

Trusted Assurance
Innovative Security

www.cyberis.co.uk | info@cyberis.co.uk | +44 (0) 3333 444800

Cyberis Limited, Trinity House, 223 London Road, Worcester, WR5 2JG

© Copyright 2013 Cyberis Limited | Company Number 7558984

Evil HTTP Compression - Compression Bombs
Denial-of-Service Attacks against User-Agents and Content Inspection Devices

Author: Geoff Jones, Cyberis Limited

Email: geoff.jones@cyberis.co.uk

Web: www.cyberis.co.uk

Abstract
The majority of web browsers and other HTTP User-Agents in use today and supporting

compression are vulnerable to various denial-of-service conditions - namely memory, CPU and free

disk space consumption - by failing to consider the high compression ratios possible from data with

an entropy rate of zero. Using multiple rounds of encoding1, a 43 Kilobyte HTTP server response will

equate to a 1 Terabyte file when decompressed by a receiving client - an effective compression ratio

of 25,127,100:1.

Several techniques will be outlined in this paper demonstrating how browsers handle such highly

compressed data when loading resources in-line (e.g. HTML content and images) compared to

when instructed to save a file directly to disk. A number of techniques to bypass required user

interaction will also be detailed, as will the specific capabilities and idiosyncrasies of common

browsers.

This vulnerability is a common weakness that affects multiple vendors. gzip bombs have been

publicly reported for nearly 10 years2, although nearly all current browser versions are still

susceptible. In recent years the threat landscape has changed somewhat, with next-generation

firewalls and mobile User-Agents presenting interesting new targets to would-be attackers. New

compression schemas, such as Shared Dictionary Compression over HTTP (SDCH3), also increase

the available attack surface to an adversary.

Introduction
HTTP compression is a capability widely supported by web browsers and other HTTP User-Agents,

allowing bandwidth and transmission speeds to be maximised between client and server.

Supporting clients will advertise supported compression schemas, and if a mutually supported

scheme can be negotiated, the server will respond with a compressed HTTP response.

Compatible User-Agents will typically decompress encoded data on-the-fly. HTML content, images

and other files transmitted are usually handled in memory (allowing pages to rendered as quickly as

possible), whilst larger file downloads will usually be decompressed straight to disk to prevent

unnecessary consumption of memory resources on the client.

Gzip (RFC1952) is considered the most widely supported4 compression schema in use today, and

has been used in the majority of attacks detailed in this paper, although other content encoding

1 4 rounds of gzip encoding
2 http://www.aerasec.de/security/advisories/decompression-bomb-vulnerability.html
3SDCH was proposed as a new compression schema in 2008
4 http://www.vervestudios.co/projects/compression-tests/results

mailto:geoff.jones@cyberis.co.uk
http://www.cyberis.co.uk/
http://www.aerasec.de/security/advisories/decompression-bomb-vulnerability.html
http://www.vervestudios.co/projects/compression-tests/results

Trusted Assurance
Innovative Security

www.cyberis.co.uk | info@cyberis.co.uk | +44 (0) 3333 444800

Cyberis Limited, Trinity House, 223 London Road, Worcester, WR5 2JG

© Copyright 2013 Cyberis Limited | Company Number 7558984

schemes can be exploited in exactly the same way. This paper does not detail specific vulnerabilities

in the individual compression algorithms, rather the specific handling of compressed responses with

regards to user interaction, automatic file download and memory allocation.

Testing Framework - GzipBloat
The author has written a testing framework, both for generic HTTP response tampering and various

sizes of gzip bombs. GzipBloat (https://www.gitbhub.com/cyberisltd/GzipBloat) is a PHP script to

deliver pre-compressed gzipped content to a browser, specifying the correct HTTP response

headers for the number of encoding rounds used, and optionally a ‘Content-Disposition’ header. A

more generic response tampering framework - ResponseCoder

(https://www.github.com/cyberisltd/ResponseCoder) - allows more fine grained control, although

content is currently compressed on the fly - limiting its effectiveness when used to deliver HTTP

compression bombs.

