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WITT RINGS AND MATROIDS
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(Communicated by Ken Ono)

Abstract. The study of Witt rings of formally real fields in the algebraic
theory of quadratic forms has led to a particularly good understanding of the
finitely generated torsion free Witt rings. In this paper, we work primarily
with a somewhat more general class of rings which can be completely char-
acterized by (binary) matroids. The different types of standard constructions

and invariants coming from algebra and from combinatorics lead to previously
unstudied problems for both areas; in particular, there are new invariants for
Witt rings and new constructions for matroids with many open questions.

1. Introduction

We begin with a class of quotient rings of integral group rings. These rings,
modulo their nilradicals, are the basic objects we wish to classify with matroids.

Definition 1.1 ([KRW1, Definition 3.12], [KRW2, §3], [KR, §1]). Let G be a group
of exponent 2. An abstract Witt ring is a quotient ring R = Z[G]/K such that R
has only 2-torsion.

These rings were originally studied as a ring-theoretic method of obtaining results
concerning Witt rings of equivalence classes of quadratic forms over a field F , where
the group G was the square class group F×/F×2. We will mention some of the
connections in passing, but no knowledge of this theory will be needed to understand
the matroid constructions of this paper.

We now quickly summarize the most relevant parts of the literature concerning
these rings. They can be expressed as rings of functions when they are torsion
free, the case we shall be concerned with here, and are obtained in general by
factoring out the nilradical. For any Witt ring R = Z[G]/K, let XR denote the
set of ring homomorphisms from R to the ring of integers Z. These are in bijective
correspondence with the set of minimal, nonmaximal prime ideals of R [KRW2,
Lemma 3.3]. We shall follow the terminology coming from quadratic form theory
and refer to XR as the set of signatures of R. (When the Witt ring comes from
equivalence classes of quadratic forms over a formally real field, the set XR can
also be viewed as the set of orderings of the field.) Giving XR the induced Zariski
topology makes it into a Boolean topological space (compact, Hausdorff and totally
disconnected). In particular, it will be discrete when it is finite, so topology will
play a minimal role in our considerations. When R is torsion free, it can be viewed
as a subring of C(XR,Z), the ring of continuous functions from XR to Z, where Z is
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1506 THOMAS C. CRAVEN AND ZACHARY A. KENT

endowed with the discrete topology; indeed, the element r ∈ R induces the function
r̂ : XR → Z via r̂(x) = x(r). As a subring of C(XR,Z), the ring R is generated by
1 and all elements of the form 2χU , where χU is the characteristic function of the
set U , and U ranges over the subsets of XR of the form

H(a) = {x ∈ XR | x(a) = 1 } (a ∈ G)

and their complements H(−a). Furthermore, the sets U above form a subbasis for
the topology of XR, usually referred to as the Harrison subbasis [KRW2, Section 3].
For a given ring R, we shall denote the collection of sets of the Harrison subbasis by
HR. Notice that the set HR is closed under symmetric difference of sets: H(−a)+
H(−b) = H(−ab). Conversely, given any subbasis of clopen (both closed and open)
sets H for a Boolean space X, which is closed under symmetric difference and
complementation, one obtains a Witt ring in this way, where the group G is given
by { 1− 2χH | H ∈ H } [KRW2, Proposition 3.8]. Since HR is a group of exponent
2, we shall often think of it as a vector space over the two-element field F2, and its
dimension will determine the rank of an associated matroid (see Corollary 5.2).

The category of torsion free abstract Witt rings is equivalent to the category of
prespaces of orderings as defined in [ABR]. With stronger conditions, one obtains
spaces of orderings, an abstract way of viewing reduced Witt rings of ordered fields
[Ma1], [Ma2].

Definition 1.2. Let G be a group of exponent 2 and let Ĝ = Hom(G, {±1}) be
the topological dual group of G for the discrete topology on G. Let −1 �= 1 be a
distinguished element of G and let Y be a subset of Ĝ. The pair (Y,G) is called a
prespace of orderings if the following conditions hold:

• Y is closed in Ĝ.
• σ(−1) = −1 for all σ ∈ Y .
• The element g = 1 in G is the unique element of G such that σ(g) = +1
for all σ ∈ Y .

