
1

DERANDOMIZING FIREFOX PROFILES
Roee Hay

IBM Security Systems
roeeh@il.ibm.com

Abstract—We present a newly found vulnera-
bility in the Firefox Android App. This vulnera-
bility allows a malicious app to to guess correctly
the Firefox profile directory name in a practical
amount of time. Resolving the profile directory
name enables a malicious app to leak any file
which resides in that directory (such as cookies
and cached information) thus it breaks Android’s
sandbox.

I. Android basics

A. Threat model

Android applications are executed in a sandbox
environment to ensure that no application can ac-
cess sensitive information held by another without
adequate privileges. For example, Android’s browser
application holds sensitive information such as cook-
ies, cache and history which cannot be accessed by
third-party apps. An android app may request spe-
cific privileges (permissions) during its installation;
if granted by the user, the app’s capabilities are
extended. Permissions are defined under the appli-
cation’s manifest file (AndroidManifest.xml).

B. Activities and Services

Android apps are composed of application com-
ponents of different types including activities and
services. An Activity, implemented by the an-

droid.content.Activity class [1], defines a single
UI, e.g. A browsing window or a preferences screen.
Services [2] are applications components which are
used for background tasks.

C. Inter-Process Communication (IPC) and Intents

Android applications make heavy use of IPC. This
is achieved by Intents. These are messaging objects
which contain several attributes such as an action,
data, category, target and extras. The data attribute
is a URI which identifies the intent (e.g. tel:0422123).
Each Intent can also contain extra data fields (aka
Intent extras) which reside inside a bundle (imple-
mented by the android.os.Bundle class [3]). These
extra fields can be set by using the Intent.putExtra
API or by manipulating the extras bundle directly.

It is important to emphasize that intents provide a
channel for a malicious app to inject malicious data
into a target, potentially vulnerable app. Intents can
be sent anonymously (implicit intents, i.e. target is
not specified) and non-anonymously (explicit intents,
target is specified). Intents can be broadcast, passed
to the startActivity call (when an application
starts another activity), or passed to the start-

Service call (when an application starts a service).
Under the application’s manifest file, an application
component may claim whether it can be invoked
externally using an Intent, and if so which set of per-
missions is required. We define a public application
component as one which can be invoked externally
by a (potentially malicious) application without a
required set of permissions. All other components are
defined as private, i.e. they can only be invoked by
other application components of the same package,
or externally with adequate privileges.

II. The Math.random() PRNG

The Math.random() static method returns a uni-
formly distributed pseudo-random number between
0 and 1. In Android, the implementation is under
libcore1:

1 public stat ic synchronized double random ()
2 {
3 i f (random == null)
4 {
5 random = new Random () ;
6 }
7 return random . nextDouble () ;
8 }

Figure II.1. Math.random()

Let’s deep-dive into the origins of the seed of
the PRNG. We can see that this method relies on
the java.util.Random class which is seeded in its
default constructor. In Android 4.4 and below, it is
implemented as follows2:

1https://android.googlesource.com/platform/libcore/
2https://android.googlesource.com/platform/libcore/+/
android-4.4 r1.2/luni/src/main/java/java/util/Random.java

2

1 private stat ic St r ing
2 sa l tPro f i l eName (St r ing name)
3 {
4 St r ing al lowedChars =
5 ”abcdefghi jklmnopqrstuvwxyz0123456789 ” ;
6
7 S t r i ngBu i l d e r s a l t =
8 new St r ingBu i l d e r (1 6) ;
9

10 for (int i = 0 ; i < 8 ; i++) {
11 s a l t . append (al lowedChars . charAt ((int)
12 (Math . random () ∗ al lowedChars . l ength ()))) ;
13 }
14 s a l t . append (’ . ’) ;
15 s a l t . append (name) ;
16 return s a l t . t oS t r i ng () ;
17 }

Figure III.1. GeckoProfile.saltProfileName(String name)

1 public Random()
2 {
3 setSeed (System . cur rentTimeMi l l i s ()
4 + System . identityHashCode (this)) ;
5 }

Figure II.2. java.util.Random’s constructor

Therefore the seed depends on a couple of values:

1) The current time in milliseconds precision
(System.currentTimeMillis())

2) The identity hash code of the Random object
(System.identityHashCode(this))

System.identityHashCode is implemented by na-
tive code in the Dalvik VM implementation3. The
identity hash code value is simply the object’s virtual
address which resides in the heap of the Dalvik VM
process.

