
1

FIREFOX MOBILE CRASHREPORTER PATH
TRAVERSAL

Roee Hay
IBM Security Systems

roeeh@il.ibm.com

Abstract—We present newly found Path Traver-
sal vulnerabilities in the Firefox Android App.
The vulnerabilities can be exploited by a malicious
application running on the device to subvert the
confidentiality and integrity of Firefox. We show
how a malicious application can exploit the vul-
nerabilities to subvert Firefox for leaking sensitive
files.

I. Android basics

A. Threat model

Android applications are executed in a sandbox
environment to ensure that no application can ac-
cess sensitive information held by another without
adequate privileges. For example, Android’s browser
application holds sensitive information such as cook-
ies, cache and history which cannot be accessed by
third-party apps. An android app may request spe-
cific privileges (permissions) during its installation;
if granted by the user, the app’s capabilities are
extended. Permissions are defined under the appli-
cation’s manifest file (AndroidManifest.xml).

B. Activities and Services

Android apps are composed of application com-
ponents of different types including activities and
services. An Activity, implemented by the an-

droid.content.Activity class [1], defines a single
UI, e.g. A browsing window or a preferences screen.
Services [2] are applications components which are
used for background tasks.

C. Inter-Process Communication (IPC) and Intents

Android applications make heavy use of IPC. This
is achieved by Intents. These are messaging objects
which contain several attributes such as an action,
data, category, target and extras. The data attribute
is a URI which identifies the intent (e.g. tel:0422123).
Each Intent can also contain extra data fields (aka
Intent extras) which reside inside a bundle (imple-
mented by the android.os.Bundle class [3]). These

extra fields can be set by using the Intent.putExtra
API or by manipulating the extras bundle directly.
It is important to emphasize that intents provide a
channel for a malicious app to inject malicious data
into a target, potentially vulnerable app. Intents can
be sent anonymously (implicit intents, i.e. target is
not specified) and non-anonymously (explicit intents,
target is specified). Intents can be broadcast, passed
to the startActivity call (when an application
starts another activity), or passed to the start-

Service call (when an application starts a service).
Under the application’s manifest file, an application
component may claim whether it can be invoked
externally using an Intent, and if so which set of per-
missions is required. We define a public application
component as one which can be invoked externally
by a (potentially malicious) application without a
required set of permissions. All other components are
defined as private, i.e. they can only be invoked by
other application components of the same package,
or externally with adequate privileges.

II. The Crash Reporter Normal Operation

The org.mozilla.gecko.CrashReporter class is
a public activity. Its purpose is to send crash dumps
to Mozilla when needed (Figure II.1). The CrashRe-
porter activity receives the dump file path as an
input (an Intent extra parameter). When the activity
is launched, its onCreate method (Figure II.2) is
executed and the following actions take place:

1) Using the movefile (Figure II.3) method, the
given minidump file is moved to the pending
minidumps path, files/mozilla/Crash Re-

ports/pending.

2) A meta-data filename is deduced from the given
minidump file path, by replacing all ’.dmp’
occurrences with ’.extra’. i.e. <filename>.dmp
becomes <filename>.extra.

3) The meta-data file is moved to the pending
minidumps path using the moveFile method
.

2

Figure II.1. Crash Reporter dialog

4) The meta-data file is parsed as a
’<key>=<value>’ file format (Figure II.4).
The target server URL (i.e. the one which the
crash information is sent to) is specified here
using the ServerURL key.

5) The crash dialog is present to the user (Figure
II.1).

If the user presses the Close or Restart buttons with
the Send report check-box enabled, the minidump
alongside with other sensitive information is sent
to the specified server by calling the sendReport

method. It should be noted that if the user has also
checked the Include URL check-box, then Android
logs are sent as well.

III. Vulnerabilities

The CrashReporter activity consumes the
minidump path from the input intent (Figure II.2,
Line 4) although it should be considered untrusted
data, since the activity is public as defined in
the Android Manifest file. Therefore, a malicious
application can control the source path of the moved
minidump file and the deduced extra file (Figure
II.2, Lines 8, 11). We will see in the next section that
this allows that attacker to control the destination
server for the crash report, hence the response value
used as a file path in Figure II.5, Line 19 should be
untrusted as well.

IV. Possible Exploitation & Impact

Generally a path traversal weakness affects both
the confidentiality and integrity of the vulnerable
app. In the next subsections we will see concrete
exploits for Firefox.

A. Information Disclosure

The attacker can exploit the Path Traversal vul-
nerability in order to steal sensitive files. Concretely
we will demonstrate how he can leak one of the cache
files to an arbitrary server.

