
MODULE Z 
THE C STORAGE CLASSES, SCOPE 

AND MEMORY ALLOCATION 
  
My Training Period:          hours 
  
Note: gcc compilation examples are given at the end of this Module. 
  
Abilities: 
  

▪         Understand and use the auto, register, extern and static keywords. 
▪         Understand the basic of the process address space. 
▪         Understand and appreciate the static, automatic and dynamic memory allocations. 
▪         Understand how the memory is laid out for a running process. 
▪         Understand and use the malloc(), calloc(), realloc() and free() functions. 

  
Z.1  INTRODUCTION 
  

- The storage class determines the part of memory where storage is allocated for an object (particularly 
variables and functions) and how long the storage allocation continues to exist. 

- A scope specifies the part of the program which a variable name is visible, that is the accessibility of 
the variable by its name.  In C program, there are four storage classes: automatic, register, external, and 
static. 

- Keep in mind that in the hardware terms we have primary storage such as registers, cache, memory 
(Random Access Memory) and secondary storage such as magnetic and optical disk. 

  
Z.1.1  AUTOMATIC VARIABLE - auto 
  

- They are declared at the start of a program’s block such as the curly braces ( { } ).  Memory is 
allocated automatically upon entry to a block and freed automatically upon exit from the block. 

- The scope of automatic variables is local to the block in which they are declared, including any blocks 
nested within that block. For these reasons, they are also called local variables. 

- No block outside the defining block may have direct access to automatic variables (by variable name) 
but, they may be accessed indirectly by other blocks and/or functions using pointers.  

- Automatic variables may be specified upon declaration to be of storage class auto.  However, it is not 
required to use the keyword auto because by default, storage class within a block is auto. 

- Automatic variables declared with initializers are initialized every time the block in which they are 
declared is entered or accessed. 

  
Z.1.2  REGISTER VARIABLE - register 
  

- Automatic variables are allocated storage in the main memory of the computer; however, for most 
computers, accessing data in memory is considerably slower than processing directly in the CPU.   

- Registers are memory located within the CPU itself where data can be stored and accessed quickly.  
Normally, the compiler determines what data is to be stored in the registers of the CPU at what times.   

- However, the C language provides the storage class register so that the programmer can suggest to 
the compiler that particular automatic variables should be allocated to CPU registers, if possible and it 
is not an obligation for the CPU. 

- Thus, register variables provide a certain control over efficiency of program execution. 
- Variables which are used repeatedly or whose access times are critical may be declared to be of storage 

class register.  
- Variables can be declared register as follows: 

  
register int var; 

  
Z.1.3  EXTERNAL VARIABLE - extern 
  

- All variables we have seen so far have had limited scope (the block in which they are declared) and 
limited lifetimes (as for automatic variables). 

- However, in some applications it may be useful to have data which is accessible from within any block 
and/or which remains in existence for the entire execution of the program.  Such variables are called 
global variables, and the C language provides storage classes which can meet these requirements; 
namely, the external (extern) and static (static) classes.  

Page 1 of 19 www.tenouk.com

http://www.tenouk.com/Module000.html


- Declaration for external variable is as follows: 
  

extern int var; 
  

- External variables may be declared outside any function block in a source code file the same way any 
other variable is declared; by specifying its type and name (extern keyword may be omitted).   

- Typically if declared and defined at the beginning of a source file, the extern keyword can be 
omitted.  If the program is in several source files, and a variable is defined in let say file1.c and 
used in file2.c and file3.c then the extern keyword must be used in file2.c and 
file3.c. 

- But, usual practice is to collect extern declarations of variables and functions in a separate header 
file (.h file) then included by using #include. 

- Memory for such variables is allocated when the program begins execution, and remains allocated until 
the program terminates.  For most C implementations, every byte of memory allocated for an external 
variable is initialized to zero.  

- The scope of external variables is global, i.e. the entire source code in the file following the 
declarations. All functions following the declaration may access the external variable by using its 
name.  However, if a local variable having the same name is declared within a function, references to 
the name will access the local variable cell. 

- The following program example demonstrates storage classes and scope.   
  

/*storage class and scope*/ 
#include <stdio.h> 
  
void funct1(void); 
void funct2(void); 
  
/*external variable, scope is global to main(), funct1() 
and funct2(), extern keyword is omitted here, coz just one file*/ 
int globvar = 10; 
  
int main() 
{ 
printf("\n****storage classes and scope****\n"); 
/*external variable*/ 
globvar = 20; 
  
printf("\nVariable globvar, in main() = %d\n", globvar); 
funct1(); 
printf("\nVariable globvar, in main() = %d\n", globvar); 
funct2(); 
printf("\nVariable globvar, in main() = %d\n", globvar); 
return 0; 
} 
  
/*external variable, scope is global to funct1() and funct2()*/ 
int globvar2 = 30; 
  
void funct1(void) 
{ 
/*auto variable, scope local to funct1() and funct1() 
cannot access the external globvar*/ 
char globvar; 
  