As above, we shall write H for the Harrison subbasis, i.e. the collection of sets

H(g) = {σ ∈ Y | σ(g) = 1 } (g ∈ G).

In the next section we look at the major constructions usually performed in this
category of rings, or equivalently prespaces of orderings. In later sections we show
how they can be viewed as matroids and explore their properties.

2. Constructions

There are three constructions known for building new finite prespaces of order-
ings from existing ones. Two of them, applied recursively to a one-point space,
yield all finite spaces of orderings (finitely generated reduced Witt rings of fields);
these are group extension and sum (direct product in the appropriate category of
rings). They have been described in numerous places, such as [ABR, Chapter IV.2],
[Cr2], [Ma1] and [CS2, Def. 2.2, 2.3], but since we will make extensive use of them,
we give a brief description here.

Definition 2.1 ([ABR, Def. 2.1]). Let (Y1, G1), (Y2, G2) be two prespaces of
orderings. Their sum is defined to be the space (Y,G), where Y = Y1 ∪ Y2 is the
disjoint union of Y1 and Y2 and G = G1 ×G2.
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WITT RINGS AND MATROIDS 1507

Example 2.2. We shall use SAPn to denote a sum of n one-point prespaces. In
this case the set X is a set of n points and the corresponding Harrison subbasis H
is the power set of X.

Definition 2.3 ([ABR, Def. 2.7]). Let (Y ′, G′), be a prespace of orderings. The

extension of (Y ′, G′) by Z2 is defined to be the space (Y,G) = (Ẑ2 × Y ′,Z2 ×G′)
with distinguished element (1,−1) ∈ G and the action (α, σ)(h, g) = α(h)σ(g) for

(α, σ) ∈ Ẑ2 × Y ′ and (h, g) ∈ Z2 ×G′.
In this construction, Y consists of two identical copies of Y ′ and H is generated

by a copy of Y ′ together with unions of identical copies of each H ′ ∈ H′ in each
copy of Y ′. The group Z2 can be replaced by any group of exponent 2, but this is
also achieved just by iterating the construction.

Work with skew fields has led to a third construction, needed for semiorderings
of commutative fields as well. This yields a tensor product of rings over Z, but
is most easily understood as the following prespace construction. We note that
Definition 2.3 is a special case of this where (Y2, G2) is taken as a two-point space.

Definition 2.4 ([CS2, Def. 2.4]). The product of two prespaces of orderings
(Y1, G1) and (Y2, G2) is defined to be the prespace of orderings (Y,G) = (Y1 ×
Y2, G1�G2), where G1�G2 is the coproduct in the category of elementary 2-groups
with distinguished subgroup {±1} preserved by all homomorphisms; equivalently,

{±1} −−−−→ G1⏐⏐�
⏐⏐�

G2 −−−−→ G1 �G2

is a pushout diagram for homomorphisms preserving the distinguished element −1.
Constructively, G1�G2 is just (G1×G2)/{(1, 1), (−1,−1)} so that (1,−1) = (−1, 1)
is the distinguished element in G1�G2 and the action is given by (σ1, σ2)(g1, g2) =
σ1(g1)σ2(g2), for σi ∈ Yi and gi ∈ Gi, i = 1, 2.

It is worth noting that extension by Z2 is a special case of a product where
Y2 = SAP2. A product of group rings is again a group ring, so nothing new is
gained in that instance. On the other hand, a product of SAP rings, when both
spaces have more than two elements, yields a prespace not found in the classical
theory for spaces of orderings. The following is another such example.

Definition 2.5. The prespace of orderings En is defined to be (X,G), where |X| =
2n and H consists of all subsets of X with an even number of elements. Since
symmetric difference preserves this evenness, this works. Such spaces (for n ≥ 3)
seem to have no way of building them from smaller spaces and are again a new
class of prespaces of orderings. The one mention of these in the literature is E3 in
[Cr1, Example 4.6], where it was shown not to be a space of orderings.