Testing Methodology
The most popular desktop browsers in June 2013 as recorded by StatCounter5 are shown below:

Internet Explorer Firefox Chrome Safari Opera

25.44 % 20.01 % 42.68 % 8.39 % 1.03 %

These five desktop browsers formed the basis of all tests, though it is important to note that any

User-Agent that supports any form of HTTP compression is potentially vulnerable to the techniques

listed in this paper. Where possible, multiple versions of the browsers were tested, with comments

detailing differing behaviours of note. Linux, Windows and MAC versions of each browser were

tested where available, although the majority of tests were conducted on a fully-patched version of

Windows 7 (x64).

Three mobile based browsers were also be tested, namely Android’s Webkit browser (version 4.0.4-

XXLPH), Chrome on Android (version 18.0.1025469) and Safari on IOS (IOS 6.1.3).

Each browser was subjected to the following tests:

1. In-line request of a 1TB gzip encoded file with 4 rounds of encoding (‘Content-type:

text/html’) - test file size 43k

2. In-line request of a 1TB gzip encoded file (‘Content-type: text/html’) - test file size 1GB

3. File download (‘Content-Disposition: attachment’) of of a 1TB gzip encoded file with 4

rounds of encoding - test file size 43k

4. File download (‘Content-Disposition: attachment’) of of a 1TB gzip encoded file - test file

size 1GB

5. 1TB gzip compressed SDCH dictionary with 4 rounds of encoding - test file size 43k

5 http://gs.statcounter.com/

https://www.gitbhub.com/cyberisltd/GzipBloat
https://www.github.com/cyberisltd/ResponseCoder
http://gs.statcounter.com/

Trusted Assurance
Innovative Security

www.cyberis.co.uk | info@cyberis.co.uk | +44 (0) 3333 444800

Cyberis Limited, Trinity House, 223 London Road, Worcester, WR5 2JG

© Copyright 2013 Cyberis Limited | Company Number 7558984

All test cases were delivered by Cyberis’ GzipBloat framework.

Results
Desktop Browsers

 Internet Explorer Firefox Chrome/Chromium Safari Opera

1TBx4 HTML Not supported See 3 See 6 Not supported See 10

1TB HTML See 1 See 3 See 6 See 9 See 11

1TBx4 FILE Not supported See 4 See 7 Not supported See 12

1TB FILE See 2 See 5 See 7 See 9 See 12

1TB SDCH Not supported Not supported See 8 Not supported Not supported

Key Not supported PASS - No effect or
an error message
displayed. Closure
of browser tab
permitted. No
performance issues
observed.

FAIL - Operating
system resource
exhaustion that can
be recovered by
termination of
process (automatic
or manual).

FAIL - Operating
system denial-of-
service requiring
manual intervention
to recover.

Test Notes

1. Memory exhaustion - operating system will eventually prompt to close the browser, once all

physical and virtual memory is exhausted. UI very slow to respond. CPU usage also high.

2. File download prompt will only be displayed once response has been decompressed. Prior

to this point, the download will fill the disk with a temporary file, with absolutely no

indication of the download occurring. Download will continue until all available disk space is

consumed. Tested on multiple versions of Internet Explorer, including IE11 preview on

Windows 8.1. Navigation away from the page or closure of the browser does not remove the

temporary file. CPU usage also high, although memory usage normal. Manual removal of

temporary file (located in Temporary Internet Files) is required to recover the operating

system. NB: clearing of Temporary Internet Files via Internet Explorer or Control Panel does

not remove the file - command line access is required.

3. Memory and CPU exhaustion, although browser seems to recover without crash. UI very

slow to respond.

4. Disk, memory and CPU exhaustion, operating system was inoperable during the download.

No user interaction required to exploit. Low memory warning on Windows observed. Disk

usage possible attributable to swap file usage. Operating system recovered after test, no

temporary files remained.

Trusted Assurance
Innovative Security

www.cyberis.co.uk | info@cyberis.co.uk | +44 (0) 3333 444800

Cyberis Limited, Trinity House, 223 London Road, Worcester, WR5 2JG

© Copyright 2013 Cyberis Limited | Company Number 7558984

5. File download prompt displayed, although browser continues to write a temporary file to

disk, prior to user confirming the download. Download continues until all disk space is

consumed, or user cancels the download dialog. High CPU usage, memory spikes. Once all

disk space was consumed, temporary file was removed and the browser recovered from the

download.