/*local variable to funct1()*/ 
globvar = 'A'; 
/*external variable*/ 
globvar2 = 40; 
  
printf("\nIn funct1(), globvar = %c and globvar2 = %d\n", globvar, globvar2); 
} 
  
void funct2(void) 
{ 
/*auto variable, scope local to funct2(), and funct2() 
cannot access the external globvar2*/ 
double globvar2; 
/*external variable*/ 
globvar =  50; 
/*auto local variable to funct2()*/ 
globvar2 = 1.234; 
printf("\nIn funct2(), globvar = %d and globvar2 = %.4f\n", globvar, globvar2); 
} 

  

Page 2 of 19 www.tenouk.com



Output: 
  

 
  

- External variables may be initialized in declarations just as automatic variables; however, the 
initializers must be constant expressions. The initialization is done only once at compile time, i.e. when 
memory is allocated for the variables.  

- In general, it is a good programming practice to avoid use of external variables as they destroy the 
concept of a function as a 'black box'. 

- The black box concept is essential to the development of a modular program with modules.  With an 
external variable, any function in the program can access and alter the variable, thus making debugging 
more difficult as well.  This is not to say that external variables should never be used.   

- There may be occasions when the use of an external variable significantly simplifies the 
implementation of an algorithm.  Suffice it to say that external variables should be used rarely and with 
caution.  

  
Z.1.4  STATIC VARIABLE - static 
  

- As we have seen, external variables have global scope across the entire program (provided extern 
declarations are used in files other than where the variable is defined), and have a lifetime over the 
entire program run. 

- Similarly, static storage class provides a lifetime over the entire program, however; it provides a way to 
limit the scope of such variables, and static storage class is declared with the keyword static as the 
class specifier when the variable is defined. 

- These variables are automatically initialized to zero upon memory allocation just as external variables 
are.  Static storage class can be specified for automatic as well as external variables such as: 

  
static extern varx;  

  
- Static automatic variables continue to exist even after the block in which they are defined terminates. 

Thus, the value of a static variable in a function is retained between repeated function calls to the same 
function. 

- The scope of static automatic variables is identical to that of automatic variables, i.e. it is local to the 
block in which it is defined; however, the storage allocated becomes permanent for the duration of the 
program. 

- Static variables may be initialized in their declarations; however, the initializers must be constant 
expressions, and initialization is done only once at compile time when memory is allocated for the 
static variable. 

  
/*static storage class program example*/ 
#include <stdio.h> 
#define MAXNUM 3 
  
void sum_up(void); 
  
int main() 
{ 
int count; 
  
printf("\n*****static storage*****\n"); 
printf("Key in 3 numbers to be summed "); 
for(count = 0; count < MAXNUM; count++) 
sum_up(); 
printf("\n*****COMPLETED*****\n"); 

Page 3 of 19 www.tenouk.com



return 0; 
} 
  
void sum_up(void) 
{ 
/*At compile time, sum is initialized to 0*/ 
static int sum = 0; 
int num; 
  
printf("\nEnter a number: "); 
scanf("%d", &num); 
sum += num; 
printf("\nThe current total is: %d\n", sum); 
} 

  
Output: 

  

 
  

- While the static variable, sum, would be automatically initialized to zero, it is better to do so explicitly. 
- In any case, the initialization is performed only once at the time of memory allocation by the compiler.  

The variable sum retains its value during program execution. 
- Each time the sum_up() function is called sum is incremented by the next integer read.  To see the 

different you can remove the static keyword, recompile and rerun the program. 
  
Z.2  DYNAMIC MEMORY ALLOCATION 
  

- In the previous section we have described the storage classes which determined how memory for 
variables is allocated by the compiler. 

- When a variable is defined in the source program, the type of the variable determines how much 
memory the compiler allocates. 

- When the program executes, the variable consumes this amount of memory regardless of whether the 
program actually uses the memory allocated. This is particularly true for arrays. 

- However, in many situations, it is not clear how much memory the program will actually need.  For 
example, we may have declared arrays to be large enough to hold the maximum number of elements 
we expect our application to handle. 

- If too much memory is allocated and then not used, there is a waste of memory.  If not enough memory 
is allocated, the program is not able to fully handle the input data.  

- We can make our program more flexible if, during execution, it could allocate initial and additional 
memory when needed and free up the memory when it is no more needed. 

- Allocation of memory during execution is called dynamic memory allocation.  C provides library 
functions to allocate and free memory dynamically during program execution.  Dynamic memory is 
allocated on the heap by the system.  

- It is important to realize that dynamic memory allocation also has limits.  If memory is repeatedly 
allocated, eventually the system will run out of memory. 

  
Z.3  PROCESS MEMORY LAYOUT 
  

- A running program is called a process and when a program is run, its executable image is loaded into 
memory, normally called a process address space in an organized manner. 