3. Prespaces of orderings as matroids

Our matroids are in fact a subset of the class of binary matroids described in
[O, Theorem 9.1.2], but never seem to have been studied for their own sake. We
wish to show the importance of these matroids by elucidating their properties and
how those properties affect the rings from which we obtain them. It is interesting
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1508 THOMAS C. CRAVEN AND ZACHARY A. KENT

that concepts as fundamental to matroid theory as independence and basis do not
readily translate into ring-theoretic properties.

There are numerous equivalent definitions of a matroid. The most natural one
for us to use is

Definition 3.1. Amatroid consists of a setX together with a family C of nonempty
subsets of X called circuits satisfying

(C1) no proper subset of a circuit is a circuit;
(C2) if x ∈ C1 ∩ C2, C1 �= C2, then C1 ∪ C2 \ {x} contains a circuit.

Given a prespace (Y,G), we can take X = Y and C to be the collection of
minimal nonempty subsets of H. For (C2), the set C1+C2 is in H, where + denotes
symmetric difference, and so contains one of the minimal nonempty elements. To
use the definition of matroid in terms of independent sets, the set I consists of
all subsets of X which contain no member of C. A (matroid) basis is a maximal
independent set.

Proposition 3.2. For a matroid arising from a prespace, the set C contains an
F2-basis of H.

Proof. Assume that C ∈ H is linearly independent of C. We may assume that C is a
minimal such set. By the choice of C, there is some set C1 ∈ C strictly contained in
C. But then C+C1 ∈ H is strictly smaller than C and is again linearly independent
of C, a contradiction. �

We can now define the fundamental objects of study for this paper.

Definition 3.3. A prespace matroid is a matroid generated by a (finite) nonempty
set X and a point-separating collection of subsets C1, . . . , Cr of X. That is, for
any x1, x2 ∈ X, there exists Ci such that one of the points lies in Ci and the other
lies in its complement. The set of circuits C then consists of the set of minimal
nonempty elements among the F2-vector space H = {

∑
i∈S Ci, X +

∑
i∈S Ci | S ⊆

{1, 2, . . . , r} }, where sum denotes symmetric difference.

Theorem 3.4. The contraction of a prespace matroid on X to a subset Y ⊆ X
is again a prespace matroid. In fact, the corresponding ring of functions on Y is
obtained by restriction of functions.

Proof. This is [Cr1, Lemma 3.1] for rings and [O, Prop. 3.1.11] for matroids. �

We note that a prespace matroid satisfies a considerably stronger circuit axiom
than an arbitrary matroid.

Proposition 3.5. Let (X, C) be a prespace matroid with C1, C2 ∈ C.
(C2)* If x ∈ C1 ∩ C2, C1 �= C2, then C1 + C2 is a union of disjoint circuits

(excluding x).

Proof. We know that C1 + C2 ∈ H. If it is not minimal, then it properly contains
a circuit C3 and its complement in C1+C2, namely C1+C2+C3. Now repeat this
process: if C1 +C2 +C3 is not minimal, it properly contains a minimal circuit C4.
After a finite number of steps, one obtains a collection of disjoint circuits C3, C4, . . .
whose union is C1 + C2. �
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Example 3.6. If X = {a, b, c, d, e, f} and H is generated by C1 = {a, b, c}, C2 =
{c, d, e}, D1 = {a, d}, D2 = {b, e}, D3 = {c, f}, then C1+C2 = D1+D2 = D1∪D2,
so that C1 + C2 is not minimal but breaks into two minimal sets.

Condition (C2)* is equivalent to a matroid being binary [W, Theorem 10.1.3].
Furthermore, this is equivalent to any symmetric difference of circuits being a union
of disjoint circuits by the previous proof.

The difference between a prespace matroid and an arbitrary binary matroid is
twofold. In general, a binary matroid does not have complements included as a
prespace matroid does for H. To find an example of a binary matroid which is not
a prespace matroid, we make use of the fact that the dual of any binary matroid is
binary [W, Theorem 10.1.1], while this is not true of prespace matroids.

Example 3.7. The simplest example occurs with |X| = 1. There is only one ring
possible, namely Z, and therefore only one prespace matroid and it has a unique
circuit and empty basis. The dual matroid has no circuits, so is binary but not
prespace.