6. ‘Aw, Snap!’ displayed on Windows (Chrome 28.0.1500.71 m) shortly after load (CPU and

memory spikes temporarily). Chromium on Linux (Version 28.0.1500.71 (209842)) consumes

all CPU and available memory, running into swap space. UI very slow to respond.

7. Disk space completely exhausted - after which the download terminates with the error

message ‘Failed - Disk full’ and the temporary file is removed. CPU usage moderate,

memory usage normal.

8. Shared Dictionary Compression over HTTP (SDCH)6 - if the server responds with an ‘Get-

Dictionary’ header pointing to a gzip bomb (see appendix A), Chrome requests the SDCH

dictionary in the background. No user interaction is required. On Windows (Chrome

28.0.1500.71 m), the response only results in a spike of memory and CPU for a limited time.

Chromium on Linux (Version 28.0.1500.71 (209842)), all available memory is consumed

(including swap space) and CPU usage is high. UI very slow to respond.

9. CPU/memory exhaustion leading to browser crash. Only limited testing conducted on this

platform.

10. File download terminates shortly after commencing. No adverse effects on operating

system. No error message displayed, unless ‘view-source’ is used. CPU usage high, memory

normal.

11. File download terminates shortly after commencing. No adverse effects on operating

system. Error message displayed indicating page has crashed. CPU usage high, memory

normal.

12. Disk space completely exhausted - after which the download terminates with the error

message ‘Your hard disk is full. Please save to another location...’ and the temporary file is

removed. CPU usage moderate, memory usage normal.

6 http://www.blogs.zeenor.com/wp-content/uploads/2011/01/Shared_Dictionary_Compression_over_HTTP.pdf

http://www.blogs.zeenor.com/wp-content/uploads/2011/01/Shared_Dictionary_Compression_over_HTTP.pdf

Trusted Assurance
Innovative Security

www.cyberis.co.uk | info@cyberis.co.uk | +44 (0) 3333 444800

Cyberis Limited, Trinity House, 223 London Road, Worcester, WR5 2JG

© Copyright 2013 Cyberis Limited | Company Number 7558984

Mobile Browsers

 Chrome (Android) Webkit browser (Android) Safari (IOS)

1TBx4 HTML See 1 See 4 Not supported

1TB HTML See 1 See 5 See 6

1TBx4 FILE See 2 See 2 Not supported

1TB FILE See 2 See 2 See 6

1TB SDCH See 3 Not supported Not supported

Key Not supported PASS - No effect or
an error message
displayed. Closure
of browser tab
permitted. No
performance issues
observed.

FAIL - Operating
system resource
exhaustion that can
be recovered by
termination of
process (automatic
or manual).

FAIL - Operating
system denial-of-
service requiring
manual intervention
to recover.

NB: Windows Phone 8 and Blackberry 10 devices were not available for testing

1. ‘Aw, Snap!’ error message displayed. Operating system seemingly unaffected.

2. Downloads the file, but free space remaining suggests the file was not decompressed

correctly.

3. File requested, but no indication of free space being used.

4. Blank page displayed (possibly multiple rounds of decompression not supported?)

5. Browser crash. On reload of the browser, the same page is resumed, causing a further crash.

Subsequent attempts do not reload the affected page.

6. Browser crash shortly after response is received.

Common Weakness
The results show that the most popular web browsers in use today are vulnerable to various denial

of service conditions - namely memory, CPU and free disk space consumption - by failing to

consider the high compression ratios possible from data with an entropy rate of zero (for example

/dev/zero). Depending on the HTTP response headers used, vulnerable browsers will either

decompress the content in memory, or directly to disk - only terminating when operating system

resources are exhausted.