Page 4 of 19 www.tenouk.com



- This is a physical memory space and do not confuse yourself with the virtual address space explained 
in Module W. 

- Process address space is organized into three areas of memory, called segments: the text segment, stack 
segment, and data segment (bss and data) and can be illustrated below. 

  

 
  

Figure: z.1 
  

- The text segment (also called a code segment) is where the compiled code of the program itself resides. 
- The following Table summarized the segments in the memory address space layout as illustrated in the 

previous Figure. 
  

Segment Description 

Code - text 
segment 

Often referred to as the text segment, this is the area in which the 
executable instructions reside.  For example, Linux/Unix arranges things 
so that multiple running instances of the same program share their code if 
possible.  Only one copy of the instructions for the same program resides 
in memory at any time.  The portion of the executable file containing the 
text segment is the text section. 

Initialized data – 
data segment 

Statically allocated and global data that are initialized with nonzero values 
live in the data segment.  Each process running the same program has its 
own data segment.  The portion of the executable file containing the data 
segment is the data section. 

Uninitialized 
data – bss 
segment 

BSS stands for ‘Block Started by Symbol’.  Global and statically allocated 
data that initialized to zero by default are kept in what is called the BSS 
area of the process.  Each process running the same program has its own 
BSS area.  When running, the BSS data are placed in the data segment.  In 
the executable file, they are stored in the BSS section.  For Linux/Unix the 
format of an executable, only variables that are initialized to a nonzero 
value occupy space in the executable’s disk file. 

Heap 

The heap is where dynamic memory (obtained by malloc(), 
calloc(), realloc() and new – C++) comes from.  Everything on a 
heap is anonymous, thus you can only access parts of it through a pointer. 
As memory is allocated on the heap, the process’s address space grows.  
Although it is possible to give memory back to the system and shrink a 
process’s address space, this is almost never done because it will be 
allocated to other process again.   Freed memory (free() and delete – 
C++) goes back to the heap, creating what is called holes.   It is typical for 
the heap to grow upward.  This means that successive items that are added 
to the heap are added at addresses that are numerically greater than 
previous items.  It is also typical for the heap to start immediately after the 

Page 5 of 19 www.tenouk.com

http://www.tenouk.com/ModuleW.html


BSS area of the data segment.  The end of the heap is marked by a pointer 
known as the break. You cannot reference past the break. You can, 
however, move the break pointer (via brk() and sbrk() system calls) 
to a new position to increase the amount of heap memory available. 

Stack 

The stack segment is where local (automatic) variables are allocated.  In C 
program, local variables are all variables declared inside the opening left 
curly brace of a function body including the main() or other left curly 
brace that aren’t defined as static.  The data is popped up or pushed into 
the stack following the Last In First Out (LIFO) rule.  The stack holds 
local variables, temporary information, function parameters, return address 
and the like.  When a function is called, a stack frame (or a procedure 
activation record) is created and PUSHed onto the top of the stack. This 
stack frame contains information such as the address from which the 
function was called and where to jump back to when the function is 
finished (return address), parameters, local variables, and any other 
information needed by the invoked function. The order of the information 
may vary by system and compiler.  When a function returns, the stack 
frame is POPped from the stack.  Typically the stack grows downward, 
meaning that items deeper in the call chain are at numerically lower 
addresses and toward the heap. 

  
Table z.1 

  
- In the disk file (object files) the segments were called sections. 
- By using a C program, the segments can be illustrated below. 

  

 
  

Figure z.2 
  
Z.4  SOME TERMS 
  

- In C language memory allocation through the variables in C programs is supported by two kinds of 
memory allocation as listed in the following Table. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Page 6 of 19 www.tenouk.com



Memory Allocation 
Type Description 

Static allocation 

This allocation happens when you declare a static or global variable.  
Each static or global variable defines one block of space, of a fixed 
size.  The space is allocated once, when your program is started, and is 
never freed.  In memory address space, for uninitialized variables are 
stored in bss segment where as initialized variables stored in data 
segment.  

Automatic allocation 

This allocation happens when you declare an automatic variable, such 
as a function argument or a local variable. The space for an automatic 
variable is allocated when the compound statement containing the 
declaration is entered, and is freed when that compound statement is 
exited.  As discussed before this allocation done in the stack segment. 

  
Table z.2 

  
- Dynamic allocation is not supported by C variables; there is no storage class called ‘dynamic’, and 

there can never be a C variable whose value is stored in dynamically allocated space. 
- The only way to refer to dynamically allocated space is through a pointer.  Because it is less 

convenient, and because the actual process of dynamic allocation requires more computation time, 
programmers generally use dynamic allocation only when neither static nor automatic allocation will 
serve. 

- The dynamic allocation done by using functions and the memory used is heap area. 
  
