions. Clearly C∞c ⊂ S . The sum, difference
and product of Schwartz functions is Schwartz. The product of a polynomial
with a Schwartz function is Schwartz. If f is Schwartz, then 1− ef , sin f and
log(1 + |f |2) are Schwartz, by the chain rule and l’Hôpital’s rule.

4.1 Prove that e−|x|2 ∈ S .

4.2 Give an example of a function f ∈ S so that e|x|cf is unbounded for any
c > 0.

Let
‖f‖a,b = sup

x

∣∣xa∂bf(x)
∣∣ .

Say that a sequence of Schwartz functions f1, f2, . . . converges to a Schwartz
function if and only if, for any a and b, ‖f − fj‖a,b → 0 as j →∞.

Lemma 4.1. If f, g ∈ S and f(0) = 1 then

f(δx)g(x)→ g(x) as δ → 0.

Proof. Fix a positive integer N . Picking a large enough box (or ball) B so that,
for any x outside B, as long as |a| < N and |b| < N , we can ensure that all
of the expressions

∣∣xa∂bg(x)
∣∣ are as small as we like. If we now make δ small

enough, then f(δx)− 1 is as small as we like inside the box B. Moreover, since
every derivative of f(δx)− 1 has some factor of δ in it, we can ensure that these
derivatives of order up to N are also as small as we like. Expanding out the
derivatives xa∂b((f(δx)− 1)g(x)) using the chain rule, we get one factor or the
other small throughout Rn.

29
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To ensure that sequences in S converge as needed, we employ the metric

d (f, g) =
∑
a,b

1
2|a|+|b|

‖f − g‖a,b
1 + ‖f − g‖a,b

.

Theorem 4.2. S is a complete metric space.

Proof. A Cauchy sequence f1, f2, . . . converges uniformly on any compact set,
with any number of derivatives, to some limit f . The fj have rapidly decaying
derivatives, so xa∂bfj is bounded, and so xa∂bf is similarly bounded on each
compact set. Moreover, xa∂b (f − fj) gets small on that compact set, so for x
in such a compact set∣∣xa∂b (f − fj)

∣∣ = lim
k→∞

∣∣xa∂b (fk − fj)
∣∣ ≤ lim

k→∞
‖fk − fj‖a,b .

But now make the compact set larger and larger, and you still get the same
small bound of ‖fk − fj‖,

‖f − fj‖a,b ≤ lim
k→∞

‖fk − fj‖a,b

and we can make this small by now making j get large.

Fourier transform

If f ∈ L1(Rn), the Fourier transform of f is the function f̂ : Rn → C defined
by

f̂(ξ) =
∫
Rn
f(x)e−2πi〈ξ,x〉,

=
〈
f, e2πi〈ξ,x〉

〉
.

The function e2πi〈ξ,x〉 = cos (2π 〈ξ, x〉) + i sin (2π 〈ξ, x〉) is a wave with ripples
going up and down in the direction of ξ, of frequency |ξ|. Any inner product
is a measure of how “correlated” or “sympathetic” two vectors are. So f̂ (ξ)
represents how much f is like a such a wave.

Lemma 4.3. The Fourier transform of any integrable function is bounded; to
be precise ∥∥∥f̂∥∥∥

L∞
= ‖f‖L1 .

Proof. The Hölder inequality gives∣∣∣f̂(ξ)
∣∣∣ ≤ ‖f‖L1

∥∥∥e−2πi〈ξ,x〉
∥∥∥
L∞

= ‖f‖L1 .
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Computing the Fourier transform of a Gaussian bell curve

4.3 Explain why ∫
R2
e−x

2−y2
=
(∫

R
e−x

2
)2

.

Use polar coordinates to compute the left hand side. Use this to compute∫
R e
−x2

dx. Use this to compute ∫
R
e−ax

2
.

Use this to compute ∫
Rn
e−

∑
ajx

2
j .

Suppose that A is a positive definite symmetric matrix; orthogonally diagonalize
to compute ∫

Rn
e−〈Ax,x〉.

To compute the Fourier transform of the function f(x) = e−x
2 , f : R → R,

write it as

f̂(ξ) =
∫
f(x)e−2πiξx,

=
∫
e−x

2−2πiξx,

=
∫
e−(x+πiξ)2−π2ξ2

,

= e−π
2ξ2
∫
e−(x+πiξ)2

.

This integral can be written as an integral along a contour in the complex plane,
say as ∫ ∞

−∞
e−(x+πiξ)2

dx =
∫
Γ

e−z
2
dz,

where Γ is the contour travelling along the line z = x+ πiξ, x going from −∞
to ∞. Γ

We can approximate this contour by picking a large number, say R, and
taking the same contour z = x+ πiξ but only for −R < x < R.

ΓRNote that for large values of |x|, the function e−z2 = e−x
2+2ixy+y2 decays

faster than exponentially, so there is very little error in replacing
∫
Γ
e−z

2
dz by∫

ΓR
e−z

2
dz. Consider the rectangle that has one side along ΓR and another

along the x-axis.
By Stokes’s theorem, or the Cauchy integral theorem, because e−z2 is

holomorphic inside the rectangle, its integral around the boundary vanishes.
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The left and right hand side of the rectangle sit in a region where, if we make
R large, e−z2 is smaller than an exponential decay in R, so we can make the
rectangle very wide and find that the integral along the bottom becomes nearly
the same as the integral along the top:

lim
R→∞

∫
ΓR

e−z
2
dz = lim

R→∞

∫ R

−R
e−x

2
dx,

=
√
π.

Therefore f̂(ξ) =
√
πe−π

2ξ2 : the Fourier transform of a Gaussian is another
Gaussian.

4.4 Compute the Fourier transform f̂ of the Gaussian function f : Rn → R,

f(x) = e−〈Ax,x〉,

for any positive definite symmetric matrix A. You should find

f̂(ξ) = πn/2
√

detA
e−π

2〈A−1ξ,ξ〉.

4.5 Use complex analysis to find Fourier transforms of some functions.

4.6 Compute

f(x) f̂(ξ)

e−|x| 2
1+4πξ2

sgn(x)e−|x| 4πiξ
1+4π2ξ2

max(0, 1− x) e2πiξ−1
2πiξ

(
1− 1

2πiξ

)

Properties of the Fourier transform on Schwartz functions

The Fourier transform F (f) = f̂ : L1 → L∞ is a complex linear map. Differen-
tiation under the integral sign shows that if f ∈ S then

∂j f̂(ξ) =
∫

(−2πixj) f(x)e−2πi〈ξ,x〉,

i.e. ∂jF (f) = F (−2πixjf) . Differentiating several times,

∂aF (f) = F ((−2πix)af) .

If p is any polynomial in n variables, say p(x) =
∑
cax

a, then write p(∂) to
mean p(∂) =

∑
ca∂

a. Then we have p(∂)F (f) = F (p (−2πix) f) . So F turns
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differentiation into polynomial multiplication. Similarly, if we differentiate,

F (∂jf) =
∫
∂jf(x)e−2πi〈ξ,x〉,

=
∫
∂j

(
f(x)e−2πi〈ξ,x〉

)
− f(x)∂je−2πi〈ξ,x〉,

to which we apply the fundamental theorem of calculus in one variable, since f
vanishes at xj =∞:

=−
∫
f(x)∂je−2πi〈ξ,x〉,

=−
∫
f(x) (−2πiξj)e−2πi〈ξ,x〉,

=2πiξjF (f) .

Differentiating several times, F (p(∂)f) = p (2πiξ) F (f) for any polynomial p.
Roughly speaking, the Fourier transform interchanges differentiation in x with
multiplication by a linear function in ξ and vice versa.

Lemma 4.4. The Fourier transform F : S → S is continuous.

Proof. We saw that F takes any integrable function to a bounded func-
tion. Consequently, the Fourier transform of a Schwartz function is Schwartz,
F : S → S . Differences of Schwartz functions small in the norm ‖f − g‖a,b
are taken to differences of Schwartz functions small in the norm

∥∥∥f̂ − ĝ∥∥∥
b,a

.

4.7 Prove that when we translate or dilate

F (f (x− x0)) =e−2πi〈ξ,x0〉F (f(x)) ,

F
(
e2πi〈ξ0,x〉f(x)

)
= f̂ (ξ − ξ0) ,

F (f (ax)) = f̂ (ξ/a)
|a|n

.

This last equation says that as f gets more “squished in”, f̂ gets more “spread
out” and vice versa.

Lemma 4.5. Gaussians are dense in the Schwartz functions.

Proof. Take a Gaussian f on Rn so that
∫
f = 1 and let fε(x) = ε−nf(x/ε).

By theorem 2.7 on page 15, fε∗g → g in L∞, i.e. uniformly. Since this holds
for any Schwartz function, it also holds for the Schwartz function xag, for any
a, and for the Schwartz function xa∂bg.
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The inverse Fourier transform

If g ∈ L1, think of g = g(ξ) as a function of ξ and let

ǧ(x) =
∫
g(ξ)e2πi〈ξ,x〉,

=
〈
g, e−2πi〈ξ,x〉

〉
,

= ĝ(−x).

Write the map g 7→ ǧ as F ∗.

4.8 Prove that if f(x) = e−〈Ax,x〉 is a Gaussian, then F ∗Ff = FF ∗f = f.

4.9 Suppose that f ∈ S satisfies F ∗Ff = FF ∗f = f. Prove that f (x− x0)
and f(x/a) also satisfy this equation, for any x0 ∈ Rn and a 6= 0.

Theorem 4.6. If f ∈ S then F ∗Ff = FF ∗f = f.

Proof. It suffices to prove the result for translated and scaled Gaussians by
lemma 4.5 on the previous page. You did this: problems 4.8 and 4.9.

Lemma 4.7. If f, g ∈ S then 〈
f̂ , g
〉

= 〈f, ǧ〉 .

Proof. 〈
f̂ , g
〉

=
∫
f̂(ξ)g(ξ) dξ,

=
∫ (∫

f(x)e−2πi〈ξ,x〉 dx

)
g(ξ) dξ,

apply Fubini’s theorem,

=
∫
f(x)

(∫
g(ξ)e2πi〈ξ,x〉 dx

)
dx

=
∫
f(x)(ǧ(x)) dx,

= 〈f, ǧ〉 .