The most serious condition observed was an effective denial-of-service against Windows operating

systems when a large gzip encoded file is returned with a ‘Content-Disposition’ header - recovery

from the condition required knowledge of the Temporary Internet FIles directory structure and

Trusted Assurance
Innovative Security

www.cyberis.co.uk | info@cyberis.co.uk | +44 (0) 3333 444800

Cyberis Limited, Trinity House, 223 London Road, Worcester, WR5 2JG

© Copyright 2013 Cyberis Limited | Company Number 7558984

command line access. This seemed to affect all recent versions of IE, including IE11 on Windows 8.1

Preview.

Dangerous Assumptions
A number of potential reasons why this common weakness may exist in a product:

Dangerous Assumption #1 - Compressed data is generated ‘on-the-fly’
Usually, compression schemas favour decompression with regards to speed - it is more

computationally expensive to compress content on the server than it is to decompress the received

content on the client. If one server handling many clients can encode content ‘on-the-fly’, it may be

assumed that a receiving client should be able to decompress the content, especially when

considering it is less computationally expensive to perform the decompression routine.

A malicious web host however, can perform all necessary compression routines off-line, configuring

a web server to serve the already compressed content (with necessary ‘Content-Encoding’) headers

to unsuspecting victims - the server no longer needs to compress each and every HTTP response.

An attacker can take as much time as necessary to highly compress very large files ready for

delivery.

Dangerous Assumption #2 - Compression is used to compress ‘real data’
It is a fair assumption that most browsers would expect HTTP compression to be reducing the

bandwidth requirements of ‘real data’. As most HTML content is ASCII-based text, a typical

compression ratio of 3:1 is not unusual. Binary data (for example images), may be even less,

especially when considering modern formats that natively support compression (e.g. PNG). As in-

line HTML content and images are relatively small, even complex web pages are unlikely to trouble

the CPU and memory resources of a modern operating system - memory being the ideal place for

decompression to occur, of course, for speed reasons.

Again, an adversary need not be concerned with real data - a large file containing nothing but zeros

will suffice for a denial of service, and as it has an effective entropy of zero, it will compress very well

(1027:1):

$ dd if=/dev/zero bs=10M count=1 | gzip -9 | wc -c
1+0 records in

1+0 records out
10485760 bytes (10 MB) copied, 0.172531 s, 60.8 MB/s

10208

Now, a number of User-Agents support multiple levels of content encoding (e.g. 2 more rounds of

gzip compression).

$ dd if=/dev/zero bs=10M count=1 | gzip -9 | gzip -9 | wc -c
1+0 records in

1+0 records out
10485760 bytes (10 MB) copied, 0.149518 s, 70.1 MB/s

159

Trusted Assurance
Innovative Security

www.cyberis.co.uk | info@cyberis.co.uk | +44 (0) 3333 444800

Cyberis Limited, Trinity House, 223 London Road, Worcester, WR5 2JG

© Copyright 2013 Cyberis Limited | Company Number 7558984

By passing it through gzip twice, we can now see a compression ratio of 65948:1. As the input file

size increases, along with the number of encoding rounds, this ratio will continue to increase; a 1

Terabyte file with 4 rounds of gzip encoding will result in just a 43 Kilobyte response.

Dangerous Assumption #3 - The user/browser will probably say yes
Some modern browsers attempt to ‘speed up’ file downloads by commencing with a download to a

temporary file prior to the user actually confirming the download - if the user subsequently cancels

the request, the transfer will be terminated and the temporary file removed.

In the case of a HTTP compression bomb, this obviously has significant implications for the free disk

space of the underlying operating system. This is especially true if a process crashes, as any

temporary files are likely to be left behind following an unclean exit. Manual removal of the leftover

files may be necessary in such cases.

Related to this assumption are other background transfers that may be initiated by the browser. An

SDCH-supporting web server for example7, will instruct an SDCH client (e.g. Chrome) to request a

dictionary in the background. As this is a background request initiated by the browser rather than

the user, the ‘Stop’ button does not terminate the HTTP session as per a normal request. The whole

browser must be terminated to prevent all available memory from being consumed.

Dangerous Assumption #4 - If it’s good enough for you, it’s good enough for me
A content inspection device sat between a server and client may attempt to decode compressed

content as part of its normal duties. An architect or developer of such a system may decide that any

arbitrary number of encoding rounds may be appropriate, which is understandable given some

User-Agents [currently] support several thousand rounds8 of encoding. Unfortunately, a content

inspection device may be more critical in terms of availability (it probably supports many clients for

example), and therefore the risk of failure should be deemed greater.

