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Abstract. We present SFINKS, a low-cost synchronous stream cipher for hardware
applications with an associated authentication mechanism. The stream cipher is based
on a Simple Filter generator, using the INverse function in F216 to generate the Key
Stream. The design is based on simple and well-studied concepts, and its security
is analyzed with respect to the portfolio of known cryptanalytic attacks for filter
generators.

1 Introduction

For efficient encryption of data, cryptography mainly uses two types of symmetric
algorithms, block ciphers and stream ciphers. In the past decades, block ciphers
have become the most widely used technology. This is mainly due to the block
cipher standard DES [32] and its successor AES [33]. The current AES is a secure
encryption algorithm that offers excellent performance on a variety of hardware and
software environments.

As block ciphers are often used in a stream cipher mode such as CTR and
OFB, stream ciphers may offer equivalent security at a lower cost. The aim of this
paper is to propose a low-cost synchronous stream cipher for hardware applications
with an associated authentication mechanism. The design we propose is a simple
synchronous stream cipher using a memoryless nonlinear filter. We will motivate
our choices made for the building blocks in the following sections.

The outline of this paper is as follows. First, we introduce some preliminary
concepts in Sect. 2. In Sect. 3, we give the objectives of our design. In Sect. 4,
a description of the entire design is given. We discuss the security of our design
with respect to the various cryptanalytic attacks in Sect. 5, motivating the design
choices made. Perfomance and implementation aspects of the design are addressed
in Sect. 6 and Sect. 7 respectively. We present possible tweaks of the design in Sect. 8
and conclude in Sect. 9.
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2 Preliminaries

In this section, we list some properties of the two building blocks that are used in
a nonlinear filter generator, namely an LFSR and a Boolean function. For a more
thorough treatment we refer to [19, 37].

2.1 Linear Feedback Shift Registers

Definition 1 A Linear Feedback Shift Register (LFSR) of length L is a collection
of L 1-bit memory elements s0

t , s
1
t , . . . , s

L−1
t . At each time t the memory is updated

as follows: {
si
t = si+1

t−1 for i = 0, . . . , L − 2
sL−1
t =

⊕L
i=1 ci · sL−i

t−1 .
(1)

where the ci are fixed binary coefficients that define the feedback equation of the
LFSR. The LFSR stream (st)t≥0 consists of the successive values in the memory
element s0.

Associated with an L-bit LFSR is its feedback polynomial P(X) of degree L, P (X) =
1 +

∑L
i=1 ci · Xi. The weight of the feedback polynomial is equal to the number

of its nonzero terms. In practical designs, a feedback polynomial is chosen to be
primitive. This implies that every nonzero initial state produces an output sequence
with maximal period 2L − 1, which is also called a pn-sequence.

For many cryptanalytic attacks, it is useful to search low-weight multiples of
the feedback polynomial, see [6, 20, 16]. The number m(D,w) of multiples Q(X) =
1+
∑D

i=1 ci ·Xi of the polynomial P (X), with degree less or equal than D and weight
w, can be approximated by [6]:

m(D,w) ≈ Dw−1

(w − 1)! · 2L
. (2)

It is interesting to know from which Dmin we can expect a first multiple Q(X) of
weight w to start appearing. It follows from (2) that:

Dmin(w) ≈ (2L · (w − 1)!)
1

w−1 . (3)

The most efficient approach, known to date, to search for these low-weight multi-
ples is a birthday-like approach, see [16]. The precomputation complexity P needed
to find all multiples Q(X) of weight w and degree at most D can be approximated
by:

P (D,w) ≈ Ddw−1
2

e

dw−1
2 e!

. (4)

2.2 Boolean Functions

A Boolean function f is a mapping from Fϕ
2 into F2. The support of f is defined

as sup(f) = {x ∈ Fϕ
2 : f(x) = 1}. The cardinality of sup(f) represents the weight

wt(f) of the function.
A Boolean function can be uniquely represented by means of its algebraic normal

form (ANF):

f(x) = f(xϕ−1, . . . x0) =
⊕

(aϕ−1 ,...,a0)∈Fϕ
2

h(aϕ−1, . . . , a0)x
aϕ−1

ϕ−1 . . . xa0
0 , (5)



where f and h are Boolean functions on Fϕ
2 . The algebraic degree of f , denoted by

deg(f), is defined as the highest number of variables in the terms x
aϕ−1

ϕ−1 . . . xa0
0 in

the ANF of f .
Alternatively, a Boolean function can be represented by its Walsh spectrum:

Wf (ω) =
∑

x∈Fϕ
2

(−1)f(x)⊕x·ω = 2ϕ−1 − 2wt(f ⊕ x · ω) , (6)

where x · ω = x0ω0 ⊕ x1ω1 ⊕ · · · ⊕ xϕ−1ωϕ−1 is the dot product of x and ω.
Several properties are of importance for Boolean functions from a cryptographic

viewpoint. A function is said to be balanced if wt(f) = 2ϕ−1. The nonlinearity Nf

of the function f is defined as the minimum distance between f and any affine
function; it can be calculated as Nf = 2ϕ−1 − 1

2 maxω∈Fn
2
|Wf (ω)|. The best affine

approximation l(x) is associated with this notion. We will say that f has bias ε if
it has the same output as its best affine approximation with probability 0.5 + ε. It

is easy to see that ε = Nf/2ϕ − 0.5 =
maxω∈Fn

2
|Wf (ω)|

2ϕ+1 . A function f is said to be
correlation-immune [38] of order ρ, CI(ρ), if and only if its Walsh transform Wf

satisfies Wf (ω) = 0, for 1 ≤ wt(ω) ≤ ρ. If the function is also balanced, then the
function is called t-resilient.