For a more interesting example, consider the ring Z[Z2
2]. The associated prespace

is E2. It yields a matroid on four points with every two-element subset being a
circuit. The bases are the one-point sets, so the dual basis consists of the 3-point
sets. Thus the only cocircuit is the whole set X, giving no separation of points for
the associated ring of functions on X.

Adding the condition that the set X must lie in H makes the dual a binary
affine matroid [O, Prop. 9.3.1(iv)]. The second condition needed to make a binary
matroid into a prespace matroid is that the elements of the circuit space H must
separate the points ofX. The space X = {a, b, c, d} with circuits {a, b}, {c, d} yields
a binary matroid which is not a prespace matroid. We have thus obtained:

Proposition 3.8. Every prespace matroid is a binary matroid. A binary matroid
on a set X is a prespace matroid if its circuits separate points and the set X can
be written as a symmetric difference of a set of circuits.

Characterization of prespace matroids by matrices. Recall that the standard
representative matrix for a binary matroid has the form [In|A], where n is the rank of
the matroid and the matrix A can be taken to be the fundamental circuit incidence
matrix of any given basis [O, Cor. 9.2.3]. That is, given a basis B = {b1, . . . , bn},
write X \ B = {x1, . . . , xm}; the (i, j) entry of A is 1 if and only if bi is in the
unique circuit C(xj) contained in B ∪ {xj}.

Theorem 3.9. Let [In|A] be the standard representative matrix for a binary ma-
troid M. Then M is a prespace matroid if and only if

(1) The sum (modulo 2) of the columns of A is the vector of all ones;
(2) no row of A has exactly one 1; and
(3) no two rows of A are identical.

Proof. Condition (1) is equivalent to the sum of all columns in [In|A] being the zero
vector, which is equivalent to the set X being in the circuit space. Thus we have a
prespace matroid if and only if we can separate points. There are three cases.

Let B be the chosen basis with respect to which the matrix was formed. For two
elements y1, y2 /∈ B, the corresponding circuit C(y1) and its complement C(y1)+X
separate the points. For two elements x1, x2 ∈ B, choose a column point y for which
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1510 THOMAS C. CRAVEN AND ZACHARY A. KENT

the rows for x1, x2 differ, using condition (3). Then C(y) separates the points.
Conversely, if the two rows are equal, it is clear that any element of the circuit
space will either contain both x1 and x2 or neither, so points are not separated.

For condition (2), if some row of A has exactly one 1, say, corresponding to an
element x in B and a column y /∈ B, then x will be in every element of H which
contains y. (Recall that any element of the circuit space H is a symmetric difference
of the circuits corresponding to such elements y [O, Theorem 9.1.2 (viii)].) On the
other hand, if there is a zero in that position, then C(y) separates x and y. If there
is a 1 there and in another column, say y′, then C(y)+C(y′) separates x and y. �

Matroid versions of the prespace constructions. The sum of Definition 2.1
is just the direct sum of matroids [O, p. 130]. The product construction is much
harder to define for matroids since there does not seem to be any natural way to
pick out the minimal elements of H for the circuits or to define a matroid basis
given those of the factors. For prespace matroids (or indeed, more generally, for
binary matroids) (X, CX) and (Y, CY ), the product is (X ×Y, C), where C is the set
of minimal nonempty elements of H, generated under symmetric difference by sets
of the form C×Y, C ∈ CX and X×C, C ∈ CY since cross product distributes over
symmetric difference. It would be good to know more about matroid properties of
the product.

For the special case of group extension, (X, CX)[Z2] has among its circuits the

two copies of X and Ẑ2 × C for any C ∈ CX . They are sufficient to generate all
circuits via symmetric difference. Examples are given by the matroids En[Z2] in
which all of the four-element subsets are circuits.

When is the dual of a prespace matroid again a prespace matroid? The
dual of a matroid (X, CX) is defined on the same set X by replacing each basis
with its complement. This is not helpful in thinking about circuits and one usually
loses the separation of points that we demand. By [O, Prop. 9.3.1], the dual of any
prespace matroid is a binary affine matroid. The additional condition of separation
of points in the prespace matroid is most easily expressed in terms of matrices,
extending the last part of [O, Prop. 9.3.1]. In order for a prespace matroid M to
have a prespace dual simply means imposing the conditions of Theorem 3.9 on the
columns of A as well as on its rows.