Z.5  STACK AND HEAP 
  

- The stack is where memory is allocated for automatic variables within functions.  A stack is a Last In 
First Out (LIFO) storage where new storage is allocated and de-allocated at only one end, called the top 
of the stack.  Every function call will create a stack (normally called stack frame) and when the 
function exit, the stack frame will be destroyed.   

- By referring the following program example and Figure z.3, when a program begins execution in the 
function main(), stack frame is created, space is allocated on the stack for all variables declared 
within main(). 

- Then, when main() calls a function, a(), new stack frame is created for the variables in a() at the 
top of the main() stack.  Any parameters passed by main() to a() are stored on the stack. 

- If a() were to call any additional functions such as b() and c(), new stack frames would be 
allocated at the new top of the stack.  Notice that the order of the execution happened in the sequence.   

- When c(), b() and a() return, storage for their local variables are de-allocated, the stack frames are 
destroyed and the top of the stack returns to the previous condition.  The order of the execution is in the 
reverse. 

- As can be seen, the memory allocated in the stack area is used and reused during program execution.  It 
should be clear that memory allocated in this area will contain garbage values left over from previous 
usage. 

  
#include <stdio.h> 
  
int a(); 
int b(); 
int c(); 
  
int a() 
{ 

b(); 
c(); 
return 0; 

} 
  
int b() 
{ return 0; }  
  
int c() 
{ return 0; }  
  
int main() 
{ 

a(); 
return 0; 

} 

Page 7 of 19 www.tenouk.com



  
- By taking just the stack area, the following Figure illustrates what happened to the stack when the 

above program is run.  At the end there should be equilibrium. 
  
  

 
Figure z.3:  Stack frame and function call 

  
Z.5.1  FUNCTION CALLING CONVENTION 
  

- It has been said before, for every function call there will be a creation of a stack frame.  It is very useful 
if we can study the operation of the function call and how the stack frame for function is constructed 
and destroyed. 

- For function call, compilers have some convention used for calling them.  A convention is a way of 
doing things that is standardized, but not a documented standard. 

- For example, the C/C++ function calling convention tells the compiler things such as: 
  

▪         The order in which function arguments are pushed onto the stack.  
▪         Whether the caller function or called function (callee) responsibility to remove the arguments 

from the stack at the end of the call that is the stack cleanup process.  
▪         The name-decorating convention that the compiler uses to identify individual functions.  

  
- Examples for calling conventions are __stdcall, __pascal, __cdecl and __fastcall (for 

Microsoft Visual C++). 
- The calling convention belongs to a function's signature, thus functions with different calling 

convention are incompatible with each other. 
- There is currently no standard for C/C++ naming between compiler vendors or even between different 

versions of a compiler for function calling scheme. 
- That is why if you link object files compiled with other compilers may not produce the same naming 

scheme and thus causes unresolved externals.  For Borland and Microsoft compilers you specify a 
specific calling convention between the return type and the function's name as shown below. 

  
void __cdecl TestFunc(float a, char b, char c);   //Borland and Microsoft

  
- For the GNU GCC you use the __attribute__ keyword by writing the function definition followed 

by the keyword __attribute__ and then state the calling convention in double parentheses as 
shown below.  

  
void  TestFunc(float a, char b, char c)  __attribute__((cdecl));  //GNU GCC

  
- As an example, Microsoft Visual C++ compiler has three function calling conventions used as listed in 

the following table. 
  

keyword Stack 
cleanup Parameter passing 

__cdecl caller 

Pushes parameters on the stack, in reverse order (right to left).  Caller cleans 
up the stack.  This is the default calling convention for C language that 
supports variadic functions (variable number of argument or type list such 
as printf()) and also C++ programs.  The cdecl calling convention 
creates larger executables than __stdcall, because it requires each 
function call to include stack cleanup code. 

Page 8 of 19 www.tenouk.com



__stdcall callee 

Also known as __pascal.  Pushes parameters on the stack, in reverse order 
(right to left).  Functions that use this calling convention require a function 
prototype.  Callee cleans up the stack.  It is standard convention used in 
Win32 API functions. 

__fastcall callee 
Parameters stored in registers, then pushed on stack.  The fastcall calling 
convention specifies that arguments to functions are to be passed in 
registers, when possible.  Callee cleans up the stack.  

  
Table z.3:  Function calling conventions 

  
- Basically, C function calls are made with the caller pushing some parameters onto the stack, calling the 

function and then popping the stack to clean up those pushed arguments.  For __cdecl assembly 
example: 

  
/*example of __cdecl*/ 
push arg1 
push arg2 
call function 
add ebp, 12   ;stack cleanup 

  
- And for __stdcall example: 

  
/*example of __stdcall*/ 
push arg1 
push arg2 
call function 
/*No stack cleanup, it will be done by caller 

  
- It is a long story if we want to go into the details of the function calls, but this section provides a good 

introduction :o). 
  
Z.5.2  DYNAMIC ALLOCATION – THE FUNCTIONS 
  

- The heap segment provides more stable storage of data for a program; memory allocated in the heap 
remains in existence for the duration of a program. 