The lowest degree of the function g from Fϕ
2 into F2 for which f · g = 0 or

(f + 1) · g = 0 is called the algebraic immunity (AI) of the function f [29]. The
function g is said to be an annihilator of f if f · g = 0.

A vectorial Boolean function F from Fn
2 into Fm

2 , also called (n,m) S-box, can
be represented by an m-tuple (fm−1, . . . , f0) of Boolean functions f i on Fn

2 (corre-
sponding to the output bits).

3 Design Goals

Easy Analysis. Most research on stream ciphers has been focused on synchronous
regularly clocked LFSR-based stream ciphers, resulting in a number of generic crypt-
analytic attacks on these designs, such as (fast) correlation attacks [38, 30] and,
recently, (fast) algebraic attacks [9, 8]. At the SASC workshop, it was suggested
that these attacks make it very hard to design a secure LFSR-based stream cipher.
However, we believe that LFSR-based designs are, despite the possibilities of long
key stream attacks, a good choice for hardware applications, provided we can prove
the resistance of the design to a whole set of cryptanalytic attacks. The study of
such designs can be brought back to the study of its components: the LFSR and
the Boolean function. In this paper, we will provide a framework that relates the
security of the cipher with respect to various cryptanalytic attacks (distinguishing
attacks, correlation attacks, algebraic attacks, resynchronization attacks. . . ) to a few
important parameters: the feedback taps of the LFSR, the input taps to the Boolean
function, and the properties of the Boolean function (degree, algebraic immunity,
Walsh spectrum). We will then search a Boolean function that has all the required
properties and is easy to implement in hardware.

Performance. The stream cipher is designed for use in restricted hardware en-
vironments. LFSRs are very efficient in hardware, and are the preferred choice in
many fielded applications such as A5/1 in GSM and E0 in Bluetooth (we will not



comment on the security of these designs, but note that these designs were imple-
mented without any public evaluation taking place). These designs have an internal
state of 64 bits and 128 bits respectively, so our choice for a 256-bit internal state
is a logical next step. The building blocks of our design are chosen to be easily im-
plementable in hardware, since we want a design with a low gate count that still
achieves a reasonable throughput.

4 Description of the Design

Our design is a synchronous stream cipher based on a nonlinear filtered key stream
generator with an associated authentication mechanism. The layout of our design
is presented in Fig. 1. The internal state consists of an LFSR of 256 bits. Our
Boolean function is the 16-bit inversion S-box from which we take one bit as output
after linear masking. We also use an output bit of the inversion function for the
generation of the 64-bit MAC. We now discuss the different building blocks of the
algorithm. The explanations given here should be sufficient to implement SFINKS.
For a complete and unambiguous description, we refer to our C code.

Fig. 1. Layout of the stream cipher

4.1 Key, IV and MAC Length

Our algorithm is aimed at offering medium-term security, which is reflected in the
length of 80 bits of the secret key K = k79 . . . k0. Also, the length of our initialization
vector IV = iv79 . . . iv0 is 80 bits. For the MAC, we choose a length of 64 bits. If
this would be required, we can easily adapt these parameters in a straightforward
way.



4.2 LFSR

An LFSR of length L = 256 bits is used. It is a Fibonacci LFSR with the following
weight 17 feedback polynomial:

P (X) = 1 + X44 + X62 + X64 + X69 + X93 + X105 + X131 + X141+
X149 + X171 + X190 + X192 + X204 + X208 + X242 + X256 .

(7)

In other words, the recursion formula for the LFSR stream is as follows:

st+256 = st+212 ⊕ st+194 ⊕ st+192 ⊕ st+187 ⊕ st+163 ⊕ st+151 ⊕ st+125 ⊕ st+115

⊕st+107 ⊕ st+85 ⊕ st+66 ⊕ st+64 ⊕ st+52 ⊕ st+48 ⊕ st+14 ⊕ st .
(8)

4.3 Filter Function

The nonlinear filter function used for generating the key stream is a Boolean function
f from F17

2 into F2. At each time t, 17 bits are taken from the LFSR, put into the
word xt ∈ F17

2 and input to the Boolean function to calculate the key stream zt as
follows:

zt = f(xt) = f(x16
t , . . . , x0

t ) = (INV (x16
t , . . . , x1

t )&1) ⊕ x0
t . (9)

In this formula, the input word xt is selected as follows from the LFSR stream:

xt = (st+255, st+244, st+227, st+193, st+161, st+134, st+105, st+98, st+74,
st+58, st+44, st+21, st+19, st+9, st+6, st+1, st) .