4.10 If f, g ∈ S , prove that F (f ∗g) = f̂ ĝ.

4.11 Prove that multiplication f ∈ S , g ∈ S 7→ fg ∈ S is continuous. Use
this, and problem 4.10, to prove that convolution is continuous.
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Fourier transforms of L2 functions

Lemma 4.8. If f ∈ S then ‖Ff‖L2 = ‖f‖L2 . In other words, F : S → S
is a unitary linear map.

Proof.

‖Ff‖2
L2 = 〈Ff,Ff〉 ,

= 〈f,F ∗Ff〉 ,
= 〈f, f〉 ,
= ‖f‖2

L2 .

Theorem 4.9 (Plancherel). The Fourier transform admits a unique extension
from L1(Rn) ∩ L2(Rn) to a unitary linear map F : L2(Rn)→ L2(Rn).

Proof. We would like to define f̂ for any f ∈ L2 by writing f as a limit of a
sequence of Schwartz functions, say f1, f2, . . . converging to f , and then letting
f̂ = lim f̂j . Since L2 is a complete metric space, this limit will exist just
when f̂j is a Cauchy sequence, which follows from fj being Cauchy and F
being unitary. Suppose we pick a different sequence instead, say g1, g2, . . .; by
unitarity, f̂j − ĝk → 0. So f̂ is well defined. Taking the limit f̂j → f̂ , we easily
see that f 7→ f̂ is complex linear. For any Schwartz function g,〈

f̂ , g
〉

= lim
〈
f̂j , g

〉
= lim 〈fj , ĝ〉 = 〈f, ĝ〉 .

Since S ⊂ L2 is dense, this same equation holds for g ∈ L2. In particular,
taking g = f , we see that f 7→ f̂ is continuous.
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Distributions

Distributions are like functions but with mild singularities. They can be represented
as “limiting behaviours” of sequences of smooth functions.

Definition

All of the measurements we make of the world are subject, at minute scales,
to wave-like interferences. We can’t measure with perfect precision. Instead
of measuring the value f(x) of a function, we measure smeared out “local
averages”, i.e. integrals

∫
f(x)g(x) dx where g(x) might look like a little bump,

so that the integral averages together values of f near the center of that bump.
In this way, we can associate to each “bump function” g(x) such an integral. If
f is continuous, it is easy to prove that the map g 7→

∫
f(x)g(x) dx determines

f .
A distribution on an open set U ⊂ Rn is a linear map φ : C∞c (U) → C

which is continuous in the sense that if f1, f2, . . . converges to f in C∞c (U), and
all of the functions f1, f2, . . . have support contained in a single compact set,
then φ (f1) , φ (f2) , . . . converges to φ (f). For example, any locally integrable
function g defines a distribution φ(f) =

∫
fḡ; this is our most important

example, and we will then denote φ as g and say that φ is a locally integrable
function. Note that this would be silly if it were not true that any two locally
integrable functions defining the same distribution must actually be equal. In
imitation of this example, we usually write the expression φ(f) using a formal
integral notation, as

∫
fφ̄ or as 〈f, φ〉, as if φ were a locally integrable function.

More exotically, any hypersurface S defines a distribution φ(f) =
∫
S
f . The

Dirac delta function is the distribution δ(f) = f(0). We can also define a
distribution by φ(f) = ∂if(0). Weirdly, if c ∈ C and φ is a distribution, we
write cφ to mean the distribution so that 〈f, cφ〉 = c̄ 〈f, φ〉. This weird definition
ensures that the distributions defined by locally integrable functions have “inner
products” scaling correctly.

We proceed by following the analogy between locally integrable functions and
distributions. If φ were a locally integrable function, and h were a C∞ function,
then hφ would be also locally integrable, and we would have 〈f, hφ〉 =

〈
fh̄, φ

〉
,

for all f ∈ C∞c . Therefore we use this as a definition: if φ is a distribution
and h ∈ C∞, we define hφ to be the distribution so that 〈f, hφ〉 =

〈
fh̄, φ

〉
,

for all f ∈ C∞c . Similarly, if φ were are smooth function, integration by parts
would yield 0 =

∫
f∂iφ̄ +

∫
φ̄∂if since f = 0 outside a compact set inside

37
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our domain of integration, and therefore 〈f, ∂iφ〉 = −〈∂if, φ〉 . Again we use
this as a definition: if φ is a distribution, we denote by ∂iφ the distribution
defined by 〈f, ∂iφ〉 = −〈∂if, φ〉 for all f ∈ C∞c . Similarly we define ∂aφ to be
the distribution so that 〈f, ∂aφ〉 = (−1)|a| 〈∂af, φ〉 for all f ∈ C∞c . Any linear
differential operator L on smooth functions has the form

Lu =
∑

fa∂
au.

If the coefficients fa are smooth functions, we can define Lu for u a distribution
by the same formula. We can define the adjoint L∗ by

L∗u =
∑

f̄a(−1)|a|∂au,

and we find 〈Lf, g〉 = 〈f, L∗g〉 for f ∈ C∞c and g any distribution.
Distributions should be thought of as functions with mild singularities, not

very nasty. For example, the function 1/x on R is too singular to represent a
distribution, i.e. 〈f, 1/x〉 is not defined for f ∈ C∞c unless f(0) = 0. It comes
very close:

5.1 Prove that the expression

〈f, φ〉 = lim
ε→0

(∫ −ε
−∞

f(x)
x

dx+
∫ ∞
ε

f(x)
x

dx

)
is a distribution.

5.2 Prove that |x|α is a distribution on Rn as long as α+ n > 0 but not when
α+ n ≤ 0.

A distribution φ vanishes on an open set U if any test function f whose
support lies in U has 〈f, φ〉 = 0. For example, δ vanishes on any open ball not
containing the origin. The support of a distribution is the complement of the
union of the open sets on which it vanishes.

5.3 Prove that the union of the open sets on which a distribution vanishes is
an open set on which it vanishes.

Let Rf(x) = f̄(−x). By problem 2.3 on page 14, 〈f ∗h, g〉 = 〈f,Rh∗g〉
if f and g are test functions and h ∈ L1. Therefore if φ is a distribution
and h is a test function, we define h∗φ = φ∗h to mean the distribution
〈f, h∗φ〉 = 〈Rh∗f, φ〉 .

5.4 Prove that ∂a (h∗φ) = (∂ah)∗φ = h∗(∂aφ) for any distribution φ and test
function h.

Lemma 5.1. If φ is a distribution and f a test function, then f∗φ is a smooth
function given by

f ∗φ(x) =
∫
f(x− y)φ(y) dy,

where the right hand side is not actually an integral, but only a formal expression
which means that we apply the distribution φ̄(y) to the function f(x− y).
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Proof. As we vary x, f(x− y) varies uniformly with any number of derivatives,
and therefore our formal integral

I(x) =
∫
f(x− y)φ(y) dy

(being in fact an application of a distribution to f(x− y)) varies continuously
in x. For the moment, to simplify notation, pretend that Rn is just R. When
we try to differentiate,

I(x+∆x)− I(x)
∆x

=
∫ (

f(x+∆x− y)− f(x− y)
∆x

)
φ(y) dy

the difference quotient inside the integral converges uniformly on compact sets
with any number of derivatives to f ′(x− y). So therefore I(x) is differentiable.
By induction, I(x) is smooth. The same proof, with suitable notation, works in
Rn.

Pick any test function g and approximate 〈g, I〉 as as limit of Riemann sums:
make a large box and cut it up into a grid of small boxes, say X1, X2, . . . , XN ,
say with Xj having measure Vj , and take a point xj ∈ Xj in each box:

〈g, I〉 ∼
∑

g (xj) Ī (xj)Vj =
∑

g (xj)Vj
∫
h̄ (xj − y) φ̄(y) dy,

=
∫ ∑

g (xj)Vj
∫
h̄ (xj − y) φ̄(y) dy.

But
∑
g (xj)Vj h̄ (xj − y)→

∫
g(x)h̄(x− y) dx = g∗Rh(y) uniformly with any

number of derivatives, because both g and h are test functions. So

〈g, I〉 = 〈g∗Rh, φ〉 = 〈g, h∗φ〉 .

A sequence φ1, φ2, . . . of distributions converges to a distribution φ if, for
any test function f , 〈f, φj〉 → 〈f, φ〉.

Lemma 5.2. Test functions are dense among distributions.

Proof. Suppose that f and g are test functions on Rn and that
∫
f = 1 and

g(0) = 0. Let fε(x) = ε−nf(εx), and let φε = g(εx)fε∗φ. By lemma 5.1 on the
facing page, φε is a test function. We want to prove that φε → φ as ε→ 0. For
any test function h,

〈h, φε〉 = 〈h, g(εx)fε∗φ〉 ,
= 〈Rfε (g (εx)∗h) , φ〉 .

The proof of theorem 2.7 on page 15 is easily adjusted to prove thatRfε (g (εx)∗h)→
h uniformly with any number of derivatives.
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Tempered distributions

By definition, distributions can be “integrated against” all smooth functions
with compact support. We should expect that only some of the better behaved
distributions can be “integrated against” a larger class of functions, like the
Schwartz class. A tempered distribution is a continuous linear map φ : S → C.
As before, we denote φ(f) as 〈f, φ〉 or as

∫
fφ̄, and we define cφ by 〈f, cφ〉 =

c̄ 〈f, φ〉. To see if an operation φ defines a tempered distribution, we need to
check continuity in all of the norms of S , i.e. check that for any a, b there is
some constant C so that

|〈f, φ〉| ≤ C sup
x

∣∣xa∂bf ∣∣ .
Each tempered distribution determines a distribution in the usual sense. By
density of the test functions in the Schwartz functions, a distribution can
only extend in at most one possible way from a continuous linear map on test
functions to a continuous linear function on Schwartz functions. For example, ex
is a distribution, but not a tempered distribution. On the other hand, any locally
integrable function growing more slowly than some polynomial is a tempered
distribution. In particular, every Lp function is a tempered distribution for
1 ≤ p ≤ ∞, and in particular Schwartz functions are tempered distributions.
Every distribution with compact support is tempered. Define the product of a
Schwartz function f and a tempered distribution φ by 〈g, fφ〉 =

〈
f̄g, φ

〉
.

5.5 Is eln(1+x2)2
a tempered distribution?

A sequence φ1, φ2, . . . converges to a tempered distribution φ if 〈f, φj〉 →
〈f, φ〉 for all f ∈ S .

Lemma 5.3. Every tempered distribution is the limit of a sequence of test
functions.