Now unfortunately, there is no ideal situation here - failure to decode multiple rounds is an obvious

evasion technique, whilst decoding any arbitrary number may lead to denial-of-service. Probably

the best solution if technically possible is to remove the ‘Accept-Encoding’ headers altogether and

also drop responses that still have the ‘Content-Encoding’ header set9 with a compression schema.

Obviously this has implications for bandwidth consumption and therefore speed.

As previously mentioned, the threat landscape has changed in recent years, as now many devices

perform such inspection (e.g. proxies, next-generation firewalls, WAFs, IDS/IPS etc), and may

therefore be vulnerable to attack.

7 Or a malicious host pretending to be a SDCH capable server
8 Chrome supports several thousand, for example
9 Simple removal of the HTTP request header may not be sufficient - an attacker owned server can obviously still return gzip encoded
data, and the client will still believe they announced the fact they can accept a Gzip encoded response.

Trusted Assurance
Innovative Security

www.cyberis.co.uk | info@cyberis.co.uk | +44 (0) 3333 444800

Cyberis Limited, Trinity House, 223 London Road, Worcester, WR5 2JG

© Copyright 2013 Cyberis Limited | Company Number 7558984

Solution
Several vendor recommendations can be made to mitigate the risk of HTTP compression bombs:

1. Consider restricting multiple rounds of compression encoding

2. If possible, determine the expected size of decompressed content before allocating

memory to the task

a. If there is insufficient memory available to decompress content, perform the

decompression via repeated calls of the compression function.

b. Consider setting a maximum sensible size for in-line HTML content that is delivered

with compression

c. If downloading a file, ascertain as soon as possible whether sufficient disk space

exists. If it does not, terminate with an appropriate error message and remove all

temporary files.

3. Consider enforcing a maximum decompression time limit for received content

4. If decompression fails when downloading a file, remove all temporary files written to disk

5. IE10/11 should prompt before downloading a gzip encoded file with a ‘Content-Disposition:

attachment’ header

6. Consider limiting the size of temporary file that can be created prior to a user confirming a

file download prompt.

7. Enforce sensible limits for SDCH dictionaries (the proposed standard10 suggests at least

10MB of space on the client side for total dictionary size)

8. Content filtering devices could consider removing HTTP request/response compression

directives

There are few mitigating factors for end-users, other than disabling supported compression

schemas. This may or not be possible depending on the browser in use. Firefox is known to support

this feature via about:config :

No obvious configuration option appears in Internet Explorer or Google Chrome.

10 http://www.blogs.zeenor.com/wp-content/uploads/2011/01/Shared_Dictionary_Compression_over_HTTP.pdf

http://www.blogs.zeenor.com/wp-content/uploads/2011/01/Shared_Dictionary_Compression_over_HTTP.pdf

Trusted Assurance
Innovative Security

www.cyberis.co.uk | info@cyberis.co.uk | +44 (0) 3333 444800

Cyberis Limited, Trinity House, 223 London Road, Worcester, WR5 2JG

© Copyright 2013 Cyberis Limited | Company Number 7558984

Conclusion
With the growth of mobile data connectivity, improvements in data compression for Internet

communications has become highly desirable from a performance perspective, but extensions to

these techniques outside of original protocol specifications can have unconsidered impacts for

security.

Although the techniques presented in this paper have presented a known threat for a number of

years, the growing ubiquity of advanced content inspection devices, and the proliferation User-

Agents which handle compression mechanisms differently, has substantially changed the landscape

for these types of attack.

The attacks demonstrated here will provide an effective denial-of-service against a number of

popular client browsers, but the impact in these cases is rather limited.

Ultimately, the greater impact of this style of attack is likely to be felt by intermediate content

inspection devices with a large pool of users. Although outside of scope of this exercise, the results

of this initial testing indicate that it is likely a number of advanced content inspection devices may

be susceptible to these decompression denial-of-service attacks themselves, potentially as the

result of a single server-client response. In an environment with high availability requirements and

a large pool of users, a denial-of-service attack which could be launched by a single malicious

Internet server could have a devastating impact.