(10)

The main building block is the vectorial Boolean function INV () from F16
2 into

F16
2 . INV () calculates the inverse of the input in the field F216 modulo the primitive

polynomial X16 +X5 +X3 +X2 +1. We denote the output of this vectorial Boolean
function by yt ∈ F16

2 . Note that we will only use one bit of this inverse S-box for our
key stream generation.

Some important cryptographic properties of the filter function on F17
2 , which we

will address into more detail in the following sections, are as follows: the function is
balanced, the degree of the function is 15, the nonlinearity is 65024, its best affine
approximation has bias ε = 2−8 and its algebraic immunity is equal to 6.

4.4 Resynchronization Mechanism

We first set all internal state bits to zero and start our algorithm at t = −128.
First K and IV are loaded into the LFSR. We set s255

−128 = iv79, . . . , s
176
−128 = iv0,

s175
−128 = k79, . . . , s

96
−128 = k0. and s95

−128 = 1. We also set y−134 to y−128 equal to zero
(We will see later that this amounts to clearing the pipeline stages in HW, if we
choose to use pipelining for increasing the throughput).

We then start 128 resynchronization steps, for t = −127, . . . − 1, 0, as follows.
The LFSR is clocked in a special way, where 16 bits of the LFSR are also XORed
with bits from the inversion function as follows:

sj
t = sj+1

t−1 ⊕ yj mod 16
t−7 , (11)

for the 16 values of j = {11, 17, 41, 52, 66, 80, 111, 118, 142, 154, 173, 179, 204, 213,
232, 247}.

At each time, we then need to calculate yt, as we will use these 16 bits to be fed
back into the LFSR as in the equation above. We will also shift the bit y1

t into the
shift register for MAC generation as during normal operation, and always XOR the
register contents into the MAC state, see below. At t = 0, the resynchronization is
finished and we can start the key stream generation.



4.5 MAC Algorithm

Our MAC generation algorithm is based on concepts similar to [26]. If no authenti-
cation method is required, SFINKS can also be implemented without this authenti-
cation method.

For MAC generation, we use the shift register Rt = r63
t . . . r0

t . During the frame
encryption, the value of the MAC will be accumulated in the register Mt = m63

t . . . m63
0

which is set to zero at the start of each frame. For all times t = −127, . . . framelength,
the shift register is updated as follows:

{
ri
t = ri+1

t−1 for i = 0, . . . , 62
r63
t = y1

t .
(12)

For every plaintext bit pt, t = 1, . . . framelength, we update the MAC state by
Mt = Mt−1 ⊕ pt · Rt−1

1. At the end of the frame, the 64 bits of M are sent to the
receiver, after they have been encrypted during 64 final clocks of the key stream
generator.

5 Security Analysis

In this section we address the security of SFINKS with respect to the various existing
cryptanalytic attacks against LFSR-based stream ciphers. We explain why our choice
of building blocks should provide a good resistance against these attacks.

5.1 Berlekamp-Massey Attacks

For a Boolean function of degree d, the linear complexity LC of the resulting key
stream is upperbounded by

∑d
i=0

(L
i

)
. Moreover, it is very likely that the LC of the

key stream is lowerbounded by
(L

d

)
and that its period remains equal to 2L − 1. We

refer to [37, 23] for more details. The Berlekamp-Massey attack requires 2 ·LC data
and has a complexity of LC2. Using the parameters L = 256, d = 15, this attack is
clearly of no concern for the design.

5.2 Tradeoff Attacks

Time-Memory-Data Tradeoff attacks [3, 18, 5] are generic attacks against stream
ciphers. To prevent these attacks, the internal state should be at least twice the
key size. Our design satisfies this requirement, as the internal state of 256 bit is far
bigger than the 80-bit secret key.

Recently, it was noticed that a tradeoff attack can also be mounted directly on
the secret key, irrespective of the internal state size [21]. To prevent this attack, we
choose the size of the initialization vector to be 80 bits, the same size as the key [11].
Note that it is the responsibility of the implementer to make sure that the initial
IV is chosen in a correct, non-fixed way, to prevent these tradeoff attacks.

1 note that, as mentioned in the resynchonization mechanism, the MAC is updated by Mt =
Mt−1 ⊕ Rt−1 during the resynchronization steps



5.3 Distinguishing Attacks

The distinguishing attack we describe here is based on the framework developed
in [12] combined with the mathematical results from [31].

The idea of the attack is the following. The LFSR stream has very good statistical
properties, but of course there are linear relations, which are determined by the
feedback polynomial P (X) and its multiples.

Given a linear relation of weight w in the LFSR stream, the same relation for
the corresponding bits of the key stream will hold with some probability different
from one half, because the Boolean function f does not destroy all linear properties.
It is shown in [31] that this bias is equal to:

ε′ =
∑2ϕ−1

ω=0 (Wf (ω))w

2ϕ·w+1
(13)

It is important to notice that the higher the weight of the linear relation, the smaller
the bias will be. An even distribution of the Walsh spectrum of the Boolean function
will also decrease the bias.

To distinguish the key stream from random, the number of samples needed is in
the order of 1

ε′2 . The time complexity of the attack is in the same order, the data
complexity can be decreased further to some extent by using multiple linear relations
simultaneously.