III. Firefox Profile Directories

Firefox stores the personal data under the profile
directory, located at files/mozilla/X.default/

where X is a randomly chosen word of the lan-
guage [a-z0-9]{8}. The generation of X.default is
implemented by the saltProfileName function the
GeckoProfile class (Figure III.1).

Since the profile directory name is random, Firefox
stores a mapping under the files/mozilla/pro-

files.ini file (Figure III.2)
If Firefox does not find a valid profile, for example

due to a missing profiles.ini, it creates a new one
by calling the createProfileDir function under the
GeckoProfile class.

3https://android.googlesource.com/platform/dalvik.git/+/
android-4.4 r1.2/vm/Sync.cpp

[Profile0]

Default=1

Name=default

IsRelative=1

Path=475jbgu6.default

[General]

StartWithLastProfile=1

Figure III.2. profiles.ini

IV. Vulnerability

saltProfileName uses Math.random() which is
cryptographically insecure. We have seen that its
seed relies on the inner-Random object creation time
(in ms precision) and its Virtual Address (VA). Both
factors are not random. The creation time can be
leaked by an adversary and the VA lacks randomness
due to missing ASLR in the Dalvik VM process. Since
the Dalvik VM is forked from Zygote process, the VA
of the Dalvik Heap is the same for all Android Apps.
To conclude, the seed is not random, thus the profile
directory name entropy is far from the ideal 41.36
random bits (log2 368) and can be predicted by the
adversary as we will see next.

V. Exploitation

Our attacker is a malicious app. We will show how
it can exploit this vulnerability in order to leak any
file under the Firefox profile directory.

A. Derandomizing the seed

Let Y be the chosen seed by Firefox. The goal of
the malicious app is to derandomize it by recording
some value which shares a strong relation with it. Its
VA part cannot be deterministically, however most
of its bits can be leaked easily by the malicious
app by simply querying its own process using the
System.identitiyHashCode routine on some object.
The ms time factor cannot be deterministically de-
termined, however most of its bits can be leaked in
two different ways. First, if Firefox had been installed
after the malicious app, the latter can record the first
Firefox run by simply monitoring the device’s process
list. Otherwise the malicious app can exploit another
vulnerability in Firefox [4] to move the profiles.ini
file to the different directory. Firefox will create a
new profile on its next run, which can be forced by
crashing it (using the same vulnerability in the Crash
Reporter). Again the attacker can record the Firefox
launch time. Let X be the attacker’s inaccurate
sample where X = V A + MeasuredT ime. Let ε be
the error, i.e. ε = Y −X. In our brute-force attack we
try values in the order of their inferred probabilities

3

which can be computed offline by the attacker. Let
N be the number of tries till success, The expected
number of tries is E(N) = 1 + n −

∑n
k=1 k · p(k)

where {pk}nk=1 are the inferred probabilities. A sim-
ple model is to assert that ε is a (discrete) bell-curve
with the center estimated by ε̄ = x̄-ȳ. It can be
shown that E(N) = O(E|X − EX|) = O (σε) so a
more narrow bell-curve yields a shorter attack time
(in average).

B. Generating the candidate profile names

By using the inferred probabilities of ε and the
sampled seed, X, the malicious app creates a list
of profile names by mimicking the saltProfileName

implementation (this computation can be also done
off the device and downloaded from the attacker).

C. A Smart Brute-force

This phase is online. The malicious app creates
a specially crafted world-readable HTML file and
commands Firefox to load it (by using an Intent).
The input to this file are the list of profile names
ordered by their probabilities generated earlier. The
JavaScript code in the HTML file goes over the list,
searching for the correct profile. When there is a
match, it can download any file under the profiles
directory by creating an iframe with the filename
as its source. If Firefox cannot render the file, it
will automatically download the file to the sdcard
(/mnt/sdcard/Download), a folder which can be read
by the malicious app!