Proof. It is easy to adjust the proof of lemma 5.2 on the preceding page.

Clearly F , ∂a and multiplication by functions of at most polynomial growth
all define continuous maps S ′ → S ′.

5.6 Compute 1̂, δ̂, x̂a.

5.7 If f ∈ S , we have 3 definitions of F (f): directly as an integral, indirectly
by treating f as a distribution, and indirectly by treating f as a tempered
distribution. Prove that all 3 agree (in a suitable sense).

5.8 If f ∈ S , we have 3 definitions of ∂af : directly as an integral, indirectly
by treating f as a distribution, and indirectly by treating f as a tempered
distribution. Prove that all 3 agree (in a suitable sense).

5.9 Prove that the convolution map f ∈ S , g ∈ S ′ 7→ f∗g ∈ S ′ is continuous.
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By extension from S , we find the obvious identities: for any f ∈ S and
g ∈ S ′, 〈f ∗g, h〉 = 〈g,Rf ∗h〉 , ∂af ∗g = (∂af)∗g = f ∗∂ag and F (f ∗g) = f̂ ĝ.





Chapter 6

L2 Theory of Derivatives

Will will use functions with weak derivatives in L2 in the study of differential equations.

Sobolev L2 spaces and Sobolev embedding

Let L2
k be the set of all functions f ∈ L2 so that f has weak derivatives (i.e.

derivatives in the sense of distributions) ∂af ∈ L2 for all |a| ≤ k. On L2
k we

define the inner product

〈f, g〉L2
k

=
∑
|a|<k

∫
∂af∂aḡ

and norm ‖f‖L2
k

=
√
〈f, f〉L2

k
.

Theorem 6.1. With this inner product, L2
k is a Hilbert space, i.e. the norm is

complete.

Proof. Take a Cauchy sequence f1, f2, . . . in L2
k. If |a| ≤ k, then ∂af1, ∂

af2, . . .
converges in L2 to some function, say fa. Similarly, f1, f2, . . . converges in L2,
say to f . We claim that fa is a weak derivative ∂af of f . Take any test function
g: ∫

(∂afj) g = (−1)|a|
∫
fj∂

ag → (−1)|a|
∫
f∂ag,

but ∫
(∂afj) g →

∫
fag.

So fa = ∂af as distributions.

Theorem 6.2. C∞c ⊂ S ⊂ · · · ⊂ L2
k ⊂ · · · ⊂ L2

1 ⊂ L2
0 = L2 ⊂ S ′, with each

space dense in all of the following spaces.

Proof. The inclusions are clear, and the density follows as long as we can prove
that C∞c is dense in L2

k, which we proved in theorem 3.4 on page 24.

The Japanese bracket of a vector x ∈ Rn is 〈x〉 =
√

1 + ‖x‖2. The impor-
tance of the Japanese bracket: its grows like ‖x‖ as ‖x‖ → ∞, but it is smooth
everywhere.

43
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Theorem 6.3. A tempered distribution f ∈ S ′ lies in L2
k if and only if

〈ξ〉k f̂ ∈ L2.

Proof. Suppose that f ∈ L2
k. By Plancherel’s theorem (theorem 4.9 on page 35),

F (∂af) ∈ L2 if |a| ≤ k. But F (∂af) = (2πiξ)a f̂ , so f̂ , |ξ|kf̂ ∈ L2. On any
ball B around the origin 〈ξ〉 is bounded and so 〈ξ〉k f̂ ∈ L2(B). But if we make
the ball big enough then, for ξ outside that ball, 〈ξ〉k ≤ 2 ‖ξ‖k, so 〈ξ〉k f ∈ L2

outside the ball as well.
Conversely, suppose that 〈ξ〉k f̂ ∈ L2. Clearly |ξa| ≤ |ξ|k ≤ 〈ξ〉k, so

2πiξaf̂ ∈ L2 for every a and therefore f ∈ L2
k.

Generalize the Sobolev spaces: for any s ∈ R, let L2
s(Rn) be the set of all

tempered distributions f so that 〈ξ〉s f̂ ∈ L2(Rn). We can identify any L2
s space

with L2 by
f 7→ F−1 〈ξ〉−s Ff.

So they are really all just L2 in disguise. Clearly if s ≥ t then L2
s ⊂ L2

t is a
dense embedded subspace. Each f ∈ L2

s is a tempered distribution, because∫
fḡ is well defined for all g ∈ L2

−s and S ⊂ L2
−s.

6.1 Prove that e−|x| ∈ L2
s(R) just when s < 3

2 .

Lemma 6.4. How big is the Japanese bracket? In Rn, 〈ξ〉s ∈ L2 just when
s < −n/2.

Proof. Integrate:

‖〈ξ〉s‖2
L2 =

∫
〈ξ〉2s ,

=
∫ (

1 + ‖ξ‖2
)s
,

polar coordinates: ξ = ru where r ≥ 0 and u is a unit vector

=ωn−1

∫ (
1 + r2)s rn−1 dr

where ωn−1 is the hypersurface volume of the unit sphere in Rn. The power of
r is roughly 2s+ n− 1, so finite integral for 2s+ n− 1 < −1.

6.2 Prove that δ ∈ L2
s(Rn) just when s < −n2 . Express ‖δ‖L2

s
as an integral

involving s. (The integral doesn’t have an expression in elementary terms.)

Theorem 6.5 (Sobolev Embedding for L2 Sobolev spaces). If s− n
2 > k, or

in other words if σL2
s > σCk, then L2

s(Rn) ⊂ Ckb (Rn).
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Proof. For any test function f, if |a| = k,

|∂af | =
∣∣∣∣∫ e2πi〈ξ,x〉 (2πiξ)a f̂ (ξ)

∣∣∣∣ ,
≤
∫ ∣∣∣(2πiξ)a f̂ (ξ)

∣∣∣ ,
=
∫ ∣∣∣(2πiξ)a f̂ (ξ)

∣∣∣ 〈ξ〉s−k 〈ξ〉k−s ,
≤
∥∥∥(2πiξ)a 〈ξ〉s−k f̂

∥∥∥
L2

∥∥∥〈ξ〉k−s∥∥∥
L2
,

≤C ‖∂af‖L2
s−k

.

Corollary 6.6. A function is smooth with square integrable derivative of all
orders just when it belongs to all Sobolev L2 spaces.

Theorem 6.7. A function f ∈ L2
s(Rn) lies in L2

s+1(Rn) if and only if the
difference quotient

f(x+ hv)− f(x)
h

is bounded in L2 as h→ 0 for any constant vector v ∈ Rn and h ∈ R.

Proof. If f ∈ L2
k+1(Rn) then clearly the difference quotient converges to 〈df, v〉.

Suppose that the difference quotient is bounded in L2. Then its Fourier
transform is also bounded in L2 by the Plancherel theorem. Compute that

F

(
f(x+ hv)− f(x)

h

)
=e2πi〈ξ,hv〉 − 1

h
f̂ ,

= e2πi〈ξ,hv〉 − 1
2πi 〈ξ, hv〉︸ ︷︷ ︸
→1 as h→0

2πi 〈ξ, v〉 f̂︸ ︷︷ ︸
F〈df,v〉

,

and the bounded factor goes to 1 pointwise. Because this is bounded in L2 as
h→ 0, we can apply the dominated convergence theorem:

→F 〈df, v〉 .

Therefore F 〈df, v〉 ∈ L2, and so by Plancherel’s theorem again 〈df, v〉 ∈ L2.

Trace

If X ⊂ Rn is a subset and f is a continuous function defined near X, it is
traditional to write the restriction f |X as trX (f), If X has measure zero, and
f is only defined up to a set of measure zero, then the trace is not defined.
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If X ⊂ Rn is a linear subspace (or an affine subspace, i.e. a translate of a
linear subspace) of dimension k, we can rotate and translate X into Rk × {0},
and define the Sobolev and Hölder spaces of X as those of Rk. We can assume
that X = Rk × {0} and write each point of Rn as (x, y). Similarly we can
write the coordinates for the Fourier transform as (ξ, η). To understand traces
on Sobolev spaces, we relate Japanese brackets of linear subspaces to those of
ambient spaces.

Lemma 6.8. For any fixed ξ ∈ Rk and variable η ∈ Rn−k and s > (n− k)/2,
there is a constant C so that for all ξ,∫

〈ξ, η〉−2s
dη = C 〈ξ〉−2s+n−k

.

Proof. ∫
〈ξ, η〉−2s

dη,=
∫ (

1 + ‖ξ‖2 + ‖η‖2
)−s

dη.

Let a = 〈ξ〉 =
√

1 + ‖ξ‖2 and r = ‖η‖, and use “polar coordinates” in η, taking
ωn−k−1 to be the hypersurface area of the unit sphere in Rn−k:∫

〈ξ, η〉−2s
dη =ωn−k−1

∫ (
a2 + r2)−s rn−k−1 dr,

and now let u = r/a

=ωn−k−1

∫
a−2s (1 + u2)−s an−k−1un−k−1a du,

=ωn−k−1a
−2s+n−k

∫ (
1 + u2)−s un−k−1 du.

If −2s+ n− k − 1 < −1 this integral converges. Plug in a = 〈ξ〉.

Theorem 6.9. Suppose that A ⊂ Rn is an affine subspace of dimension k.
Consider the trace map trA : f ∈ S (Rn) 7→ f |A ∈ S (A) . If σL2

s(Rn) ≥
σL2

t (A), in other words s− n
2 ≥ t−

k
2 , then trA extends to a unique continuous

linear map trA : L2
s(Rn)→ L2

t (A). If σL2
s(Rn) = σL2

t (A), then this linear map
is surjective.

Proof. Take f ∈ S (Rn) and let g = trX (f). We only need to find a constant
C so that ‖g‖L2

t
≤ C ‖f‖L2

s
. We can assume that X = Rk ×{0} and write each

point of Rn as (x, y). Similarly we can write the coordinates for the Fourier
transform as (ξ, η). Equivalently we only need to ensure that∥∥∥〈ξ〉t ĝ∥∥∥

L2
≤ C

∥∥∥〈ξ, η〉s f̂∥∥∥
L2
.
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Let’s relate ĝ to f̂ .

g(x) =f(x, 0),

=
∫
e2πi〈(ξ,η),(x,0)〉f̂ (ξ, η) dξ dη,

=
∫
e2πi〈ξ,x〉f̂ (ξ, η) dξ dη.