The Boolean function based on inversion is a good choice with respect to this
attack. Its nonlinearity is close to the best known for balanced functions, and its
Walsh spectrum is spread rather evenly. This is for instance not the case for another
class of functions that have high nonlinearity, the plateaued functions [40], where the
Walsh spectrum is three-valued. One can easily check that these functions behave
worse with respect to this distinguishing attack.

The attack hence proceeds as follows: for every weight w, starting from w = 3,
we know that we will have a linear recursion with degree around Dmin as given
by (3). We can then precompute this linear recursion Q(X) with complexity given
by (4). In the actual attack, we use this low-weight relation Q(X) to distinguish the
key stream from a random sequence. To do so, we need around Dmin + 1

ε′2 data and
time.

Note that if we would choose a feedback polynomial of very low weight (e.g., a
trinomial), the attack would be easier to mount as no precomputation is needed and
the bound on Dmin does not hold. Our choice of feedback polynomial, with weight
17, does not have problems in this respect. The complexities of the distinguishing
attack on SFINKS are given in Table 1. All numbers in the table are given as base
2 logarithms.

In [12], it is shown that this distinguishing attack can be turned into a key recov-
ery attack only if many weight three multiples are found. Therefore, the knowledge
of around 2L/2 (see (2)) bits leads to an efficient attack for any filter generator with
internal state of size L.

There has been some debate on the relevance of long key stream distinguishing
attacks during the NESSIE stream cipher competition [36]. Whereas the time com-
plexity is a matter of resources on the attacker’s side, the amount of key stream
available can be limited on the encryption side to a practical amount. We suggest
limiting the maximum amount of key stream generated from a K/IV pair to a prac-
tical limit of 240 bits. This will make it impossible to exploit any multiples with



Table 1. Logarithm of complexities of the distinguishing attacks

Weight Precomputation Dmin bias ε′ Attack complexity

3 128.50 128.50 -15.00 128.50
4 171.39 86.19 -16.00 86.19
5 129.29 65.15 -29.32 65.15
6 155.16 52.58 -30.68 61.36
7 130.16 44.25 -43.60 87.20
8 148.72 38.33 -45.19 90.38
9 131.06 33.91 -57.84 115.67
10 145.58 30.50 -59.61 119.21

weight less than 8, as their degree will most likely be higher than 240. This makes it
impossible for an attacker to find any bias in the key stream.

5.4 Affine Approximation Attacks (correlation like)

Correlation and fast correlation attacks exploit the correlation between the LFSR
stream st and the key stream zt. These attacks can be seen as a decoding prob-
lem, since the key stream zt can be considered as the transmitted LFSR stream
st through a binary symmetric channel with error probability p = Pt≥0(zt 6= st).
For the nonlinear filter generator, p is determined by 0.5 + ε. Therefore, the attack
consists of a fast decoding method for any LFSR code C of length N (the amount of
available key stream) and dimension L (the length of the LFSR), where the length
N of the code is lowerbounded by Shannon’s channel coding theorem:

N ≥ L

C(p)
=

L

1 + p log2 p + (1 − p) log2(1 − p)
≈ ln(2)L

2ε2
. (14)

With the parameters L = 256, ε = 2−8, we obtain that the number of required
key stream bits is at least N = 222.47. Consequently, in theory there should exist a
decoding algorithm with zero error probability for this configuration of parameters,
but in practice no efficient general decoding algorithm is known for achieving the
channel capacity.

Besides the maximum-likelihood (ML) decoding, which has very high complexity
of L · 2L, mainly two different approaches have been proposed in the literature. In
the first approach, the existence of sparse parity check equations for the LFSR
code are exploited. These parity check equations correspond with the low weight
multiples of the connection polynomial. In this way, the LFSR code can be seen as
a low-density parity-check (LDPC) code and has several efficient iterative decoding
algorithms. In the second approach, a smaller linear [n, l] code with l < L and n > N
is associated to the LFSR on which ML decoding is performed. The complexity of
both approaches highly depends on the existence of low-degree multiples. As shown
above, the precomputation time for finding these low-degree multiples is very high.
Moreover, the approach requires long key streams and suffers from a high decoding
complexity. Therefore, we can conclude that due to the large length of the LFSR and
the good nonlinearity of the filter function, all approaches studied in literature so far
do not succeed. To give an idea of the complexity of these attacks, we concentrate on
the attack of Canteaut and Trabbia [6]. When parity-check equations with weight



w are used, the required key stream N is approximated by:

(
1
2ε

) 2(w−2)
w−1

2
L

w−1 , (15)

and the complexity for the attack can be roughly estimated by

(
1
2ε

) 2w(w−2)
w−1

2
L

w−1 . (16)

Table 2 shows the numerical values for the attack on our design, which turn out to
be impractical. All data in the table are base 2 logarithms.