Self-dual prespace matroids. One example is the matroid AG(3, 2) correspond-
ing to the group ring space with 8 elements. It is identically self-dual, a condition
equivalent to the matrix form [Ir|A] having the property that A is square and
AAT = Ir (mod 2) [O, Exercise 1, p. 314]. For AG(3, 2), we have the matrix

A =

⎡
⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦ .

Using Theorem 3.9, this generalizes to a characterization of identically self-dual
prespace matroids. A matroid is identically self-dual if and only if the corresponding
matrix A of the theorem is an orthogonal matrix (over the field F2).
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WITT RINGS AND MATROIDS 1511

The example of AG(3, 2) clearly generalizes to any 2n × 2n matrix formed by
subtracting the identity from a matrix of all ones. The corresponding matroids are
the matroids En[Z2] defined above.

An example which is self-dual but not identically so is R10 [O, p. 359] with

A =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

⎤
⎥⎥⎥⎥⎦
.

4. Stability

The stability index is usually defined only for Witt rings of fields where it is
intimately related to the structure of the ring. Lam [L2] devotes an entire chapter to
it and gives four equivalent conditions (see (S2)-(S5) below). As we shall see, these
cease to be equivalent for prespaces of orderings. Condition (S1) was considered in
[Cr1] and is generally stronger. However, condition (S1) seems to be the best one for
matroids as it is more inherent in their structure. We use it here for our definition,
but describe all of the possibilities and their relationships in Theorem 4.4. This
concept of stability will be important later in describing when a prespace matroid
is graphical and seems to generally be an interesting invariant.

If S is a Witt subring of C(X,Z), then C(X,Z)/S is a 2-primary torsion group
[KRW2, Theorem 3.18]. For a Witt ring of a formally real field, one uses the base
2 logarithm of the exponent of C(X,Z)/S, denoted st(S), as the stability index of
S [L2, Chap. 13]. The ring S is said to be n-stable if n ≥ st(S).

However, we shall use the following stronger definition for prespace matroids.

Definition 4.1. For a prespace matroid M = (X, C), where H is the additive
subbasis generated by C, we define the stability index of M to be

st(M) = max
x∈X

min{n | {x} =

n⋂
i=1

Ci, Ci ∈ H }.

Since C consists of the minimal elements of H, we may rewrite this as

st(M) = max
x∈X

min{n | {x} =
n⋂

i=1

Ci, Ci ∈ C }

= min
n

(∀x ∈ X)({x} =
n⋂

i=1

Ci, Ci ∈ C).

Examples 4.2. Some easy examples are:

• st(M) = 1 if and only if H is the power set of X. That is, M = SAPn,
where n = |X|.

• st(En) = 2.
• The stability index of a direct sum is the maximum of the stability indices
of the summands.

• With more work, one can show that st(M1 ×M2) = st(M1) + st(M2).

We prove the following lemma as motivation for condition (S5) in Theorem 4.4.
When possible, we cite the literature for parts of this theorem, but not all connec-
tions with our definition have been considered before. We make use of ring theory,
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1512 THOMAS C. CRAVEN AND ZACHARY A. KENT

so we mention again that an abstract Witt ring, as a subring of the ring of functions
C(X,Z), consists of all elements of the form n+

∑
2niχUi

, where n, ni ∈ Z and χU

denotes the characteristic function of a set U ∈ H. The ring has a maximal ideal
generated by the elements 2χU , U ∈ H, known as the augmentation ideal.

Lemma 4.3. Let S be a Witt subring of C(X,Z) with augmentation ideal m. For
any continuous function f ∈ C(X,Z), there exists n ≥ 0 such that 2nf ∈ mn.