- Therefore, global variables (external storage class), and static variables are allocated on the heap.  The 
memory allocated in the heap area, if initialized to zero at program start, remains zero until the program 
makes use of it.  Thus, the heap area need not contain garbage.  

- In ANSI C (ISO/IEC C), there is a family of four functions which allow programs to dynamically 
allocate memory on the heap. 

- In order to use these functions you have to include the stdlib.h header file in your program.  Table 
z.4 summarized these functions. 

- Keep in mind that there are other functions you will find for dynamic memory allocation, but they are 
implementation dependant. 

  
Function Prototype and Description 

malloc() void * malloc (size_t nbytes);
nbytes is the number of bytes that to be assigned to the pointer.  The function returns a 
pointer of type void*.  When allocating memory, malloc() returns a pointer which is 
just a byte address.  Thus, it does not point to an object of a specific type.  A pointer type that 
does not point to a specific data type is said to point to void type, that is why we have to 
type cast the value to the type of the destination pointer, for example:  
  
char * test; 
test = (char *) malloc(10); 
  
This assigns test a pointer to a usable block of 10 bytes.  
 
calloc() void * calloc (size_t nelements, size_t size);
calloc() is very similar to malloc in its operation except its prototype have two 
parameters.  These two parameters are multiplied to obtain the total size of the memory block 
to be assigned. Usually the first parameter (nelements) is the number of elements and the 
second one (size) serves to specify the size of each element. For example, we could define 
test with calloc: 

Page 9 of 19 www.tenouk.com



  
int * test; 
test = (int *) calloc(5, sizeof(int)); 
  
Another difference between malloc and calloc is that calloc initializes all its elements 
to 0. 
 
realloc() void * realloc (void * pointer, size_t elemsize);
It changes the size of a memory block already assigned to a pointer.  pointer parameter 
receives a pointer to the already assigned memory block or a null pointer (if fail), and size 
specifies the new size that the memory block shall have.  The function assigns size bytes of 
memory to the pointer.  The function may need to change the location of the memory block so 
that the new size can fit; in that case the present content of the block is copied to the new 
one.  The new pointer is returned by the function and if it has not been possible to assign the 
memory block with the new size it returns a null pointer. 
 
free() void free (void * pointer);
It releases a block of dynamic memory previously assigned using malloc, calloc or 
realloc.  This function must only be used to release memory assigned with functions 
malloc, calloc and realloc. 
  

NULL NULL is a defined constant used to express null pointers, that is, an 
unassigned pointer or a pointer that points to something but not useful. 

  

size_t

Defined type used as arguments for some functions that require sizes or 
counts specifications.  This represents an unsigned value generally defined in 
header files as unsigned int or by using typedef, typedef 
unsigned int size_t;

  
Table z.4 

  
- In practice, one must always verify whether the pointer returned is NULL.  If malloc() is successful, 

objects in dynamically allocated memory can be accessed indirectly by dereferencing the pointer, 
appropriately cast to the type of required pointer.  

- The size of the memory to be allocated must be specified, in bytes, as an argument to malloc().   
Since the memory required for different objects is implementation dependent, the best way to specify 
the size is to use the sizeof operator.  Recall that the sizeof operator returns the size, in bytes, of 
the operand.  

- For example, if the program requires memory allocation for an integer, then the size argument to 
malloc() would be sizeof(int). 

- However, in order for the pointer to access an integer object, the pointer returned by malloc() must 
be cast to an int *. 

- The typical code example may be in the following form: 
  

int *theptr;
theptr = (int *)malloc(sizeof(int));

  
- Now, if the pointer returned by malloc() is not NULL, we can make use of it to access the memory 

indirectly.  For example: 
  

if (theptr != NULL)
*theptr = 23;

  
- Or, simply: 

  
if (theptr)
*theptr = 23;
printf("Value stored is %d\n", *theptr);

  
- Later, when the memory allocated above may no longer be needed we have to free up the memory 

using: 
  

free((void *) theptr);

Page 10 of 19 www.tenouk.com



  
- This will de-allocate the previously allocated block of memory pointed to by theptr or simply, we 

could write: 
  

free(theptr);
  

- theptr is first converted to void * in accordance with the function prototype, and then the block of 
memory pointed to by theptr is freed.  

- It is possible to allocate a block of memory for several elements of the same type by giving the 
appropriate value as an argument.  Suppose, we wish to allocate memory for 200 float numbers.  If 
fptr is a: 

  
float *

  
- Then the following statement does the job: 

  
fptr = (float *) malloc(200 * sizeof(float));

  
- Pointer fptr points to the beginning of the memory block allocated, that is the first object of the block 

of 200 float objects, fptr + 1 points to the next float object, and so on. 
- In other words, we have a pointer to an array of float type.  The above approach can be used with data 

of any type including structures. 
- In C++ the equivalent construct used are new for memory allocation and delete for de-allocation. 