Table 2. Logarithm of complexities of the correlation attack

Weight Precomputation Data complexity Decoding complexity

3 135.00 135.00 149.00
4 188.33 94.66 122.67
5 148.00 74.50 116.50
6 184.61 62.40 118.40
7 160.41 54.33 124.33
8 189.70 48.57 132.57
9 172.42 44.25 172.42
10 197.54 40.89 197.54

5.5 Algebraic Attacks

In algebraic attacks [9], a system of nonlinear equations between input and output
is constructed and subsequently solved. The complexity of solving this system of
equations is highly dependent on the degree of these equations. In the usual algebraic
attack, equations between one bit of the output of the filter generator and the initial
state of the LFSR are searched. These equations are then solved by linearization.
The lowest possible degree d, also called the AI, for these equations is obtained
by the annihilators of the filter function and its complement. The total complexity
C(L, d) of the algebraic attack on a stream cipher with a linear state of L bits and
equations of degree d is then determined by

C(L, d) =

(
d∑

i=0

(
L

i

)ω
)

≈ Lω·d , (17)

where ω corresponds to the coefficient of the most efficient solution method for the
linear system. We use here Strassen’s exponent [39] which is ω = log2(7) ≈ 2.807.
Note that in the complexity analysis, the linearization method is used for solving the
equations. It is an open question if other algorithms like the Buchberger algorithm,
F4 or F5 [13] can significantly improve this complexity. Also, the total number
of terms of degree less than or equal to d is considered in the complexity, while in
general nothing is known about the proportion of monomials of degree d that appear
in the system of equations. Therefore, a sufficient security margin should be taken
into account.



Table 3 shows the numerical values for the algebraic attack on an LFSR of
length 256 and AI between 4 and 8. All data in the table are base 2 logarithms.
The algebraic immunity of a Boolean function can be calculated using an algorithm
described in [29]. We have computed the algebraic immunity of our Boolean function
and found that it is equal to 6 (exactly 4 annihilators of f with degree 6). This leads
to an attack with complexity approximately equal to 2107.97 and is quite close to the
edge.

Table 3. Logarithm of complexities of the algebraic attack

AI Data complexity Attack complexity

4 27.40 76.92
5 33.07 92.84
6 38.46 107.97
7 43.62 112.46
8 48.59 136.41

In the fast algebraic attacks [8], the attacker tries to decrease the degree d of the
system of equations even further by searching for relations between the initial state
of the LFSR and several bits of the output function simultaneously. The equations
where the highest degree terms do not involve the key stream bits are considered.
In an additional precomputation step, linear combinations of these equations are
searched which cancel out these highest degree terms in order to obtain equations of
degree e. It is clear that the complexity for solving these equations is now C(L, e).

For our function, a reduction of the degree of the equations to 4 should be
possible to obtain a certificational attack on the design. The framework for algebraic
attacks is for the moment not entirely clear. We believe it is important to further
investigate the properties of this and other Boolean functions with respect to fast
algebraic attacks, and to see how we could improve the algebraic immunity of the
Boolean function while keeping its other desirable properties.

5.6 Resynchronization Attacks

A framework for resynchronization attacks has been given in [10, 2]. Some examples
of concrete attacks can be found in [28, 22]. The aim of these attacks is mainly to
find relations between the key stream bits of many frames and the secret key loaded
into the internal state during resynchronization.

In order to prevent these attacks, it has been shown that one needs to have a
resynchronization mechanism that adds enough confusion and diffusion to the initial
state. In other words, every bit of the initial state should depend on a large number
of key bits and IV bits, and the relation that subsist between the initial state and
the key/IV should be highly nonlinear and have a nondetectable bias. We refer to [2]
for more details.

Simulations and mathematical arguments suggest that the proposed resynchro-
nization mechanism satisfies these requirements. By the choice of the LFSR taps,
filter taps and feedback taps, the nonlinearity of the filter function will be well inte-
grated into the initial state and therefore lead to the desired diffusion and avalanche
properties. The successive applications of the 16-bit inversion function during the



resynchronization provides confusion and ensures that all remaining biases have neg-
ligible probability.

5.7 Other Attacks

Our design satisfies the properties, suggested by Golic in [17], for resistance against
inversion attacks. The distance between the first and the last output tap is maximal
to prevent guessing a subset of the state first. Our 17 input taps to the output
function are also a full positive difference set, which ensures that if two bits enter the
output function at time t, they will never enter the output function simultaneously at
any other time. We have also chosen our output function of the form g(x16, . . . , x1)⊕
x0, which produces a purely random sequence provided the input sequence is random.
Consequently, the filter function also satisfies the property of 1-resiliency [38].

These choices ensure that the design has very little structural weaknesses that the
attacker can exploit. They seem, combined with the large internal state, to provide
adequate security against other attacks that exploit the structure of the design, such
as attacks using decimation of the key stream [17, 14], guess and determine attacks
and BDD-based cryptanalysis [25].

5.8 Security of the MAC Algorithm

We give here a brief sketch of the security of the MAC algorithm. We refer to [26]
for a thorough treatment and proofs for similar situations.

Let p be a plaintext of length t (denoted as a t × 1 column vector), and let
M = MACK,IV (p). An attacker succeeds in breaking the authentication if he can
find p′ (of length t′) and M ′ such that M ′ = MACK,IV (p′).