Trusted Assurance
Innovative Security

www.cyberis.co.uk | info@cyberis.co.uk | +44 (0) 3333 444800

Cyberis Limited, Trinity House, 223 London Road, Worcester, WR5 2JG

© Copyright 2013 Cyberis Limited | Company Number 7558984

Appendix A - Server Responses

Test case 1 - 1TB file with four rounds of gzip encoding (no ‘Content-Disposition’ header):

curl -I 'http://127.0.0.1/gzipbloat/gzipBloat.php?rounds=4&infile=1T.gzipx4'

HTTP/1.1 200 OK
Date: Tue, 16 Jul 2013 12:37:45 GMT
Server: Apache
X-Powered-By: PHP/5.4.17-pl0-gentoo
Content-Encoding: gzip, gzip, gzip, gzip
Content-Length: 43758
Content-Type: text/html

Test case 2 - 1TB file gzip encoded (no ‘Content-Disposition’ header):

curl -I 'http://127.0.0.1/gzipbloat/gzipBloat.php?infile=1T.gzip'

HTTP/1.1 200 OK
Date: Tue, 16 Jul 2013 12:39:29 GMT
Server: Apache
X-Powered-By: PHP/5.4.17-pl0-gentoo
Content-Encoding: gzip
Content-Length: 1067044016
Content-Type: text/html

Test case 3 - 1TB file with four rounds of gzip encoding (‘Content-Disposition: attachment’):

curl -I

'http://127.0.0.1/gzipbloat/gzipBloat.php?rounds=4&infile=1T.gzipx4&filename=zeros.

txt'

HTTP/1.1 200 OK
Date: Tue, 16 Jul 2013 12:40:52 GMT
Server: Apache
X-Powered-By: PHP/5.4.17-pl0-gentoo
Content-Disposition: attachment; filename="zeros.txt"
Content-Encoding: gzip, gzip, gzip, gzip
Content-Length: 43758
Content-Type: text/html

Test case 4 - 1TB file gzip encoded (‘Content-Disposition: attachment’):

curl -I

'http://127.0.0.1/gzipbloat/gzipBloat.php?infile=1T.gzip&filename=zeros.txt'

HTTP/1.1 200 OK
Date: Tue, 16 Jul 2013 12:41:40 GMT
Server: Apache
X-Powered-By: PHP/5.4.17-pl0-gentoo
Content-Disposition: attachment; filename="zeros.txt"
Content-Encoding: gzip
Content-Length: 1067044016
Content-Type: text/html

http://127.0.0.1/gzipbloat/gzipBloat.php?rounds=4&infile=1T.gzipx4
http://127.0.0.1/gzipbloat/gzipBloat.php?infile=1T.gzip
http://127.0.0.1/gzipbloat/gzipBloat.php?rounds=4&infile=1T.gzipx4&filename=zeros.txt
http://127.0.0.1/gzipbloat/gzipBloat.php?rounds=4&infile=1T.gzipx4&filename=zeros.txt
http://127.0.0.1/gzipbloat/gzipBloat.php?infile=1T.gzip&filename=zeros.txt

Trusted Assurance
Innovative Security

www.cyberis.co.uk | info@cyberis.co.uk | +44 (0) 3333 444800

Cyberis Limited, Trinity House, 223 London Road, Worcester, WR5 2JG

© Copyright 2013 Cyberis Limited | Company Number 7558984

Test case 5 - 1TB SDCH dictionary with four rounds of gzip encoding:

curl -I 'http://127.0.0.1/gzipbloat/sdch.php'

HTTP/1.1 200 OK
Date: Tue, 16 Jul 2013 12:42:20 GMT
Server: Apache
X-Powered-By: PHP/5.4.17-pl0-gentoo
Get-Dictionary:

/gzipbloat/gzipBloat.php?infile=1T.gzipx4&filename=dictionary.sdch&contenttype=appl

ication/x-sdch-dictionary&rounds=4
Content-Type: text/html

http://127.0.0.1/gzipbloat/sdch.php