1) Phase 1: Profile directory path leakage:
Since the cache file resides under the user’s
profile directory which contains random bytes
(files/mozilla/<random_bytes>.default), the
first step would be to leak its path. Luckily Firefox
writes the path to the Android Log:

D/GeckoProfile(4766): Found profile dir:
/data/data/.../files/mozilla/24pd90uh.default

In Android 4.0 and below, the Android log can easily
read by all apps including the malicious one, by sim-
ply acquiring the android.permission.READ_LOGS

permission. Android 4.1 has introduced a change to
this behavior to prevent such log leakage attacks: The
READ_LOG permissions is now not required, however
applications can only listen their own logs. Since
Firefox sends its log alongside the crash dump report,
it can be abused for sending the logs to the attacker
by adhering to the following protocol:

• The malicious app creates two world
readable files under its data directory:
/data/data/<malicious app>/foo.dmp with
an arbitrary content (can be left empty) and
/data/data/<malicious app>/foo.extra

which contains the attacker’s server,
ServerURL=http://<attacker>/.

• The malicious app generates an Intent ob-
ject which targets the CrashReporter activity
with a minidumpPath parameter set to /data/-

data/<malicious app>/foo.dmp

After the above actions take place, according to the
operation of the CrashReporter activity (Section II),
Firefox will move foo.dmp and foo.extra from the
malicious app data directory to the Firefox crash
reports pending path and then parse foo.extra for
key-value pairs. Since the extra file now contains the
attacker’s IP as the ServerURL, if the user pressed
one of the buttons on the CrashReporter dialog,
Firefox would send the crash report to the attacker.
If the user has also checked the Provide IP address
check-box, then Firefox would also append the An-
droid Log output, which contains the Firefox private
logs which included the random profile directory

3

name. It should be noted that since Firefox only
sends a 200 lines window of the log, the leaked path
can be out of that window since it is printed to
log upon Firefox’s launch. In order to make sure
that the path is within the window, the attacker can
restart Firefox by crashing it. This can be easily done
by invoking the CrashReporter activity with a null
minidumpPath parameter.

Another approach to deduce the profile dir path
stems from a different vulnerability in the profile dir
generation and is explained in [4].

2) Phase 2: Data leakage: Firefox stores under
the profile directory sensitive data such as the user’s
cookies and cache. Once the attacker has learnt the
profile dir path he can leak these data with two
different methods:

1) If the target file’s MIME type is not HTML
based, Firefox will automatically download the
file to the Download directory under the sdcard
(/mnt/sdcard/Download), which can be read
by the malicious applications.

2) The second method is to indirectly inject the
ServerURL=http://<attacker> string to the
target file and trick Firefox to use this file as
the minidump extra. For example, by using
this method, the attacker can leak the cache.
First, he opens Firefox (using an Intent) on
an attacker’s controlled website, which contains
the above string in its HTML body (Figure
IV.1). After the cache has been prepared, the
attacker can leak it by exploiting the same path
traversal vulnerability in the CrashReporter

activity. He simply generates another Intent
which targets the CrashReporter activity, with
the minidump Path parameter set to the cache
file. Since the cache file has no ’.dmp’ sub-
string, the computed extra file will be the same,
and the target server URL will be parsed out
of the cache file!.

B. Denial-of-Service

A malicious app can supply an arbitrary filename
or directory name as the minidump file path. Thus it
can render Firefox nonoperational since any supplied
file will be moved to the ’pending’ path.

1 <HTML>
2 <BODY>
3 ServerURL=http : //<ATTACKER>/pos t . php
4 </BODY>
5 </HTML>

Figure IV.1. Injected payload into Firefox’s cache

V. Vulnerable versions

Firefox 25.0.1 has been found vulnerable.

References

[1] Activity class reference. http://developer.android.com/
reference/android/app/Activity.html.

[2] Service class reference. http://developer.android.com/
reference/android/app/Service.html.

[3] Bundle class reference. http://developer.android.com/
reference/android/os/Bundle.html.

[4] Roee Hay. Derandomizing Firefox Profiles, 2013.

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/os/Bundle.html
http://developer.android.com/reference/android/os/Bundle.html

4

1 @Override
2 public void onCreate (Bundle savedIns tanceState) {
3 . . .
4 S t r ing passedMinidumpPath = ge t In t en t () . ge tSt r ingExtra (PASSED MINI DUMP KEY) ;
5 F i l e passedMinidumpFile = new F i l e (passedMinidumpPath) ;
6 F i l e pendingDir = new F i l e (g e tF i l e sD i r () , PENDING SUFFIX) ;
7 pendingDir . mkdirs () ;
8 mPendingMinidumpFile = new F i l e (pendingDir , passedMinidumpFile . getName ()) ;
9 moveFile (passedMinidumpFile , mPendingMinidumpFile) ;