  
Z.6  PROGRAM EXAMPLES 
  

- The following program example allocates memory using malloc().  In this program we cast the 
void * to int type.  There is no data stored in the memory requested; just an empty memory request 
and we do not de-allocate the memory as well. 

  
/*Playing with malloc(), memory on the heap*/ 
#include <stdio.h> 
#include <stdlib.h> 
  
void main() 
{ 

int x; 
int *y; 
/*do 100000 times iteration, 100000 blocks*/ 
for(x=0; x<100000; x++) 
{ 

/*For every iteration/block, allocate 16K, 
system will truncate to the nearest value*/ 
y = (int *)malloc(16384); 
/*If no more memory*/ 
if(y == NULL) 
{ 
puts("No more memory lol!"); 
/*exit peacefully*/ 
exit(0); 
} 

/*Allocate the memory block, print the block and the address*/ 
printf("Allocating-->block: %i address: %p\n", x, y); 
} 
/*Here, we do not free up the allocation*/ 

} 
  

Output: 
  

Page 11 of 19 www.tenouk.com



 
  

- Eventually, at some point in the run, the program will stop because there is no more memory to be 
allocated. 

- During the program run, the paging or swapping activity will be obvious because system is serving the 
memory request.  For Windows there may be message box indicating your system having low virtual 
memory.  The worst case, your system may hang :o). 

- The program uses the (int *) prototype to allocate 16,384 bytes (16K) of memory for every loop’s 
iteration.  malloc() returns the address of the memory block that successfully allocated. 

- When malloc() returns NULL, it means no more memory could be allocated.  The actual size of 16K 
chunks the program allocates depends upon which memory module/model your compiler is using. 

- The free() function de-allocates memory allocated by malloc() and every time you allocate 
memory that’s not used again in a program; you should use the free() function to release that 
memory to heap. 

- The following program example de-allocates the memory for the previous program. 
  

/*Playing with free(), memory on the heap*/ 
#include <stdio.h> 
#include <stdlib.h> 
  
void main() 
{ 

int x; 
int *y; 
int *buffer = NULL; 
/*do 100 times iteration, 100 blocks*/ 
for(x=0; x<100; x++) 

{ 
/*For every iteration/block, allocate 16K, 
system will truncate to the nearest value*/ 
y = (int *)malloc(16384); 
/*If there is a problem*/ 
if(y == NULL) 
{ 
puts("No more memory for allocation lol!"); 
/*exit peacefully*/ 
exit(0); 
} 

/*Allocate the memory block, print the block and the address*/ 
printf("Allocating-->block: %i address: %p\n", x, y); 
printf("---->Freeing the memory block: %i address: %p\n", x, y); 
free((void *)buffer); 
} 

} 
  

Output: 
  

Page 12 of 19 www.tenouk.com



 
  

- You’ll notice that the program runs all the way through, allocating memory and freeing it up so that 
you really never run out of memory. 

- free() actually doesn't erase memory; it merely flags a chunk of memory as available for re-
allocation by another malloc() function on the heap. 

- The following program example demonstrates the use of malloc() and calloc() to allocate 
memory for an array of integers. 

- You should always verify if the return value from malloc() and calloc() are NULL or not 
because the system may have run out of memory. 

  
/*malloc() and struct*/ 
#include <stdio.h> 
#include <stdlib.h> 
  
struct record{ 
char name[15]; 
int age; 
in  id_num; t
}  ;
  
int main() 
{ 
struct record *ptr; 
printf("\n--malloc() & struct--\n"); 
ptr = (struct record *)malloc((sizeof(struct record))); 
  
if(ptr) 
{ 
printf("\nStudent Name: "); 
gets(ptr->name); 
printf("Student Age: "); 
scanf("%d", &ptr->age); 
printf("Student Id: "); 
scanf("%d", &ptr->id_num); 
printf("\nStudent Name: %s", ptr->name); 
printf("\nStudent Age: %d", ptr->age); 
printf("\nStudent Id Number: %d\n", ptr->id_num); 
free(ptr); 
} 
else 
printf("\nMemory allocation fails!!!\n"); 
return 0; 
} 

  
Output: 

  

Page 13 of 19 www.tenouk.com



 
  

- Another malloc() and calloc() program example. 
  