Therefore

ĝ (ξ) =
∫
f̂ (ξ, η) dη,

=
∫
f̂ (ξ, η) 〈ξ, η〉s 〈ξ, η〉−s dη.

By Hölder’s inequality,

|ĝ (ξ)| ≤
∥∥∥f̂ (ξ, η) 〈ξ, η〉s

∥∥∥
L2(η)

∥∥∥〈ξ, η〉−s∥∥∥
L2(η)

,

and we apply the previous lemma

≤
√
C 〈ξ〉−s+(n−k)/2

∥∥∥f̂ (ξ, η) 〈ξ, η〉s
∥∥∥
L2(η)

.

Therefore the Sobolev norm of g is given by

‖g‖2
L2
t

=
∫
|ĝ (ξ)|2 〈ξ〉2t dξ,

≤C
∫
〈ξ〉2t−2s+n−k

∥∥∥f̂ (ξ, η) 〈ξ, η〉s
∥∥∥2

L2(η)
dξ,

=C
∫
〈ξ〉2t−2s+n−k

∣∣∣f̂ (ξ, η)
∣∣∣2 〈ξ, η〉2s dη dξ,

but 〈ξ〉2t−2s+n−k ≤ 1 so

≤C
∫ ∣∣∣f̂ (ξ, η)

∣∣∣2 〈ξ, η〉2s dη dξ,
= C ‖f‖2

L2
s
.

To see that trX is onto, it is sufficient to prove the result for s − n
2 = t − k

2 ,
given g(x), let

f̂(ξ, η) = 1
C2 ĝ(ξ) 〈ξ〉t−k/2 〈ξ, η〉n/2−s

and let f = F−1f̂ .





Chapter 7

The Direct Method of the Calculus of Variations

We will try to find the functions which have least energy in an appropriate sense.

Bounding the value by the derivative

Pick a bounded set A ⊂ Rn and a unit vector u ∈ Rn. The width of A in the
direction u is the smallest distance between two parallel hyperplanes normal to
u; if A is compact then the width depends continuously on u.

The minimum width of A is the minimum of the width in any direction.

Lemma 7.1. If U is a compact domain with smooth boundary and minimum
width m, then every u ∈ C1(U) with u|∂U = 0 satisfies

‖u‖L2 ≤ m ‖du‖L2 .

Proof. Let a = m/2 and rotate and translate U to arrange that −a ≤ x1 ≤ a
at every point of U . Extend u to vanish outside U , so we can assume U = Rn.
Write each point x ∈ Rn as x = (s, t) with s ∈ R, t ∈ Rn−1. Then at each point
(s0, t0) with s0 ≤ 0,

u (s0, t0)2 =
∫ s0

−a
∂s

(
u (s, t0)2

)
ds,

= 2
∫ s0

−a
u (s, t0) ∂su (s, t0) ds,

≤ 2
(∫ 0

−a
u (s, t0)2

ds

∫ 0

−a
(∂su (s, t0))2

ds

)1/2

.

The right hand side is a constant in s. Integrate in s:

∫ 0

−a
u(s, t)2 ds ≤ 2a

(∫ 0

−a
u (s, t0)2

ds

∫ 0

−a
(∂su (s, t0))2

ds

)1/2

.

Square both sides:∫ 0

−a
u(s, t)2 ds ≤ (2a)2

∫ 0

−a
(∂su(s, t))2

ds.

49
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Integrate in t:∫
Rn−1

∫ 0

−a
u2(s, t) ds dt ≤ (2a)2

∫
Rn−1

∫ 0

−a
(∂1u)2 (s, t) ds dt,

and adding in the other half, where 0 ≤ s ≤ a,∫
u2 ≤ (2a)2

∫
(∂1u)2 ≤ (2a)2

∫
‖du‖2 = m2

∫
‖du‖2

.

The variational problem

Pick a compact domain U ⊂ Rn with smooth boundary. To each smooth
real-valued function u ∈ C∞(U), associate the number

S[u] =

∫
U

(
1
2 ‖du‖

2 + f(x)u(x)
)

where f : U → R is a smooth function. Call this the action of a function u.
Among all functions u which vanish on ∂U , let us try to find one which makes
the action as small as possible.

Changing the boundary values

Consider a slightly more general problem. Fix a smooth function h ∈ C∞(∂U).
Among all functions u which equal h on ∂U , let us try to find one which makes
the action as small as possible. Pick one smooth function u0 which equals h on
∂U . Then write every other such function as u = u0 + v. So the functions v
are just those which vanish on ∂U .

7.1 Use the divergence theorem to compute that S[u0 +v] = S [u0]+T [v] where

T [v] =

∫
U

(
1
2 ‖dv‖

2 + k(x)v(x)
)

for some function k(x).

But then S is minimal at some u = u0 + v just when T is minimal at v. So
if we can solve our origin problem (with u = 0 on ∂U), for any action functional
S, then we can solve this more general problem.

7.2 If we add a term linear in the first derivatives, say let

S[u] =

∫
U

(
1
2 ‖du‖

2 + f(x)u(x) +
∑
i

hi(x)∂iu
)
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where h1(x), h2(x), . . . , hn(x) are smooth functions, integrate by parts to show
that we can rearrange the action to have no such terms.

Sobolev spaces vanishing on the boundary

Let
o
L2
k(U) be the closure in L2

k(U) of the smooth functions on U which vanish
near ∂U . By the Sobolev embedding theorem, L2

1(U) ⊂ C0(U), so the functions
in

o
L2

1(U) are continuous and vanish on ∂U .

Bounding the action

Lemma 7.2. Among all real-valued functions u ∈
o
L2

1(U), the values of S[u]
are bounded from below.

Proof.

0 ≤1
2

∫
U

‖du‖2
,

≤S[u]−
∫
U

f(x)u(x)

So if S[u] gets arbitrarily large negative, then, to compensate∫
U

f(x)u(x) dx

must also get arbitrarily large negative. By Hölder’s inequality, ‖f‖L2 ‖u‖L2

must get arbitrarily large positive. Applying the inequality

ab ≤ a2 + b2

2 ,

we find, for any ε > 0,

‖f‖L2 ‖u‖L2 =
(
‖f‖L2√

ε

)(√
ε ‖u‖L2

)
≤ 1

2ε ‖f‖
2
L2 + ε

2 ‖u‖
2
L2 .

If U has minimum width m then

‖u‖L2 ≤ m ‖du‖L2 ,

so
−ε2 ‖u‖L2 ≥ −

εm

2 ‖du‖L2 .
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Therefore

S[u] ≥1
2 ‖du‖

2
L2 −

∫
U

f(x)u(x),

≥1
2 ‖du‖

2
L2 −

1
2ε ‖f‖

2
L2 −

ε

2 ‖u‖
2
L2 ,

≥1
2 ‖du‖

2
L2 −

1
2ε ‖f‖

2
L2 −

εm

2 ‖du‖
2
L2 ,

≥ (1− εm)
2 ‖du‖2

L2 −
1
2ε ‖f‖

2
L2 ,

≥− 1
2ε ‖f‖

2
L2 ,

a bound independent of the choice of u, as long as we pick ε so that εm < 1.

Lemma 7.3. Suppose that U is a compact domain with smooth boundary. For
functions in

o
L2

1(U), any bound on the action S[u] imposes a bound on the
Sobolev norm ‖u‖L2

1
.

Proof. As in the proof of lemma 7.2 on the previous page,

(1− ε)
2 ‖du‖2

L2 ≤ S[u] + 1
2ε ‖f‖

2
L2 ,

so ‖du‖L2 is bounded. By lemma 7.1 on page 49, ‖u‖L2 is bounded, and so
‖u‖2

L2
1

= ‖u‖2
L2 + ‖du‖2

L2 is bounded.

Lemma 7.4. If uj → u weakly in L2
1, then ‖u‖L2

1
= lim inf ‖uj‖L2

1
.

Proof.

‖u‖2
L2

1
= 〈u, u〉L2

1
,

= lim
j
〈uj , u〉L2

1
,

≤ lim inf
j

∣∣∣〈uj , u〉L2
1

∣∣∣ ,
≤ lim inf

j
‖uj‖L2

1
‖u‖L2

1
,

and we divide both sides by ‖u‖L2
1
.

Lemma 7.5. Suppose that U is a bounded domain with smooth boundary.
There is a function u ∈

o
L2

1(U) and vanishing on ∂U so that S[u] = infv S[v],
infimum among all functions in

o
L2

1.
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Proof. Take a sequence of functions uj ∈ C∞(U) with uj |∂U = 0, so that the
values S [uj ] of the action approach the infimum value. By the previous lemma,
since the functions uj have bounded action, they have bounded Sobolev norm
‖uj‖L2

1
, so the sequence uj is bounded in L2

1(U). In problem 3.5 on page 23,
we saw that uj has a weakly convergent subsequence in L2

1; replace uj by that
subsequence.

By the Kondrashov–Rellich theorem (theorem 3.7 on page 27) there is a
subsequence of the uj that converges in Lp if

1 ≤ p <
{
∞, if n = 2,

2n
n−2 if n ≥ 2;

for any finite set of values of p we can replace the uj by that subsequence.
Again by the Kondrashov–Rellich theorem, there is a subsequence of the uj that
converges in C0,α if 0 < α < 1− n

2 ; again replace these uj by that subsequence
for any finite set of values of α. So now uj converges in Lp for small enough
p and in C0,α for small enough α and weakly in L2

1. These various function
spaces are all contained in L2, and there the various limits must all agree as
L2 functions, so as distributions. So uj → u in Lp and C0,α and L2

1 for the
approprate range of p and α.

We need to prove that S[u] = limj S [uj ]. This is not obvious, because S is
perhaps not a continuous function on L2

1. But

S [uj ] =
∫ 1

2 ‖duj‖
2 +

∫
fuj ,

= 1
2

∫
‖duj − du‖2 +

∫
〈duj , du〉 −

1
2

∫
‖du‖2 +

∫
fuj ,

The first term is nonnegative and it is the nonlinear part in uj : drop it to get a
smaller value:

≥
∫
〈duj , du〉 −

1
2

∫
‖du‖2 +

∫
fuj ,

The second term is constant in j, while the first and third are applying continuous
linear functions to uj , so we can take the limit:

→ −
∫
〈du, du〉+ 1

2

∫
‖du‖2 +

∫
fu,

= S[u].