VI. Evaluation

We tested our exploit on Firefox 25.0.1 running on
Samsung GT-I9500 Galaxy S4 device equipped with
Android 4.2.2. In order to infer the probabilities of ε
we ran 404 independent runs of the following test:

1) As the malicious app, call Math.Random() and
retrieve its identityHashCode (Figure VI.1)

2) Start monitoring the process list in a frequency
of 20 Hz for recording the Firefox launch time.

3) Remove the profile.ini file from the Firefox di-
rectory by exploiting using the Crash Reporter
vulnerability

4) Record the created profile directory
5) Kill Firefox
6) Restart Firefox
7) Print the needed values.

For example, for each run we received and recorded
the following data:

Sampled addr: 42dc6cd8

Sampled Time: 1385337348079

1 Math . random () ;
2 F i e ld f = Math . class .
3 ge tDec la r edF i e ld (”random”) ;
4 f . s e tA c c e s s i b l e (true) ;
5 Random r = (Random) f . get (null) ;
6 Long addr = System . identityHashCode (r) ;

Figure VI.1. Retrieving the identityHashCode of the Math
inner Random object

�

�������

�������

�������

�������

��������

��������

��������

��������

� ������� ������� ������� ������� �������� �������� ��������

Figure VI.2. Linear connections between the real seed and the
sampled one

Sampled Seed: 142cf66ccc7

Created profile: xa1x453r.default

Later we calculated the real seed and ε by an offline
brute-force. For example, for the data above, the real
seed is 1386459232784 and ε = 142665.

We witnessed three strong linear connections be-
tween Y and X (Figure VI.2). We believe that the
reason for the less dense lines rely on Dalvik Heap
internals which caused the offset to ’jump’ with a
fixed number for a few tests (i.e. the probability for
this to happen is low).

We created a histogram for inferring of ε for the
probabilities by their frequencies (Figure VI.3) and
calculated the expected number of tries, E(N), which
is 152779.65 and is equivalent to 17.22 bits. Note that
the Shannon entropy is very close, 18.63 bits. We’ve
got an entropy which is much lower than the ideal 64
bits (the java long primitive size) seed entropy, thus
the attack is feasible.

We then adhered to the steps of section V, taken
the simpler approach where we assert a symmetric
bell curve. Since we received three linear connections,
we have taken a slightly different approach. We
denote p1, p2, p3 as the probabilities for the error to
be taken from each curve and assert that each error is
normally distributed with its respective variance (the
actual discrete error is the rounded value, see Figure
VI.4). Therefore ε is ε1 ∼ N

(
0, σ2

1

)
in probability p1

, ε2 ∼ N
(
0, σ2

2

)
in probability p2 and ε3 ∼ N

(
0, σ2

3

)

4

�

����

����

����

����

���

����

����

������� ������ 	����� ������ ������� ������� �
�����

Figure VI.3. ε Histogram

�

����

����

����

����

���

����

������� ������ 	����� ������ ������� ������� �
�����

Figure VI.4. Normalized−ε histogram

in probability p3. We brute-force in the order of the
probabilities. We ran our exploit and successfully
caused Firefox to download sensitive files into the
sdcard which can be read by the malicious app
(Figure VI.5). It should be noted that according to
the ’normalized’ model, the expected number of tries
is 214373.3 which is equivalent to 17.709 bits.

VII. Vulnerable versions

Firefox 25.0.1 has been found vulnerable.

References

[1] Activity class reference. http://developer.android.com/
reference/android/app/Activity.html.

[2] Service class reference. http://developer.android.com/
reference/android/app/Service.html.

[3] Bundle class reference. http://developer.android.com/
reference/android/os/Bundle.html.

[4] Roee Hay. Firefox Mobile Crash Reporter Path Traversal,
2013.

Figure VI.5. Malicious file download

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/os/Bundle.html
http://developer.android.com/reference/android/os/Bundle.html

	Android basics
	Threat model
	Activities and Services
	Inter-Process Communication (IPC) and Intents

	The Math.random() PRNG
	Firefox Profile Directories
	Vulnerability
	Exploitation
	Derandomizing the seed
	Generating the candidate profile names
	A Smart Brute-force

	Evaluation
	Vulnerable versions
	References