/*Playing with malloc() and calloc()*/ 
#include <stdio.h> 
#include <stdlib.h> 
  
#define END 10 
  
int main() 
{ 
int *ptr1, *ptr2, *ptr3; 
int i; 
  
/*Get memory for an array using malloc() - 1 parameter*/ 
ptr1 = (int *) malloc(END*sizeof(int)); 
/*If memory allocation fails...*/ 
if (ptr1 == NULL) 
{ 
fprintf(stderr, "malloc() failed!\n"); 
/*exit with an error message*/ 
exit(1); 
} 
  
/*Initialize the array using array notation*/ 
for(i = 0; i < END; i++) 
{ 
ptr1[i] = i+i; 
} 
/*********************************************************/ 
/*Getting memory for an array using calloc() - 2 parameters*/ 
ptr2 = (int *) calloc(END, sizeof(int)); 
/*If memory allocation fails...*/ 
if(ptr2 == NULL) 
{ 
fprintf(stderr, "calloc() failed!\n"); 
/*exit with an error message*/ 
exit(1); 
} 
/*Initialize the array using pointer arithmetic*/ 
ptr3 = ptr2; 
for(i = 0; i < END; i++) 
{ 
*(ptr3++) = i+i; 
} 
  
/*Print array contents*/ 
printf("---Using malloc()---\n"); 
printf("Array pointed by ptr1:\n"); 
for(i = 0; i < END; i++) 
{ 
printf("%3d ", ptr1[i]); 
} 
printf("\n\n"); 
  
printf("---Using calloc()---\n"); 
printf("Array pointed by ptr2:\n"); 
for(i = 0; i < END; i++) 
{ 
printf("%3d ", ptr2[i]); 
} 
printf("\n\n"); 
return 0; 
} 

Page 14 of 19 www.tenouk.com



  
Output: 

  

 
  

- More calloc() and malloc() program example. 
  

/*calloc() and malloc() example*/ 
#include <stdlib.h> 
#include <stdio.h> 
#define n 10 
  
/*a struct*/ 
typedef struct book_type 
{ 
int id; 
char name[20]; 
float price; 
}book; 
  
int main(void) 
{ 
int *aPtr = NULL, *bPtr = NULL, m = 0; 
char *str = NULL; 
book *bookPtr = NULL; 
  
/*create an int array of size 10*/ 
aPtr = (int *)calloc(n, sizeof(int)); 
/*do some verification*/ 
if(aPtr == NULL) 
{ 
printf("calloc for integer fails lol!\n"); 
exit (0); 
} 
else 
printf("memory allocation for int through calloc() is OK\n"); 
  
/*create a char array of size 10*/ 
str = (char *)calloc(n, sizeof(char)); 
if(str == NULL) 
{ 
printf("calloc for char fails lol!\n"); 
exit (0); 
} 
else 
printf("memory allocation for char through calloc() is OK\n"); 
  
/*create a structure of book*/ 
bookPtr = (book *)malloc(sizeof(book)); 
if(bookPtr == NULL) 
{ 
printf("malloc for struct fails lol!\n"); 
exit (0); 
} 
else 
printf("memory allocation for struct through malloc() is OK\n"); 
  
/*clean up the memory allocated*/ 
free(aPtr)  ;
free(str); 
free(bookPtr); 
  
/*other way*/ 
/*get the number of elements from the user and then allocate*/ 
printf("\nEnter the size of integer array (bytes): "); 
scanf("%d", &m); 

Page 15 of 19 www.tenouk.com



bPtr = (int *)calloc(m, sizeof(int)); 
if(bPtr == NULL) 
{ 
printf("calloc for int fails lol!\n"); 
exit (0); 
} 
else 
printf("memory allocation for int through calloc() is OK\n"); 
free(bPtr); 
return 0; 
} 

  
Output: 

  

 
  

- Program example for realloc. 
  

/*Playing with realloc(). Store user input in an array*/ 
#include <stdio.h> 
#include <stdlib.h> 
  
#define INITIAL_SIZE 5; 
  
int main() 
{ 
int *Arr, *temp; 
int limit, input, n = 0, r, i; 
  
/*Initially, allocate some space for A*/ 
limit = INITIAL_SIZE; 
Arr = (int *) malloc (limit * sizeof(int)); 
/*Do some verification, if fail*/  
if (Arr == NULL) 
{ 
/*Display the error message*/ 
fprintf(stderr, "malloc() failed!\n"); 
/*Exit with the error code*/ 
exit(1); 
} 
  
/*array loop*/ 
printf("Enter numbers, 1 per line. End with ctrl-D\n"); 
while(1) 
{ 
printf("Next number: ");   
r = scanf("%d", &input); 
fflush(stdin); 
  
/*verify the input*/ 
if(r < 1) 
break; 
/*Get more space for Arr using realloc()*/ 
if(n >= limit) 
{ 
printf("More than 5 elements per loop, reallocating the storage... \n"); 
limit = 2 * limit; 
temp = (int *)realloc(Arr, limit * sizeof(int)); 
/*Verify again...*/ 
if(temp == NULL) 
{ 
fprintf(stderr, "realloc() failed!\n"); 
exit(1); 
} 
else 
printf("realloc is OK lol, proceed your input...\n"); 
Arr = temp; 
} 

Page 16 of 19 www.tenouk.com



  
Arr[n] = input; 
n++; 
} 
  
/*Trim Arr down to size*/ 
temp = (int *)realloc(Arr, n*sizeof(int)); 
/*Verify...*/ 
if(temp == NULL) 
{ 
fprintf(stderr, "realloc() fails lol!\n"); 
exit(1); 
} 
  
Arr = temp; 
  
printf("\nContents of the array Arr:\n"); 
/*Print the array*/ 
for(i = 0; i < n; i++) 
{ 
printf("%2d ", Arr[i]); 
} 
printf("\n"); 
return 0; 
} 

  
Output: 

  

 
  

- Program examples compiled using gcc. 
  