Proof. Any f ∈ C(X,Z) partitions the set X into (clopen, in general for infinite X)
subsets on which f is constant. It will suffice to deal with the characteristic function
of one of these subsets and add the results together, scaled by the value of f on
the subset. Each of these sets is a finite union of intersections of Harrison subbasic
sets. But an intersection of subbasic sets H =

⋂n
i H(gi) gives us 2

nχH =
∏

2χH(gi)

in mn. Now assume that we have φ1 equal to 2m1 on the set C1 and φ2 equal to
2m2 on the set C2. We may assume that m = m1 = m2 by replacing φi with
2m−miφi. Note that the characteristic functions of the subsets C1, C2 ⊆ X, satisfy
χC1∪C2

= χC1
+χC2

−χC1
χC2

. Thus φ = 22mχC1∪C2
= 2m(φ1+φ2)−φ1φ2 ∈ m2m

works for the union. In this way we can handle any finite union as long as we
increase the power of m. �

Theorem 4.4 (See [L2, Prop. 13.1]). Assume that X is finite. Let S be a Witt
subring of C(X,Z) with augmentation ideal m and Harrison subbasis H. For any
integer s ≥ 0, (S1) =⇒ (S2) ⇐⇒ (S3) ⇐⇒ (S4) =⇒ (S1*) and (S4) =⇒ (S5):

(S1) Each point x ∈ X can be written as an intersection of s subbasic sets.
(S2) For any units ai ∈ S, the element φ = 2s+1χ∩s+1

1 H(ai)
∈ S can be written

as 2ψ for some ψ ∈ ms;
(S3) ms+1 = 2ms;
(S4) ms = C(X, 2sZ).
(S1*) Each point x ∈ X can be written as a symmetric difference of intersections

of s subbasic sets.
(S5) For any f ∈ C(X,Z), we have 2sf ∈ S.

Proof. (S2) ⇐⇒ (S3). By [Cr1, Prop. 1.2], the ideal ms+1 is generated by Pfister
functions φ, so we obtain ms+1 = 2ms. The converse is in [Cr1, Prop. 2.3].

(S3) =⇒ (S4). Let f ∈ C(X, 2sZ), say f = 2sf0, where f0 ∈ C(X,Z). By
Lemma 4.3, there exists an integer m such that 2mf0 ∈ mm. But mm = 2m−sms by
(S3). Therefore we have 2mf0 = 2m−sψ for some ψ ∈ ms. Thus f = 2sf0 = ψ ∈ ms.

(S4) =⇒ (S3). Indeed, ms+1 = C(X, 2s+1Z) = 2C(X, 2sZ) = 2ms.
(S1) =⇒ (S3). This follows immediately from [Cr1, Theorem 2.12].
(S3) =⇒ (S1*). This is the first statement of [Cr1, Theorem 2.10].
(S4) =⇒ (S5). Since C(X, 2sZ) = 2sC(X,Z) = ms ⊆ S, we obtain (S5). �

When S is a representable Witt ring (i.e. comes from the reduced Witt ring of a
field), we have that condition (S5) =⇒ (S1). Indeed, it is known that (S5) implies
(S2) by an argument involving representation of elements by quadratic forms [L2,
Prop. 13.1]; one can then use the recursive construction for finitely generated
representable Witt rings to show that both the usual stability index and the value
in (S1) have the same behavior for direct sum and group extension.
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WITT RINGS AND MATROIDS 1513

The example of [CV, Example 5.4] can be shown to satisfy (S1) for s = 4 by
direct computation. In [CV], it is shown to fail (S4) for s = 3. All sums of 3-fold
intersections have an even number of elements, so (S1*) fails here for s = 3. On the
other hand, (S5) actually holds for s = 3. Since this gives an important example
for the nonreversibility of the previous theorem, we include the details here.

Example 4.5 (See [CV, Example 5.4]). Let Y = {0, 1}6 and for i = 1, . . . , 6, set
Mi = { y ∈ Y | y(i) = 0 }. Let Z = M1 ∩M2 +M3 ∩M4 +M5 ∩M6 ⊆ Y , where
as usual, sum denotes symmetric difference, and set X = Y \ Z. Let Hi = X ∩Mi

for i = 1, . . . , 6. One can check that the subbasis H generated by these sets under
complement and symmetric difference consists only of subsets of X with 0, 16, 20
or 36 elements. Let S be the subring of C(X,Z) generated by Z with the functions
2χ