Lemma 7.6. For any u, v ∈ L2
1,

S

[
u+ v

2

]
≤ S[u] + S[v]

2 .
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Proof. For any L2 functions u and v, by Hölder’s inequality∫
〈du, dv〉 ≤

(∫
‖du‖2

)1/2(∫
‖dv‖2

)1/2

with equality just when dv = c du or du = c dv for some constant c ≥ 0. By the
arithmetic geometric mean inequality (ab ≤ (1/2)(a + b), equality just when
a = b), ∫

〈du, dv〉 ≤ 1
2

(∫
‖du‖2 +

∫
‖dv‖2

)
with equality just when o Therefore

S

[
u+ v

2

]
=
∫ 1

2

∥∥∥∥du+ dv

2

∥∥∥∥2
+ 1

2

∫
fu+ 1

2

∫
fv,

= 1
8

∫
‖du‖2 + 1

4

∫
〈du, dv〉+ 1

8

∫
‖dv‖2 + 1

2

∫
fu+ 1

2

∫
fv,

to which we apply the previous estimate:

≤ 1
8

∫
‖du‖2 + 1

8

∫
‖du‖2 + 1

8

∫
‖dv‖2 + 1

8

∫
‖dv‖2 + 1

2

∫
fu+ 1

2

∫
fv,

= S[u] + S[v]
2 .

Lemma 7.7. The function u which minimizes the action S among all functions
in

o
L2

1 is unique.

Proof. Suppose that u and v are minimizers of action. By the previous lemma,
(1/2)(u + v) has action no larger, so must have equal action. Reversing the
steps in the proof of that lemma, we must have equality everywhere. Equality
in the Hölder inequality forces du = c dv or dv = c du for some c > 0. Equality
in the arithmetic geometric mean inequality forces∫

‖du‖2 =
∫
‖dv‖2

,

which forces c = 1.

Lemma 7.8. The following are equivalent for a function u ∈
o
L2

1(U):
1. u is a weak solution of ∆u = f ,
2. 0 =

∫
〈du, dv〉+ fv for any v ∈ C∞c ,

3. 0 =
∫
〈du, dv〉+ fv for any v ∈

o
L2

1(U),
4. u is a critical point of the action on

o
L2

1(U),
5. u is the minimizer of the action on

o
L2

1(U).
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Proof. The definition of ∆u is that
∫

(∆u)v = −
∫
〈du, dv〉 for any v ∈ C∞c .

So 〈f −∆u, v〉 =
∫
〈u, v〉 + fv. Hence (1) is equivalent to (2). Clearly (3)

implies (2) because C∞c (U) ⊂
o
L2

1(U). But (2) implies (3) by density of C∞c (U)
in

o
L2

1(U).
Suppose that u is a minimizer of the action. For any v ∈

o
L2

1(U), S[u+ tv]
increases or stays constant as we vary t away from t = 0, so

0 ≤ S[u+ tv]− S[u],

=
∫ 1

2 ‖du+ t dv‖2 + f(u+ tv)−
∫ 1

2 ‖du‖
2 + fu,

= t2
∫ 1

2 ‖dv‖
2 + t

∫
〈du, dv〉+ t

∫
fv

This holds for t positive and negative; for t > 0 divide by t and then send t→ 0
to get

0 ≤
∫
〈du, dv〉+ fv.

For t < 0, do the same to get

0 ≥
∫
〈du, dv〉+ fv.

So
0 =

∫
〈du, dv〉+ fv.

The same derivation shows that S is critical at u just when (3) is satisfied, in
the sense that

0 = lim
t→0

S[u+ tv]− S[u]
t

.

If u is a minimizer, then u is critical because S is differentiable as above. If
there are two critical functions u and w for S, then

0 =
∫
〈du, dv〉+ fv =

∫
〈dw, dv〉+ fv

for any v ∈
o
L2

1(U), so
0 =

∫
〈du− dw, dv〉 ,

and if we let v = u− w,
0 =

∫
‖du− dw‖2

,

so that du = dw. By lemma 7.1 on page 49, u = w.

Consequently, there is a unique solution u in
o
L2

1(U) to ∆u = f .





Chapter 8

Linear Elliptic Second Order Partial Differential Equations

We describe the basic intuitions of linear second order partial differential equations.

Physical intuition

8.1 Recall that a symmetric matrix A is positive definite if all of the eigenvalues
of A are positive. Recall also that every symmetric matrix A has an orthonormal
basis of eigenvectors. Prove that any symmetric matrix A is positive definite
just when 〈Ax, x〉 > 0 for any vector x 6= 0. Use this to prove that if A and B
are both positive definite, then tr(AB) > 0.

Suppose that u is the temperature at location x at time t. Over time, the
temperature changes, usually according to a partial differential equation looking
something like

∂tu =
∑
ij

aij(x)∂iju+
∑
i

Xi(x)∂iu+ f(x)u+ g(x).

What do the various terms represent? First, ∂tu is the rate at which u changes
over time. For simplicity, the right hand side coefficients only depend on x
because we imagine that they represent physical phenomena that don’t change
over time. Start with the last term: g. Imagine this was the only term. If
g > 0, ∂tu = g > 0, so u goes up. So g is a heater, like a stove or a radiator. If
g < 0, g is a refrigerator or a block of ice. Next, imagine that f(x)u was the
only term: ∂u = f(x)u. Then the solution is u(t, x) = etf(x)u(0, x), exponential
growth or decay at rate f(x). So f(x)u is a term that “snowballs” the heat
where f > 0 and decays heat away where f < 0. (This sort of term seems less
well motivated physically.) Next, imagine that

∑
iXi(x)∂iu was the only term:

∂tu =
∑
i

Xi(x)∂iu.

Consider the vector field

X(x) =


X1(x)
X2(x)

...
Xn(x)

 .
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The flow lines of this vector field are the curves x(t) in space for which x′(t) =
X(x(t)), i.e. the “particle” x(t) moves so that its velocity at each moment in
time agrees with X at its location. By the Picard existence and uniqueness
theorem for ordinary differential equations, if X is C1 then there is a unique C2

flow line through each point. By the chain rule, u satisfies ∂tu =
∑
iXi(x)∂iu

just when u is constant along the flow lines. So this term represents carrying
the heat along the flow of X: the vector field flows the heated molecule along.
Finally, the first and worst term: suppose that ∂tu =

∑
ij aij∂iju. It turns out

that this type of term represents the “diffusion” of the heat, as it spreads out
in space, carried by the random motions of molecules. The eigenvalues of the
matrix A = (aij) will turn out to tell us how rapidly the heat wants to spread
out in each direction. To make this work, we need to assume that A(x) is a
positive definite matrix at each point x. At a point where u has a peak, any peak
is a critical point so ∂iu = 0 for all i, and the matrix ∂2u = (∂iju) of second
derivatives will have negative eigenvalues. So then ∂tu =

∑
ij aij∂iju = trA∂2u

is the trace of a product of a positive definite matrix and a negative definite
one, so a negative number. In other words, near a peak of u, u goes down
over time: the hottest spots cool. Changing sign in the argument, putting
it upside down, the coolest spots heat up: temperature wants to equilibrate.
Suppose that A = (aij) is constant, for simplicity. Let Y be the vector field
Yi(x) = −

∑
j aij∂ju = −Adu. For any bounded open set U with C1 boundary,

d

dt

∫
U

u =
∫
U

∂tu,

=
∫
U

∑
ij

aij∂iju,

=
∫
U

∑
i

∂iY,

and if n is the unit normal vector to ∂U then by Stokes’s theorem

=
∫
∂U

〈Y, n〉 .

Roughly: Y pushes u out of U . Since A has positive eigenvalues, then for any
eigenvector v of A, we see that −Av points the opposite direction to v. So
roughly, the vector Y points in almost the opposite direction to du. Roughly,
this says that the heat flows in almost the opposite direction to du. Picture the
graph of u as as landscape, and imagine standing on it. The direction of du is
uphill. If there is a hill with a steep slope to your left, then u is flowing to your
right, making that steep hill of u get smaller, so flowing from larger to smaller.
This is the nature of diffusion: heat spreads out, heating up cold things, with
heat drawn away from hot things.

If we wait long enough, perhaps our heat will eventually settle into an
equilibrium, with a fixed temperature function. Then u = u(x) doesn’t change



Linearization 59

in time anymore, and our equation is now

0 =
∑
ij

aij(x)∂iju+
∑
i

Xi(x)∂iu+ f(x)u+ g(x).

This is the equation we will study, as a first step in developing a theory of
partial differential equations for use in mathematical physics.

Linearization

Given any sufficiently smooth nonlinear partial differential equation P [u] = 0,
we can always approximate it with a linear equation as follows. Take any
function v, and expand out

P [u+ εv] = P [u] + εP ′[u]v + o (ε) .

For example, if
P [u] = ∂xxu+ u∂xu+ u4,

then
P ′[u]v = ∂xxu+ u∂x + v∂xu+ 4u3v.

Note that this differential operator is linear in v, but depends on the choice of
solution u to the nonlinear equation.

Characteristics

In Fourier transforms, we are always running into factors of 2πi. It is convenient
to write out all linear differential operators in terms of the operationDj = ∂j/2πi
and Da = ∂a/ (2πi)|a| . For any constant coefficient linear differential operator
Q(D) =

∑
a caD

a in this D notation

F (Q(D)f) = Q(ξ)f̂ .

A wave looks like the real or imaginary part of e2πi〈ξ,x〉, as a function of x
for some fixed vector ξ, called the momentum of the wave. The momentum
points in the direction that the wave ripples up and down, perpendicular to the
directions where the wave has constant height.

ξ

Pick a differential operator P (x,D) =
∑
j ca(x)Da, say of degree k, and let

Ptop(x,D) =
∑
|a|=k ca(x)Da be the highest order derivative terms. Check how

P interacts with a high frequency wave u(x) = e2πi〈ξ,x〉.

8.2 Suppose that P (D) =
∑
a caD

a has constant coefficients; show that
P (D)u = P (ξ)u, where we think of P (D) as a polynomial in D and where
u(x) = e2πi〈ξ,x〉 is a wave.
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With nonconstant coefficients, the calculation is almost the same: P (x,D)u =
Ptop(x, ξ)u+ o (ξ)k. If we only want our wave to approximately solve the equa-
tion, to highest order for large momentum, near some point x, we need precisely
Ptop(x, ξ) = 0, a homogeneous polynomial equation in ξ for each point x. A
characteristic of P at a point x is a solution ξ of Ptop(x, ξ) = 0, representing
the momentum of a wave which behaves roughly like a solution; the set of
characteristics at a point x is the characteristic variety.

