## Faculty of Science, Engineering and Computing

## RESIT COURSEWORK

| Module Code: <br> MA1030 | Module Title: <br> Introduction to Linear Algebra |
| :--- | :--- |
| Module Leader: <br> Dr James Denholm-Price |  |
| Student Name and ID No.: |  |

## COURSEWORK REASSESSMENT

This is the coursework component of the summer reassessment (you may also have a resit exam - check your results on OSIS if you haven't already done-so).

For this reassessment you are required to complete all four of the following questions and submit solutions (with full working) to the Maths School Resit dropbox by 10AM on Friday $16^{\text {th }}$ August 2013.

## Deadline for Submission is

## 10am on

$16^{\text {th }}$ August 2013
to drop-in boxes in Sopwith Building.

## MA1030 Introduction to Linear Algebra - Summer Resit Coursework

This coursework is due for submission by 10AM on Friday $16^{\text {th }}$ August to the Student Office.
You should complete all four questions, showing full working throughout.
All questions carry equal marks.
1.
(a) (i) Find the adjoint of the matrix $A=\left(\begin{array}{rrr}-1 & a & 2 \\ a & 4 & a \\ 2 & a & -1\end{array}\right)$ (where $a$ is some scalar value).
(ii) For what value(s) of $a$ will $A$ have an inverse?
(iii) Hence find the solution to the system:

$$
\begin{aligned}
-x+3 y+2 z & =-2 \\
3 x+4 y+3 z & =3 \\
2 x+3 y-z & =-11
\end{aligned}
$$

(b) Given that for any pair of $n \times n$ matrices $A$ and $B$ you may assume $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ use the rules of matrix algebra to prove that $\operatorname{det}(P Q R)=\operatorname{det}(R Q P)$ where $\mathrm{P}, \mathrm{Q}$ and R are $n \times n$ matrices.
2. (a) (i) Find the (smaller) angle between the vectors $\mathbf{a}=\left(\begin{array}{r}5 \\ 1 \\ -2\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{r}2 \\ -1 \\ 3\end{array}\right)$
(ii) Find a unit vector which is perpendicular to both the vectors $\mathbf{a}$ and $\mathbf{b}$ above.
(iii) Hence find the equation of the plane which contains the point (1, $-1,3$ ), and which is parallel with both the vectors $\mathbf{a}$ and $\mathbf{b}$ above. (Any point in this plane may be reached by starting from ( $1,-1,3$ ) and moving in a direction given by a linear combination of the vectors $\mathbf{a}$ and $\mathbf{b}$ above ( $\lambda \mathbf{a}+\mu \mathbf{b})$.)
(iv) Does the straight line with equation $\mathbf{r}=\left(\begin{array}{r}3 \\ -2 \\ 6\end{array}\right)+t\left(\begin{array}{r}1 \\ 3 \\ -8\end{array}\right)$ line in the plane of part (iii) above? Justify your answer.
(b) (i) Write down the vector equation of the straight line which passes through the point $(-4,1,-5)$ and which is perpendicular to the plane $2 x-3 y+2 z=30$.
(ii) Find the point where this straight line (from (b) part (i) above) intersects the plane $2 x-3 y+2 z=30$.
(iii) Hence calculate the shortest distance from the point ( $-4,1,-5$ ) to the plane $2 x-3 y+2 z=30$.
3. (a) Suppose that the vectors $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ are linearly independent. Show that $\mathbf{u}+2 \mathbf{v}, \mathbf{v}+2 \mathbf{w}$ and $\mathbf{u}-4 \mathbf{w}$ are linearly dependent.
(b) For which value(s) of $\lambda$ do the following vectors form a linearly dependent set in $\mathbb{R}^{3}$ ?

$$
\mathbf{v}_{1}=\left(\lambda,-\frac{1}{2},-\frac{1}{2}\right) \quad \mathbf{v}_{2}=\left(-\frac{1}{2}, \lambda,-\frac{1}{2}\right) \quad \mathbf{v}_{3}=\left(-\frac{1}{2},-\frac{1}{2}, \lambda\right)
$$

For any other value of $\lambda$, explain why $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ would form a basis in $\mathbb{R}^{3}$.
(c) Let $P(\mathrm{t})$ denote a set of all real polynomials of the form

$$
p(t)=a_{0}+a_{1} t^{2}+a_{2} t^{4}
$$

where the coefficients $a_{i} \in \mathbb{R}, i=0,1,2$. Show that

$$
1+t^{2}, \quad 1-t^{2}, \quad 1+t^{2}+t^{4}
$$

form a basis for $P(\mathrm{t})$.
4. (a) Consider the matrix

$$
A=\left(\begin{array}{rrr}
1 & 3 & -3 \\
-3 & 7 & -3 \\
-6 & 6 & 2
\end{array}\right)
$$

(i) The characteristic equation for $A$ is

$$
(\lambda-4)^{2}(\lambda-2)=0
$$

Find the eigenvalues of $A$ and the corresponding eigenvectors.
(ii) Use Gaussian elimination to find the inverse of $A$.
(b) Let $B$ be an $n \times n$ matrix with the eigenvalues $\lambda_{\mathrm{i}}, i=1,2, \ldots, n$, and the corresponding eigenvectors $\mathbf{x}_{\mathbf{i}}, i=1,2, \ldots, n$. Working from the definition of the eigenvalues and the eigenvectors of $B$, show that the matrix $A$, such that $B=P^{-1} A P$, where $P$ is any non-singular matrix, has the same eigenvalues as $B$.

## End of coursework.

(Due 10AM, $16^{\text {th }}$ August 2013.)