To see why this will not work, we describe our MAC algorithm as a matrix
multiplication:

M = A · p + z , (18)

where A = (R1, R2, . . . Rt) is a Toeplitz matrix2 and z = (zt+1 . . . zt+64)T .
As usual, we are in a known plaintext scenario. We suppose the attacker knows

p (and hence z1 . . . zt) and also M . If our resynchronization mechanism is secure,
the matrix A will contain enough randomness and the attacker will not be able to
know anything about this matrix. Hence, any modification to p′ will change M to
M ′ in a pseudorandom way, which the attacker can not control without knowing the
secret key (which he does not know if our key stream generator is secure). It thus
follows that our MAC is secure if both the resynchronization mechanism and the
key stream generation are secure.

Vice versa, the MAC algorithm does not lower the security of the stream cipher.
By looking at the MAC, the attacker does not learn any extra information, as before
outputting the MAC we have first XORed it with 64 bits of new key stream, which
has not been used to encrypt any plaintext and hence is not known by an attacker
in a known plaintext scenario.

6 Hardware Performance

The hardware cost of an algorithm is measured in NAND gates. One NAND gate
is considered to have a unit area in CMOS standard cell based hardware. We will
2 a matrix for which all elements on the same diagonal are equal



now list the main hardware costs of our design. We use the figures from [4] for the
number of gates needed. Note that these figures are conservative upper bounds based
on standard cells. Using specialized libraries may lower the number of gates needed.

When trying to minimize the number of gates, a first constraint we run into is the
size of the internal state of 256 bits. Further, the complexity of the implementation
of the Boolean function and the MAC mechanism have to be added.

The LFSR requires 256 FF (flip-flops) for the 256 bits, which is approximately
3072 gates. For the LFSR recursion we need 15 XOR gates and we need 16 XOR
gates for the feedback during resynchronization, which requires 77.5 more gates.

The design of the inverse function in F216 is based on an approach similar to the
one described in [35] by working in composite fields. The main idea is to decompose
the inversion in F216 into operations in the field F22 . We refer to Appendix A for
a more detailed analysis of this approach. This implementation requires 398 XORs
gates and 75 AND gates, and thus consists of about 1107.5 NAND gates. In order
to increase the clock frequency, we added registers leading to 7 pipeline stages. In
total, we need 84 FFs for the pipelining, bringing the total number of NAND gates
for the Boolean function to 2115.5.

Further we need two more XOR gates for the linear masking and the addition
of the key stream to the plaintext. For the MAC algorithm, two registers of 64 bits,
64 XOR gates and 64 AND gates are required. This consists of around 1792 gates.

The total gate count for this design, which is already pipelined and has an
incorporated MAC algorithm, can be approximated by 7062 gates. To further reduce
the gate count if needed, some possibilities could be reducing the MAC length to
32 bits, leaving out the pipelining, searching for a more efficient implementation for
the inversion function and using specialized libraries.

We have implemented the design on a Xilinx Spartan xc3s5000 FPGA, and
we achieve a clock frequency of 172 MHz (at each clock one bit of ciphertext is
generated). We are currently implementing some versions of the design for achieving
various tradeoffs between gate count and encryption speed.

7 Implementation Issues

An encryption algorithm needs to be mathematically secure, but it must also be
implementable it in a secure way. Many side-channel attacks on encryption algo-
rithms have been developed in recent years. The most notable class of attacks are
differential power analysis (DPA) attacks [24] and related attacks. Any design in
which operations, depending on a subset of the key bits, are performed repeatedly
is potentially vulnerable to this class of attacks. They hence also apply to stream
ciphers with resynchronization mechanism, as shown in [27]. We believe that espe-
cially irregularly clocked designs are vulnerable for these side-channel attacks, which
is one of the reasons for choosing a regularly clocked cipher.

A possible countermeasure against DPA and related attacks for block ciphers is
a masking scheme, as introduced in [1]. SFINKS has the particularity that it can be
easily masked with similar concepts, as opposed to other stream ciphers where we
know of no straightforward way of using a masking scheme. The linear parts can be
masked in a simple way and the inversion function can be masked in a way similar
to the approach used for masking the AES S-box.

We now roughly explain how to mask our design. The first component of the
cipher is the LFSR which is a linear transformation and straightforward to mask.



The second component consists of the filter function where the nonlinear part is the
inverse function in F216 . As shown in [34], in order to mask the inverse function, the
computations should be performed in F22 , since the inverse in this field is a linear
transformation and thus easy to mask. Extending the masking scheme of [34] to
one layer higher, leads to a masking scheme for the inverse in F216 . We refer to the
extended version for a detailed analysis of the masking scheme.

8 Tweaks

We have proposed a clear design and discussed its security against all known attacks.
The filter function in the design is based on the inverse S-box in F16

2 . Since we only use
2 output bits of this function (one for the key stream and one for the authentication),
there is still a lot of freedom in the design.

The first possibility is to increase the throughput. Instead of outputting 1 bit, we
can output more bits. Therefore, we studied all linear and nonlinear combinations
of 2 and 3 output bits of the inverse S-box in F16

2 . All of them maintain the AI of 6
and have degree 15. However, the best bias for the affine approximation decreases to
ε = 2−7.52 and ε = 2−7.11 for 2 respectively 3 output bits. From the analysis above,
we may conclude that this is not an immediate security concern. When outputting 4
bits, there exist nonlinear combinations which have AI equal to 5. However, further
analysis is required for investigating if the extra information that is leaked in this
way can lead to more efficient attacks. For instance, is it possible to exploit the fact
that all output functions of the inverse S-box are affine equivalent [15]?