8.3 If P = ∂t2 − ∂2
x − ∂2

y in x, y, t-space then write the momentum as a vector
(ξ, η, τ) and check that the characteristic variety is τ2 = ξ2 + η2, a cone called
the light cone representing momenta that produce waves consistent with the
wave equation.

8.4 Write ∂tu as ut and ∂x∂tu as uxt, and so on. Find the characteristic variety
of the Euler–Tricomi equation utt = tuxx.

8.5 If P = ∂2
x + ∂2

y , then the associated equation Pu = 0 is the equation of
an electrostatic potential energy u, called the Laplace equation.Denote this
differential operator as ∆ = P (D), and call it the Laplace operator. Show that
the characteristic variety is cut out by the equation 0 = ξ2 + η2, which has no
solutions.

Elliptic regularity

If the characteristic variety is empty, we say that the equation Pu = 0 is elliptic.
Intuitively, the solutions of an elliptic equation do not admit any high frequency
wave solutions. Since a singular solution has high frequencies in its Fourier
transform, we can expect that an elliptic equation doesn’t admit any singular
solutions.

For the moment, we restrict attention to linear operators of second order,
so of the form

P =
∑
ij

aij(x)DiDj +
∑
i

ai(x)Di + a0(x),

and with smooth coefficients aij(x), ai(x), a0(x). Without loss of generality, we
will assume that aij(x) = aji(x).

8.6 Prove that P is elliptic just when, at each point x, the eigenvalues of the
symmetric matrix A(x) = (aij(x)) are either all positive or all negative.

We assume from now on, without loss of generality, that all eigenvalues of
aij(x) are positive. The operator P is uniformly elliptic for x ∈ U in some
domain U if the eigenvalues of A(x) = (aij(x)) are bounded away from zero
throughout U . In other words, there is some constant bound λ > 0 so that∑
ij aij(x)ξiξj ≥ λ ‖ξ‖2.

8.7 Prove that every linear second order elliptic differential operator is locally
uniformly elliptic.
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Theorem 8.1 (Elliptic regularity). Suppose that P is a linear second order
elliptic differential operator with smooth coefficients on a bounded domain U . If
u is a distribution and Pu ∈ L2

k(U) for some integer k ≥ 0, then u ∈ L2
k+2(U).

This theorem is too difficult for us to prove; we will prove a weaker theorem.





Chapter 9

Pseudodifferential Operators

We define pseudodifferential operators and prove their basic properties.

Intuition

If u ∈ C∞c then F (Dau) = ξaû, so Dau = F ∗(ξaû). Magic: the left hand side
differentiates u, while the right hand side only involves integrals. Suppose that
p(x, ξ) is a polynomial in ξ, with coefficients smooth functions of x, say p(x, ξ) =∑
a ca(x)ξa. The smooth linear differential operator p(x,D) =

∑
a ca(x)Da can

be expressed in terms of integrals

p(x,D)u =
∑
a

ca(x)F ∗(ξaû) ,

=
∫
p(x, ξ)ûe2πi〈ξ,x〉 dξ.

Conversely, any linear differential operator with smooth coefficients occurs as
p(x,D). For example, the Laplace operator is

∆ =
∑
j

∂j∂j = −4π2
∑
j

DjDj ,

so
∆u = −4π2

∫
‖ξ‖2

ûe2πi〈ξ,x〉 dξ.

Roughly, a pseudodifferential operator is anything given by the same sort of
integral:

u 7→
∫
p(x, ξ)ûe2πi〈ξ,x〉 dξ,

but we might let p(x, ξ) be a more general function than polynomial in ξ. We
can write such an operator as F ∗p(x, ξ)F . For example, the operator

u 7→
∫
〈ξ〉s ûe2πi〈ξ,x〉 dξ

maps L2
s(Rn)→ L2(Rn) isometrically. Since each differential operator behaves

like a polynomial in ξ, to invert a differential operator, we would expect to use
an operator which behaves like the reciprocal of a polynomial in ξ.

63
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If we try to solve ∆u = f for an unknown function u, we can try to take
Fourier transform: −4π2 ‖ξ‖2

û = f̂ , so

û = − 1
4π2

f̂

‖ξ‖2 .

This is fine away from ξ = 0, but near ξ = 0 small fluctuations in f̂ (representing
small but very low frequency fluctations in f) will cause huge fluctuations in
û, and so huge low frequency fluctuations in u. This makes the analysis tricky.
Picture a smooth function Λ(ξ) which is a little peak, equal to 1 near ξ = 0 and
dies off to zero away from there. Let V (ξ) = 1− Λ(ξ), a little trough vanishing
near ξ = 0 and equal to 1 farther away. (The letters Λ, V are chosen so that
they look like a peak and a trough.) Then we could try to “approximate” the
answer u by a function uapprox with

ûapprox = −V (ξ)
4π2

f̂

‖ξ‖2 .

This won’t give us an answer close to u in any sense, but in some respects it is
an easier function to analyse, and the correction

û− ûapprox = −Λ(ξ)
4π2

f̂

‖ξ‖2

is very low frequency, so u− uapprox is not very small but is very smooth. We
approximate so that we get the right singularities and fine small scale features,
and then we need only make a very smooth and large scale correction.

Symbols

The function p(x, ξ) is called the symbol of the pseudodifferential operator.
In order to carry out analysis of pseudodifferential operators, we will need to
restrict the possible symbols we allow. A symbol of order s on a domain U ⊂ Rn
is a smooth function p(x, ξ), defined for any x ∈ U and ξ ∈ Rn, so that for any
compact set K ⊂ U and any a, b, there are constants Cab so that∣∣Da

xD
b
ξp(x, ξ)

∣∣ ≤ Cab 〈ξ〉s−|b| ,
for x ∈ K and ξ ∈ Rn. A sequence of symbols p1, p2, . . . of order s converges to
zero, denoted pj → 0, if, for any a, b,∣∣∣Da

xD
b
ξpj(x, ξ)

∣∣∣
〈ξ〉s−|b|

→ 0.

A sequence of symbols p1, p2, . . . of order s converges to a symbol p of order s,
denoted pj → p, if pj − p → 0. If p(x, ξ) is a symbol, write p(x,D) to mean
F ∗p(x, ξ)F . The order of p(x,D) means the order of its symbol p(x, ξ).

9.1 Prove that the order of any differential operator with smooth coefficients
is equal to its order as a pseudodifferential operator.
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Applying pseudodifferential operators to poorly behaved functions

If u ∈ S , we can differentiate under the integral sign in

p(x,D)u =
∫
p(x, ξ)e2πi〈ξ,x〉

(∫
u(y)e−2πi〈ξ,y〉 dy

)
dξ

by the dominated convergence theorem, any number of times, so p(x,D)u ∈
C∞(U). The relation

xae2π〈ξ,x〉 = Dξje
2πi〈ξ,x〉

implies
xap(x,D)u =

∑
b+c=a

F ∗Db
ξp(x, ξ)F (xcu)

so that p(x,D) : S → S .

Lemma 9.1. Suppose that u ∈ S and p is a pseudodifferential operator of
finite order on the support of u. In case p might be complex valued, we write p̄
to mean the complex conjugate of p. The function

ũ(ξ) =
∫
e−2πi〈ξ,x〉p̄(x, ξ)u(x) dx

is Schwartz. The map u ∈ C∞c 7→ ũ ∈ S is continuous.

Proof.

ξaũ(ξ) =ξa
∫
e−2πi〈ξ,x〉p̄(x, ξ)u(x) dx,

=(−1)|a|
∫ (

Da
xe
−2πi〈ξ,x〉

)
p(x, ξ)u(x) dx,

=
∫
e−2πi〈ξ,x〉Da

x (p̄(x, ξ)u(x)) dx.

If p has order s, then all of the Da
xp̄(x, ξ) are dominated by 〈ξ〉s, so

〈ξ〉k |ũ (ξ)| = 〈ξ〉k
∣∣∣∣∫ e−2πi〈ξ,x〉p̄(x, ξ)u(x) dx

∣∣∣∣ ,
≤Ck 〈ξ〉s ,

i.e.
|ũ(ξ)| ≤ Ck 〈ξ〉s−k .

So ũ decays as rapidly as any rational function. Differentiating both sides of
the definition

ũ(ξ) =
∫
e−2πi〈ξ,x〉p̄(x, ξ)u(x) dx

we see that all derivatives of ũ have the same form as ũ does, and so they also
decay faster than any rational function, so ũ ∈ S .
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Suppose that uj → u ∈ S and let wj = u − uj , so that 〈ξ〉k |w̃j(ξ)|
decay faster than any rational function. So then 〈ξ〉k w̃j(ξ)→ 0 by dominated
convergence, uniformly on compact sets, and therefore uniformly because they
decay, i.e. 〈ξ〉k ũj → 〈ξ〉k ũ uniformly, and similarly with any number of
derivatives.

9.2 If u, v ∈ C∞c (U) on a domain U , prove that 〈p(x,D)u, v〉 = 〈û, ṽ〉 .

Define p(x,D)u for u ∈ S ′, by 〈p(x,D)u, v〉 = 〈û, ṽ〉 , for any v ∈ S , so
p(x,D) : S ′ → S ′. We henceforth discard the notation ṽ.

The kernel

Formally, if we allowed ourselves to change the order of integration,

p(x,D)u =
∫ (∫

p(x, ξ)e2πi〈ξ,x−y〉 dξ

)
u(y) dy,

=
∫
K(x, y)u(y) dy,

where
K(x, y) =

∫
p(x, ξ)e2πi〈ξ,x−y〉 dξ.

If the order s of p is positive, this integral is meaningless. But if s is large
enough negative (which of course never happens for a differential operator),
then we can change the order of integration (by Fubini’s theorem) as above,
and K is a well-defined continuous function called the kernel of p(x,D). More
generally, no matter what the order, we define a distribution K on U × U by

〈K,w〉 =
∫∫∫

w̄(x, y)p(x, ξ)e2πi〈ξ,x−y〉dy dξ dx

for any w ∈ C∞c (U × U) and call K the kernel of p(x,D).