10 F i l e e x t r a sF i l e = new F i l e (passedMinidumpPath . r e p l a c eA l l (” .dmp” , ” . ext ra ”)) ;
11 mPendingExtrasFile = new F i l e (pendingDir , e x t r a sF i l e . getName ()) ;
12 moveFile (e x t r a sF i l e , mPendingExtrasFile) ;
13 mExtrasStringMap = new HashMap<Str ing , Str ing >() ;
14 readStr ingsFromFi le (mPendingExtrasFile . getPath () , mExtrasStringMap) ;
15 . . .
16 }

Figure II.2. onCreate method under CrashReporter

1 private boolean moveFile (F i l e i nF i l e , F i l e ou tF i l e) {
2 Log . i (LOGTAG, ”moving ” + i nF i l e + ” to ” + outF i l e) ;
3 i f (i nF i l e . renameTo (ou tF i l e))
4 return true ;
5 try {
6 outF i l e . createNewFi le () ;
7 Log . i (LOGTAG, ”couldn ’ t rename minidump f i l e ”) ;
8 // so copy i t i n s t ead
9 Fi leChannel inChannel = new Fi leInputStream (i nF i l e) . getChannel () ;

10 Fi leChannel outChannel = new FileOutputStream (outF i l e) . getChannel () ;
11 long t r a n s f e r r e d = inChannel . t rans f e rTo (0 , inChannel . s i z e () , outChannel) ;
12 inChannel . c l o s e () ;
13 outChannel . c l o s e () ;
14 i f (t r a n s f e r r e d > 0)
15 i nF i l e . d e l e t e () ;
16 } catch (Exception e) {
17 Log . e (LOGTAG, ”except ion whi le copying minidump f i l e : ” , e) ;
18 return fa lse ;
19 }
20 return true ;
21 }

Figure II.3. moveFile method under CrashReporter

5

1 private boolean readStr ingsFromFi le (S t r ing f i l ePa th , Map<Str ing , Str ing> stringMap) {
2 try {
3 BufferedReader reader = new BufferedReader (new Fi leReader (f i l ePa t h)) ;
4 return readStringsFromReader (reader , stringMap) ;
5 } catch (Exception e) {
6 Log . e (LOGTAG, ”except ion whi l e read ing s t r i n g s : ” , e) ;
7 return fa lse ;
8 }
9 }

10
11 private boolean readStringsFromReader (BufferedReader reader , Map<Str ing , Str ing> stringMap)
12 throws IOException {
13 St r ing l i n e ;
14 while ((l i n e = reader . readLine ()) != null) {
15 int equalsPos = −1;
16 i f ((equalsPos = l i n e . indexOf (’=’)) != −1) {
17 St r ing key = l i n e . sub s t r i ng (0 , equalsPos) ;
18 St r ing va l = unescape (l i n e . sub s t r i ng (equalsPos + 1)) ;
19 stringMap . put (key , va l) ;
20 }
21 }
22 reader . c l o s e () ;
23 return true ;
24 }

Figure II.4. File parsing under CrashReporter

1 private void sendReport (F i l e minidumpFile , Map<Str ing , Str ing> extras , F i l e e x t r a sF i l e) {
2 f ina l CheckBox includeURLCheckbox = (CheckBox) findViewById (R. id . i n c l u d e u r l) ;
3 S t r ing spec = ext ra s . get (SERVER URL KEY) ;
4 . . .
5 try {
6 URL ur l = new URL(spec) ;
7 HttpURLConnection conn = (HttpURLConnection) u r l . openConnection () ;
8 . . .
9 i f (Bui ld .VERSION.SDK INT >= 16 && includeURLCheckbox . isChecked ()) {

10 sendPart (os , boundary , ”Android Logcat ” , readLogcat ()) ;
11 }
12 . . .
13 s endF i l e (os , boundary , MINI DUMP PATH KEY, minidumpFile) ;
14 . . .
15 i f (conn . getResponseCode () == HttpURLConnection .HTTP OK) {
16 F i l e submittedDir = new F i l e (g e tF i l e sD i r () , SUBMITTED SUFFIX) ;
17 . . .
18 St r ing c ra sh id = responseMap . get (”CrashID ”) ;
19 F i l e f i l e = new F i l e (submittedDir , c r a sh id + ” . txt ”) ;
20 FileOutputStream f o s = new FileOutputStream (f i l e) ;
21 f o s . wr i t e (”Crash ID : ” . getBytes ()) ;
22 f o s . wr i t e (c ra sh id . getBytes ()) ;
23 f o s . c l o s e () ;
24 }
25 . . .
26 }
27 . . .
28 }

Figure II.5. sendReport under CrashReporter

	Android basics
	Threat model
	Activities and Services
	Inter-Process Communication (IPC) and Intents

	The Crash Reporter Normal Operation
	Vulnerabilities
	Possible Exploitation & Impact
	Information Disclosure
	Phase 1: Profile directory path leakage
	Phase 2: Data leakage

	Denial-of-Service

	Vulnerable versions
	References