Another possibility, which makes the analysis harder but may increase the secu-
rity, is to destroy the linearity of the state. We could consider a filter generator with
memory by simply feeding some remaining bits from the inversion function into a
nonlinear memory. Another possibility is to feedback bits of the inverse S-box into
the LFSR during key stream generation, in a manner similar to what is done during
resynchronization. In both cases, it seems that the added nonlinearity may allow us
to increase the throughput.

Clearly, the analysis of both designs is much more difficult. Although we expect
to obtain a higher security since the nonlinearity of the filter function is now reused
for destroying the linearity in the first part of the generator, we recommend to obtain
first a more thorough analysis for these schemes.

Since we are aware of the fact that the security against the (fast) algebraic attack
is really on the edge due to the low AI of the inverse function in ϕ = 16, we propose
some other filter functions with strictly higher AI, comparable nonlinearity, which
are still good with respect to the hardware complexity.

– The inverse function in F17
2 has degree 16, AI equal to 7, and ε = 2−8.50. More-

over, the function can be easily implemented by performing the computations in
the normal basis {α, α2, α4, · · · , α216} of F17

2 . Computing the power function in
this basis will not change the properties of nonlinearity, degree, AI and Walsh
spectrum of the output functions, since power functions in different bases are
linearly equivalent. Squaring in this basis represents simply a cyclic shift of the
vector representation of that element. Consequently, the inverse of an element
x ∈ F17

2 , can be computed by means of some shifts (negligable in hardware)



together with 4 multiplications in F17
2 .

x−1 = (x21 · x22
) · (x23 · x24

) · (x25 · x26
) · (x27 · x28

)
·(x29 · x210

) · (x211 · x212
) · (x213 · x214

) · (x215 · x216
)

= (y · y22
) · (y24 · y26

) · (y28 · y210
) · (y212 · y214

) with y = x21 · x22

= (z · z24
) · (z28 · z212

) with z = y · y22

= (w · w28
) with w = z · z24

.

(19)

A similar implementation is possible, by means of 4 multiplications in F16
2 , for

the power function 511 in 16 variables. The output bit of this S-box has degree 8,
AI equal to 7, and ε = 2−8. However, the disadvantage of these functions against
the inverse function in 16 variables is that we do not know any efficient masking
scheme for the above implementation.

– Another interesting class of functions for hardware implementation are the sym-
metric functions. These functions satisfy the property that the output is com-
pletely determined by the weight of the input vector. Therefore, the truth table
vf = (vϕ, . . . , v0), also called value vector, of the symmetric function f on Fϕ

2

reduces to a vector of length ϕ + 1, corresponding with the function values vi of
the vectors of weight i with 0 ≤ i ≤ ϕ. It is easy to check that the following class
of symmetric functions have maximum AI:
Theorem 2. Let f be a symmetric Boolean function on Fϕ

2 for ϕ ≥ 2, with value
vector vf (x) = 0 if wt(x) ≤

⌈ϕ
2

⌉
−1 and 1 else. Then the AI of f is equal to

⌈ϕ
2

⌉
.

By Proposition 2 and Proposition 4 of [7], the degree of these functions are
determined as follows.
Theorem 3. For ϕ = 2i − 1 with i ∈ N, the function defined in Theorem 2
is equal to the homogeneous symmetric polynomial of degree 2i−1. For all other
dimensions ϕ with 2i ≤ ϕ < 2i+1 − 1, the degree is equal to 2i. Moreover, the
ANF of the functions in dimensions ϕ = 2i + 1 and ϕ = 2i + 2, where 2i is no
power of 2, coincides.

If ϕ is odd, these functions are trivially balanced because vf (i) = vf (ϕ − i) for
0 ≤ i ≤

⌊ϕ
2

⌋
. For ϕ even, the functions are not balanced. But by XORing with

an extra input variable from the LFSR, this property is immediately obtained.
However, the nonlinearity of these functions is not high. In particular, it holds
that maxw∈Fϕ

2
|Wf (w)| = 2

(ϕ−1
ϕ−1

2

)
for odd ϕ and equal to

(ϕ
ϕ
2

)
for even ϕ. There-

fore, ε ≈ 2−3.15, 2−3.26, 2−3.348 for ϕ = 13, 15, 17 respectively and ε ≈ 2−3.15, 2−3.26,
2−3.348 for ϕ = 12, 14, 16 respectively.
We suggest to exploit the high AI of these functions together with the high
nonlinearity of the inverse function by taking the direct sum of both. Let us
recall the following properties of the direct sum of two functions.
Lemma 1. Assume f is equal to f(x, y) = f1(x)⊕f2(y) : Fϕ1+ϕ2

2 → F2. Then the
AI of f satisfies max{AI(f1), AI(f2)} ≤ AI(f) ≤ AI(f1)+AI(f2). For the Walsh
spectrum, it holds that Wf (w1, w2) = Wf1(w1)Wf2(w2) and thus εf = εf1

εf2
2 .