Lemma 9.2. The kernel K(x, y) of a pseudodifferential operator is a smooth
function wherever x 6= y. If a pseudodifferential operator on a domain in Rn
has order s and kernel K then (x− y)aK(x, y) is Ck as long as |a| > s+ n+ k.
So the order of a pseudodifferential operator is (up to adding a constant) the
order of pole of its kernel.

Proof. From the identity

(x− y)ae2πi〈ξ,x−y〉 = Da
ξ e

2πi〈ξ,x−i〉.

we see that

〈(x− y)aK,w〉 =
∫∫∫

p(x, ξ)w̄(x, y)(x− y)ae2πi〈ξ,x−y〉dy dξ dx,

=(−1)|a|
∫∫∫

w̄(x, y)e2πi〈ξ,x−y〉Da
ξp(x, ξ)dy dξ dx,
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and if we make |a| large enough then the distribution (x− y)aK is represented
by the function

(−1)|a|
∫
e2πi〈ξ,x−y〉Da

ξp(x, ξ)dξ

which is differentiable as many times as we need if we make |a| large enough.

A smoothing operator is an operator P : S ′ → C∞.

Lemma 9.3. If a pseudodifferential operator P = p(x,D) has order −∞ (i.e.
P has order s for all values of s), then P is smoothing.

Proof. The kernel K of P is smooth, by lemma 9.2 on the facing page, so

Pu(x) =
∫
K(x, y)u(y) dy

is smooth by differentiation under the integral sign.

An operator P is pseudolocal if Pu is smooth on any open set on which u is
smooth, for any distribution u.

Proposition 9.4. Every pseudodifferential operator is pseudolocal.

Proof. Suppose that u vanishes near some point x; for simplicity take it to
be the point x = 0, so p(x,D)u(x) =

∫
K(x, y)u(y) dy is smooth near x = 0

because K(x, y) is smooth for y away from x, while u(y) vanishes for y near
0. More generally, if u ∈ S ′ is smooth near 0 then we can write u = u0 + u1
where u0 is smooth with compact support and u1 vanishes near 0, and then
p(x,D)u = p(x,D)u0 + p(x,D)u1.

Asymptotic series

Roughly speaking, the big idea of pseudodifferential operators is to approximate
operators, but not as a sum of a simple approximation and a small correction
(as we would usually expect in analysis), but instead as a sum of a simple
approximation and a smoothing operator.

If we have a pseudodifferential operator p = p(x,D) and a sequence of
pseudodifferential operators p1, p2, . . ., pj = pj(x,D), we write p ∼ p1 + p2 + . . .
to mean that the differences p, p− p1, p− p1 − p2, . . . have order going to −∞;
the formal sum p1 + p2 + . . . is called an asymptotic series for p.

Proposition 9.5. Suppose that p is a symbol of order s and let pε(x, ξ) =
p (x, εξ). Then pε → p0.

Proof. Replace p by p − p0 so that we can assume that p0 = 0. It suffices to
prove that

〈ξ〉|b|−m
∣∣Da

xD
b
ξpε(x, ξ)

∣∣ ≤ Cabεm.
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For |b| = 0, take a Taylor series in ε. For |b| > 0, this doesn’t quite give the
required power of ε, so we let the reader check that

〈ξ〉|b|−m

〈εξ〉|b|−m
≤ εm−|b|

as ε→ 0. Therefore

〈ξ〉|b|−m
∣∣Da

xD
b
ξpε(x, ξ)

∣∣ ≤ 〈εξ〉|b|−m εm−|b| ∣∣∣ε|b|Da
xD

b
ξp(x, εξ)

∣∣∣
≤ 〈εξ〉|b|−m εm

∣∣Da
xD

b
ξp(x, εξ)

∣∣
≤ 〈εξ〉|b|−m εmCab 〈εξ〉m−|b| .

Theorem 9.6. For any sequence p1, p2, . . . of symbols whose orders are finite
and approach −∞, there is a symbol p so that p ∼ p1 + p2 + . . .. This symbol p
is unique up to adding a smoothing operator, and doesn’t change if we arbitrarily
reorder the symbols p1, p2, . . ..

Proof. Uniqueness: if we have two such, say p and q, their difference has order
less than any of these pj so is smoothing. The same idea works when we reorder.

Existence: Suppose that each of our symbols pj(x, ξ) is defined for x on some
open set U and has order sj , with s1, s2, · · · → −∞. Take a smooth function
Λ(ξ) so that Λ = 1 near the origin, while Λ = 0 everywhere far enough from the
origin; let V = 1−Λ. In the notation of proposition 9.5, Vε → 0 as a symbol of
order 1, and therefore Vεpj → pj . Pick some numbers ε1, ε2, · · · → 0+ so that

∣∣Da
xD

b
ξ (Vεpj − pj)

∣∣ < 〈ξ〉sj+1−|b|

2j .

Let qj = Vεjpj and let p =
∑
qj . This sum is locally finite, because for j large

enough we will get εjξ inside the locus where V = 0.
Since p−

∑
j<k qj is a sum of terms of the form qk+1 + qk+2 + . . ., we have

to ensure that these terms decay like a convergent series, all of whose terms
have large enough negative order, which they do:

∣∣Da
xD

b
ξqj
∣∣ < 〈ξ〉sj+1−|b|

2j .

Therefore the sum p =
∑
qj is an asymptotic series. Each difference qj − pj

has order −∞ so p ∼ p1 + p2 + . . ..

Amplitudes

An adjoint P ∗ for an operator P means an operator so that 〈Pu, v〉 = 〈u, Pv〉
for some dense collection of functions u, v. If we look for an adjoint for a



Amplitudes 69

pseudodifferential operator P = p(x,D), we find

P ∗v(x) =
∫
e2πi〈ξ,x〉

(∫
p̄(y, ξ)v(y)e−2πi〈ξ,y〉dy

)
dξ.

This is not a pseudodifferential operator in the sense above: if it were, then
p̄(y, ξ) would have to depend only on x, ξ. We want a new definition which
allows dependence on x, y, ξ: a pseudodifferential operator of order s on a
domain U ⊂ Rn is a linear operator A : C∞c → C∞ of the form

Au(x) =
∫∫

a(x, y, ξ)e2πi〈ξ,x−y〉u(y) dy dξ

where the smooth function a : U × U × Rn, called the amplitude has, for any
compact set K ⊂ U , and any multiindices a, b, c, a constant Ca,b,c,K so that on
K ∣∣Da

xD
b
yD

c
ξa(x, y, ξ)

∣∣ ≤ Ca,b,c,K 〈ξ〉s−|c| .
If we let b (x, y, ξ) = a (y, x, ξ), one easily checks that the operator

A∗u(x) =
∫∫

b(x, y, ξ)e2πi〈ξ,x−y〉u(y) dy dξ

satisfies 〈A∗u, v〉 = 〈u,Av〉 for all u, v ∈ S .
Each pseudodifferential operator A with amplitude a(x, y, ξ) has as kernel

K = KA the distribution

〈K,w〉 =
∫∫∫

w̄(x, y)a(x, y, ξ)e2πi〈ξ,x−y〉dy dξ dx

for any w ∈ C∞c (U × U).

9.3 Prove that the kernel K(x, y) of a pseudodifferential operator is smooth
away from x = y. Prove that if A is pseudodifferential operator of order s
on a domain U ⊂ Rn then the kernel K = KA is Ck near x = y as long as
0 > s+ n+ k.

How do these complicated integrals Au involving amplitudes relate to the
simpler integrals p(x,D)u that we had before?

Theorem 9.7. Any pseudodifferential operator A, say of order s and with
amplitude a(x, y, ξ), has the form A = p(x,D) where p(x, ξ) is a symbol of order
s with asymptotic series

p(x, ξ) ∼
∑
a

(2πi)|a|

a! ∂aξ ∂
a
y a(x, y, ξ)|y=x .

Proof. Pick a smooth function Λ(x, y) for x, y ∈ U vanishing when x and y
are close to one another and equal to 1 when x and y are far apart and let
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V (x, y) = 1− Λ(x, y). Let AΛ be the operator with amplitude Λ(x, y)a(x, y, ξ)
and AV be the operator with amplitude V (x, y)a(x, y, ξ). If A has kernelK(x, y),
then AΛ has kernel Λ(x, y)K(x, y), while AV has kernel V (x, y)K(x, y). Since
V (x, y) vanishes near x = y, AV is a smoothing operator. Clearly KV (x, y)
vanishes near x = y so has no singularity. Problem 9.3 tells us that AV has
order −∞, while KΛ(x, y) = K(x, y) near x = y, so AΛ has the same order
as A. It thus suffices to prove the theorem for AΛ rather than for A: we can
assume from now on that a(x, y, ξ) = 0 if x and y are far enough apart.

Although Au is only defined for u ∈ S , we can define Au for u ∈ C∞ to
mean Au =

∫
U
K(x, y)u(y), because once we force x to lie in some compact

set, K(x, y) = Λ(x, y)K(x, y) vanishes for y outside some compact set, so
K(x, y)u(y) is smooth with compact support in y. Define

p(x, ξ) = e−2πi〈ξ,x〉Ae2πi〈ξ,x〉.

Pick any u ∈ S and then û ∈ S and write

u(x) =
∫
ûe2πi〈ξ,x〉.

This integral is a limit of Riemann sums, by the smoothness and rapid decay of
the integrand. Clearly A : S → S is continuous, as it is just

Au(x) =
∫
a(x, y, ξ)e2πi〈ξ,x−y〉u(y) dy dξ.

So we can write u as a limit of Riemann sums above, and use this to interchange
the integration in

Au(x) =
∫
a(x, y, ξ)e2πi(〈ξ,x−y〉+〈η,y〉)û(η) dη dy dξ,

=
∫
a(x, y, ξ)e2πi(〈ξ,x−y〉+〈η,y〉)û(η) dy dξ dη,

=
∫
A
(
e2πi〈η,y〉

)
û(η) dη

= p(x,D)u.

Expanding out:

p(x, ξ) =
∫
a(x, y, η)e2πi〈η−ξ,x−y〉dy dη.

It is convenient to change variables to z = y − x:

p(x, ξ) =
∫
a(x, x+ z, η)e−2πi〈η−ξ,z〉dz dη.

Let
b(x, z, ξ) = a(x, x+ z, ξ),
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and let b̂(x, η, ξ) be the Fourier transform of b(x, z, ξ) in the z-variable:

b̂(x, η, ξ) =
∫
b(x, z, ξ)e−2πi〈η,z〉 dz,

=
∫
a(x, x+ z, ξ)e−2πi〈η,z〉 dz.