/*calloc() and malloc() example*/ 
#include <stdlib.h> 
#include <stdio.h> 
#define n 10 
  
/*a struct*/ 
typedef struct book_type 
{ 
int id; 
char name[20]; 
float price; 
}book; 
  
int main(void) 
{ 
int *aPtr = NULL, *bPtr = NULL, m = 0; 
char *str = NULL; 
book *bookPtr = NULL; 
  

Page 17 of 19 www.tenouk.com

http://www.tenouk.com/Module000.html


/*create an int array of size 10*/ 
aPtr = (int *)calloc(n, sizeof(int)); 
/*do some verification*/ 
if(aPtr == NULL) 
{ 
printf("calloc for integer fails lol!\n"); 
exit (0); 
} 
else 
printf("memory allocation for int through calloc() is OK\n"); 
  
/*create a char array of size 10*/ 
str = (char *)calloc(n, sizeof(char)); 
if(str == NULL) 
{ 
printf("calloc for char fails lol!\n"); 
exit (0); 
} 
else 
printf("memory allocation for char through calloc() is OK\n"); 
  
/*create a structure of book*/ 
bookPtr = (book *)malloc(sizeof(book)); 
if(bookPtr == NULL) 
{ 
printf("malloc for struct fails lol!\n"); 
exit (0); 
} 
else 
printf("memory allocation for struct through malloc() is OK\n"); 
  
/*clean up the memory allocated*/ 
free(aPtr)  ;
free(str); 
free(bookPtr); 
  
/*other way*/ 
/*get the number of elements from the user and then allocate*/ 
printf("\nEnter the size of integer array (bytes): "); 
scanf("%d", &m); 
bPtr = (int *)calloc(m, sizeof(int)); 
if(bPtr == NULL) 
{ 
printf("calloc for int fails lol!\n"); 
exit (0); 
} 
else 
printf("memory allocation for int through calloc() is OK\n"); 
free(bPtr); 
return 0; 
} 

  
- Another program example. 

  
[bodo@bakawali ~]$ gcc memalloc.c -o memalloc 
[bodo@bakawali ~]$ ./memalloc 
  
memory allocation for int through calloc() is OK 
memory allocation for char through calloc() is OK 
memory allocation for struct through malloc() is OK 
  
Enter the size of integer array (bytes): 37 
memory allocation for int through calloc() is OK 

  
  

/****************malalloc.c***************************/ 
/************run on FeDora 3 Machine*********************/ 
/*Playing with malloc() and free(), memory on the heap*/ 
#include <stdio.h> 
#include <stdlib.h> 
  
int main() 
{ 
int x; 
int *y; 
int *buffer = NULL; 
/*do 100 times iteration, 100 blocks*/ 
for(x=0; x<100; x++) 

Page 18 of 19 www.tenouk.com



{ 
/*For every iteration/block, allocate 16K, 
system will truncate to the nearest value*/ 
y = (int *)malloc(16384); 
/*If there is a problem*/ 
if(y == NULL) 
{ 
puts("No more memory for allocation lol!"); 
/*exit peacefully*/ 
exit(0); 
} 
else 
{ 
/*Allocate the memory block, print the block and the address*/ 
printf("Allocating-->block: %i address: %p\n", x, y); 
free((void *)buffer); 
printf("---->Freeing the memory block: %i address: %p\n", x, y); 
} 
} 
return 0; 
} 
  
[bodo@bakawali ~]$ gcc malalloc.c -o malalloc 
[bodo@bakawali ~]$ ./malalloc 
  
Allocating-->block: 0 address: 0x804a008 
---->Freeing the memory block: 0 address: 0x804a008 
Allocating-->block: 1 address: 0x804e010 
---->Freeing the memory block: 1 address: 0x804e010 
Allocating-->block: 2 address: 0x8052018 
---->Freeing the memory block: 2 address: 0x8052018 
Allocating-->block: 3 address: 0x8056020 
---->Freeing the memory block: 3 address: 0x8056020 
Allocating-->block: 4 address: 0x805a028 
---->Freeing the memory block: 4 address: 0x805a028 
Allocating-->block: 5 address: 0x805e030 
--
… 

-->Freeing the memory block: 5 address: 0x805e030 

  
-----------------------------------o0o ----------------------------------- 

  
Further reading and digging: 
  

1. Check the best selling C and C++ books at Amazon.com. 

Page 19 of 19 www.tenouk.com

http://www.tenouk.com/cplusbook.html