If f1 is the output function of the inverse S-box and f2 the symmetric function as
defined above, both in 16 variables, then the function f1(x)⊕f2(y), where x and y
are two different sets of inputs, have AI greater or equal than 8 and ε ≈ 2−10.348.
This function has the additional implementation cost of the symmetric function
but can still be efficiently masked due to the property that wt(x⊕ a) = wt(x) +
wt(a) − 2wt(x · a).



9 Conclusion

The aim of this paper was to explore the possibility for constructing a basic LFSR-
based stream cipher, which is secure, has a low hardware cost and a reasonable
throughput.

We have opted for a regularly clocked LFSR-based filter generator. Such a design
is very transparent, and is one of the few designs for which a very complete analysis
of the linear biases, correlations and nonlinear relations is possible.

We have brought back the security of this scheme with respect to various crypt-
analytic attacks to the properties of the LFSR and the Boolean function used. Then,
building blocks that achieve a good tradeoff between security and performance in
hardware have been chosen. We also described an authentication mechanism that is
closely associated with the stream cipher. We believe that the result, SFINKS, can
be useful in a number of restricted hardware environments where encryption and
authentication are required.

We believe further investigation of LFSR-based schemes is an interesting research
topic. Especially the framework for the recent fast algebraic attacks needs to be
completed.

An important observation we made is that many of the attacks proposed require
an important amount of precomputation. It would be interesting if within ECRYPT
a discussion would be done on the relevance of such attacks. The same holds for
attacks with long key stream requirements.
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A Hardware Implementation of the Inverse S-box in F216

Viewing F(2m)n as a field extension of degree n over F2m , the multiplicative inverse
of ∆ ∈ F(2m)n can be computed as

∆−1 = (∆r)−1 · ∆r−1 with r =
2nm − 1
2m − 1

. (20)

This equation consists of operations which can be performed in the subfield F2m [35]
and can be used recursively to find the inverse in F

(((22)2)
2
)
2 . We use the following

notation:

– F
(((22)2)

2
)
2 is a field extension of degree 2 over F

((22)2)
2 constructed using the

irreducible polynomial P (x) = x2+p1x+p0, where x is a root of the corresponding
polynomial and p1, p0 ∈ F

((22)2)
2 .

– F
((22)2)

2 is a field extension of degree 2 over F(22)2 using the irreducible polynomial

Q(y) = y2 + q1y + q0, with y a root of the polynomial and q1, q0 ∈ F(22)2 .
– F(22)2 is a field extension of degree 2 over F22 using the irreducible polynomial

R(z) = z2 + r1z + r0, with root z and r1, r0 ∈ F22 .
– F22 is a field extension of degree 2 over F2 using the irreducible polynomial

S(u) = u2 + u + 1 with root u.

For our hardware implementation we made the following parameter choices:

– r1 = 0, r0 = u = λ1;
– q1 = 0, q0 = (u + 1)z = λ2;
– p1 = 0, p0 = uzy = λ3.



Eq. (20) is implemented as

∆3 = δ31x + δ30 ∈ F
(((22)2)

2
)
2 :

∆−1
3 = (δ31x + (δ31 + δ30)) · (λ3δ

2
31 + (δ31 + δ30)δ30︸ ︷︷ ︸

∆2

)−1 .

∆2 = δ21y + δ20 ∈ F
((22)2)

2 : (21)

∆−1
2 = (δ21y + (δ21 + δ20)) · (λ2δ

2
21 + (δ21 + δ20)δ20︸ ︷︷ ︸

∆1

)−1 .

∆1 = δ11z + δ10 ∈ F(22)2 :

∆−1
1 = (δ11z + (δ11 + δ10)) · (λ1δ

2
11 + (δ11 + δ10)δ10︸ ︷︷ ︸

∆0

)−1 .

An inversion in F22 requires only one addition:

∆0 = δ01u + δ00 ∈ F22 : ∆−1
0 = δ01u + (δ01 + δ00) . (22)

^−1
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4

4
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Fig. 2. Architecture of the inversion

The inversion in F216 is eventually decomposed into operations in F22 . Therefore
a transformation is needed to go from a representation in F216 (using the irreducible
polynomial t16 + t5 + t3 + t2 + 1) to a representation in F

(((22)2)
2
)
2 . In [35], Paar ex-

plains how a matrix can be created to perform this transformation. Different choices
for the irreducible polynomials P (x), Q(y) and R(z) lead to different transformation
matrices. For every combination of P (x), Q(y) and R(z) there are 16 possibilities
for the transformation matrix. For hardware implementations, the most area effi-
cient transformation matrix is the one that has the least ’1’ entries, because this
number determines the XOR gate count for the transformation. After performing
the inversion using the F

(((22)2)
2
)
2 representation we need to go back to the F216

representation using the inverse of the transformation matrix. Our choice for the
transformation matrices T and T−1 is as follows:



T =




1 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1
0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0
0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1
0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1
0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1
0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0
0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1
0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0
0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0
0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1
0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0
0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1




, T−1 =




0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1
0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1
0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1
0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0
0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1
0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0
0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0
0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1
0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0
0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1
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