Therefore
p(x, ξ) =

∫
b̂(x, η, η + ξ) dη.

If we force x to stay in some compact set, b(x, y, ξ) vanishes for y outside some
larger compact set.

Since we know that a has order s, we see that∣∣∣Da
xD

c
ξ b̂(x, η, ξ)

∣∣∣ ≤ Cac 〈ξ〉s−|c| .
Since a(x, x+ z, ξ) is C∞c in z for fixed x, we know that b̂(x, η, ξ) is Schwartz
in η, and the various Schwartz estimates are uniform in x and ξ. We expand
a(x, x+ z, ξ) in a Taylor series in z, plug in to express b as a Taylor series, and
expand out p, and check that we have the required estimates.

For example, if p(x, ξ) is a symbol of order s, then its adjoint p∗(x, ξ) is a
symbol of the same order with asymptotic series

p∗(x, ξ) ∼
∑
a

(2πi)a

a! ∂aξ ∂
a
yp(y, ξ).

9.4 On R2 let p(x,D) = x1D1 and q(x,D) = x1D2. Compute r(x,D) =
p(x,D)q(x,D). Show that r(x, ξ) 6= p(x, ξ)q(x, ξ).

Theorem 9.8. If p(x,D) is a pseudodifferential operator of order sp and q(x,D)
is a pseudodifferential operator of order sq then r(x,D) = p(x,D)q(x,D) is a
pseudodifferential operator of order sr = sp + sq with asymptotic series

r(x, ξ) =
∑
a

(2πi)|a|

a! Da
ξp(x, ξ)Da

xq(x, ξ).

Proof. Let

r(x, ξ) =
∫∫

p(x, η)q(y, ξ)e2πi〈η−ξ,x−y〉 dy dη.

Check that, if we can justify an interchange of integrals, we have p(x,D)q(x,D) =
r(x,D). To justify the interchange of integrals, we need to use the same idea
as in theorem 9.7 to replace p(x, ξ) and q(x, ξ) with amplitudes a(x, y, ξ) and
b(x, y, ξ) which vanish when x is not close to y.



72 Pseudodifferential Operators

Elliptic regularity

A parametrix for a pseudodifferential operator p(x,D) is a pseudodifferential
operator q(x,D) so that both p(x,D)q(x,D) and q(x,D)p(x,D) differ from I
by pseudodifferential operators of order −∞; essentially q(x,D) is an inverse of
p(x,D).

A pseudodifferential operator p(x,D) of order s on an open set U ⊂ Rn
is elliptic if, for any compact set K ⊂ U , there is a constant CK > 0 so that
|p(x, ξ)| ≥ CK |ξ|s.

Theorem 9.9. Every elliptic pseudodifferential operator has a parametrix.

Proof. Pick any smooth function Λ(ξ) equal to 1 near 0 and equal to 0 far
enough from 0 and let V (ξ) = 1− Λ(ξ). Let q0(x, ξ) = V (ξ)p(x, ξ)−1; by the
chain rule q0 is a symbol of order −s. By theorem 9.8,

p(x,D)q0(x,D) = I + r1(x,D),
q0(x,D)p(x,D) = I + r2(x,D),

for some r1(x,D), r2(x,D) symbols of order -1. By theorem 9.6, there is a
pseudodifferential operator s(x,D) of order -1 so that

I + s(x,D) ∼ I − r0(x,D) + r0(x,D)2 − r0(x,D)3 + . . .

Let q(x,D) = (I + s(x,D))q0(x,D) and then

q(x,D)p(x,D) = I + r(x,D)

where r(x,D) has order −∞. Similarly construct a pseudodifferential operator
q′(x,D) so that

p(x,D)q′(x,D) = I + r′(x,D)

where r′(x,D) has order −∞. Expand

(q(x,D)p(x,D)) q′(x,D) = q(x,D) (p(x,D)q′(x,D))

to show that q = q′ up to an error of order −∞.

Theorem 9.10 (Elliptic regularity). For any elliptic pseudodifferential operator
p(x,D), if f ∈ C∞ and Pu = f for some u ∈ S ′ then u ∈ C∞.

Proof. Take a parameterix q(x,D), so that q(x,D)p(x,D) = I + r(x,D) where
r(x,D) is a smoothing operator. Apply q(x,D) to both sides of p(x,D)u = f
to get u = q(x,D)f − r(x,D)u, which is clearly smooth. Therefore if u exists,
then it is smooth.
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Theorem 9.11 (Elliptic local solvability). For any elliptic pseudodifferential
operator p(x,D), if f ∈ C∞, then the equation Pu = f admits local solutions
u ∈ C∞ for any f ∈ C∞.

Proof. Take a parameterix q(x,D), so that q(x,D)p(x,D) = I + r(x,D) where
r(x,D) is a smoothing operator. The smoothing operator r(x,D) has a smooth
kernel, say R(x, y), so

r(x,D)u(x) =
∫
R(x, y)u(y) dy.

We suppose that our operators are defined on functions on some open set
U ⊂ Rn, and then we choose a relatively compact domain V ⊂ U . We then
consider the map r(x,D) : C∞(V )→ C∞(V ); the Hölder inequality gives

‖r(x,D)u‖2
L2(V ) =

∫
V

|r(x,D)u(x)|2 dx,

=
∫
V

∣∣∣∣∫
V

R(x, y)u(y) dy
∣∣∣∣2 dx,

≤M ‖u‖2
L2(V )

where

M =
∫
V

max
y∈V
|R(x, y)|2 dx,

≤ Vol (V ) max
x,y∈V

|R(x, y)|2 .

If we make V small enough, then M becomes as small as we like. In particular,
we can arrange that M < 1, and then the operator r(x,D) is bounded on L2(V )
with norm at most M . Therefore the sum (I + r(x,D))−1 = I − r(x,D) +
r(x,D)2 + . . . converges to a bounded operator on L2(V ). This operator is
given by a convergent sum of integrals with smooth kernels; one easily sees
that (if we make V small enough) this operator preserves smoothness as well
by writing out the terms and differentiating.

Take any smooth function f on V , extend to all of U smoothly, and define
u = (I+r(x,D))−1q(x,D)f. This smooth function then satisfies (I+r(x,D))u =
q(x,D)f, i.e. u = q(x,D)f − r(x,D)u. We then apply p(x,D) to both sides to
find p(x,D)u = f.
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List of Notation

Cn the set of all n-tuples of complex numbers 1
Rn the set of all n-tuples of real numbers 1
f(S) image of set S via the map f 1
f−1T preimage of set T via the map f 1
[a, b] closed interval from a to b 2
Br (x) open ball of radius r about the point x 2
B̄r (x) closed ball of radius r abour the point x 2
C∞ smooth functions 3
Ck k times continuously differentiable functions 3
S̄ closure of a set S 2
∂a multiindex partial derivative 3
∂i

∂
∂xi

2
∂x

∂
∂x

2
∂S boundary of a set S 2
a! multiindex factorial 3
df differential 2
o(f(x)) something small relative to f(x) 3
xa multiindex power 3
Ck,α Hölder continuity of order k, α 3
||f ||Ck Ck norm: sup of derivatives of order ≤ k 3
C∞c test functions 4
L∞(X) the set of bounded measureable functions on

X
6

Lp(X) the set of p-power integrable functions on X 6
Lploc (U) locally Lp functions on an open set U 7
〈f, g〉 L2 inner product 6
||f ||∞ uniform norm 6
||f ||Lp Lp-norm 6
f ∗g convolution 13
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78 List of Notation

Lpk(U) Sobolev space 23
λX sensitivity to large humps of a function space

X
25

σX sensitivity to small bumps of a function space
X

25

φX sensitivity to high frequencies of a function
space X

26

S Schwartz functions 29

f̂ Fourier transform 30
F Fourier transform 32

f̌ inverse Fourier transform 34
F ∗ inverse Fourier transform 34
δ Dirac delta function 37
〈x〉 Japanese bracket 43
L2
k Sobolev L2 space 43

trX (f) trace (i.e. restriction) of a function f to a set
X

45

D ∂/2πi 59
∆ Laplace operator 60
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action, 50
almost everywhere, 5
amplitude, 69
asymptotic series, 67

ball
closed, 2
open, 2

Banach space, 9
bell curve, 16
best constant, 26
boundary

of a set, 2
bounded, 2
box, 2

Cauchy sequence, 8
characteristic, 60
characteristic variety, 60
compact, 2
complex Euclidean space, 1
convergence

of distributions, 39
of tempered distributions, 40

derivative
strong, 20
weak, 20

Dirac delta function, 37
distance, 2
distribution, 37

tempered, 40
domain, 2
dominated convergence theorem, 5

elliptic, 60
pseudodifferential operator, 72
uniformly, 60

embedded subspace, 26
compactly, 26

Euclidean space, 1
Euler–Tricomi equation, 60

flow line, 58
Fourier transform, 30
function

Schwartz, 29

Gaussian, 16

Heaviside function, 22
high frequency sensitivity, 26
hypersurface measure, 8

image, 1
indicator function, 11
integrable

Lebesgue, 5
Riemann, 5

Japanese bracket, 43

kernel
pseudodifferential operator, 66

Laplace equation, 60
Laplace operator, 60
large hump

sensitivity, 25
length, 2
light cone, 60
locally integrable, 7

measure, 5
measureable

function, 5
set, 5

metric space
complete, 9

momentum, 59
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New York function, 11

open cover, 4
open set, 2
order

pseudodifferential operator, 64
outer measure, 5

parametrix, 72
partition of unity, 4
positive definite, 57
preimage, 1
pseudodifferential operator, 69

elliptic, 72
pseudolocal, 67

rapidly decreasing, 29
Riemann integral, 5

Schwartz function, 29
sensitivity, 25

to high frequencies, 26
to large humps, 25
to small bumps, 25

small bump
sensitivity, 25

smooth, 3
smoothing operator, 67
Sobolev norm, 23
Sobolev space, 23
strong derivative, 20
subordinate, 4
support, 4, 38
surface, 7
symbol, 64

tangent hyperplane, 8
tangent vector, 8
Taylor series, 3
tempered

distribution, 40
test function, 4
theorem

dominated convergence, 5
Kondrashov–Rellich compactness,

27
Sobolev embedding, 27

vector field, 57

weak convergence, 9

weak derivative, 20
weak limit, 9
width, 49
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