H
for H ∈ H and let m be its augmentation ideal S ∩ C(X, 2Z). Then S is a

Witt ring for the group of exponent 2 with 64 elements. It is shown in [CV] that
m3 � S∩C(X, 8Z) by explicitly constructing the following element f ∈ S∩C(X, 8Z)

but not in m3. Note that
⋂4

i=1 Hi = {a1 = (0, 0, 0, 0, 0, 1), a2 = (0, 0, 0, 0, 1, 0), a3 =
(0, 0, 0, 0, 1, 1)} and define the element

(4.1)
f = 8χ

H1
χ

H2
χ

H3
χ

H4
= 4χ

H1
χ

H2
+ 4χ

H3
χ

H4
− 4χ

H1H2+H3H4

= 4χ
H1

χ
H2

+ 4χ
H3

χ
H4

− 4χ
H5

χ
H6

∈ S ∩ C(X, 8Z).

The crucial fact we need, verified by computer computation, is that all 630 of the
two-point subsets of X can be written as 3-fold intersections of elements of H.
In particular, the element 8χ{a2,a3} = (2χH1

)(2χH2
)(2χHc

5
) lies in m3. To verify

(S5), it will suffice to show that the functions 8χ{x}, x ∈ X, all lie in S. Now
we have 8χ{a1} = f − 8χ{a2,a3} ∈ S, and we can modify it to obtain 8χ{x} =
8χ{a1,x} − 8χ{a1} ∈ S for any x ∈ X.

When one deals with the generality of prespace matroids (as opposed to rep-
resentable Witt rings), a stability reducing operation becomes apparent. We can
replace the circuit space H with the space generated by the 2-fold intersections
H1 ∩H2, Hi ∈ H forming a new circuit space H(2), with minimal set of elements
C(2), yielding a new matroid M(2) = (X, C(2)). For a matroid coming from a rep-
resentable Witt ring, this generally only gives a prespace matroid. Since stability
index one or two cases become SAP, the smallest example of such is the matroid
M of a group ring with a set X of 8 elements (which has stability index 3). Then
the circuits of M(2) consist of all subsets with two elements, and this does not arise
from the Witt ring of a field [Cr2], as mentioned earlier.

Proposition 4.6.

st(M(2)) = �st(M)/2.

Proof. We easily achieve the reduction by a factor of two: choose a point x where
the maximum occurs, with say m sets from H intersected. Intersect these in pairs
so that x becomes an intersection of either m/2 or (m− 1)/2 + 1 = (m+ 1)/2 sets
from H(2). Conversely, if fewer than �st(M)/2 sets from H(2) could be intersected
to obtain {x}, then it would contradict that st(M) sets are needed from H. �
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5. Rank functions for prespace matroids

The rank of a matroid is defined to be the cardinality of a maximal subset not
containing any circuit. This is not an invariant that has been studied in the context
of spaces of orderings. Translating rank back to Witt rings W (F ), we see that the
rank is the maximum size of a set of orderings Y ⊆ X for which no nonempty set
H(a) is contained in Y . Equivalently, if a ∈ F is not totally negative, the set of
orderings in which it is positive is not contained in Y . In terms of quadratic forms,
the support (as a function) of the Pfister form 〈〈a〉〉 is not contained in Y .

This suggests a generalization to n-rank, the maximum size of a set of orderings
Y ⊆ X for which no n-fold Pfister form 〈〈a1, a2, . . . , an〉〉 has support contained in
Y . This is equivalent to asking the rank of the derived matroid M(n). Therefore
we see that, while our derived matroids take us out of the category of spaces of
orderings, they do produce ways of looking at questions within that category.

We now show that there is an easy computation of rank for a prespace matroid,
though a priori this is far from obvious.

Theorem 5.1. Let M = (X, C) be a prespace matroid. The set of fundamental
circuits with respect to any matroid basis B is an F2-vector space basis for H.

Proof. Choose a matroid basis B ⊆ X. For each element x ∈ X \ B, let Hx be
the unique circuit contained in B ∪ {x}, i.e. the fundamental circuit of x with
respect to B. Since the added elements x are distinct, it is clear that no sum of
such circuits can be empty, so the sets are linearly independent. Now suppose that
{Hx : x ∈ X \B } does not generate H. Then there must be some element, H ∈ H,
that is linearly independent of {Hx : x ∈ X \B }. We must have |H ∩ (X \B)| ≥ 2,
for otherwise H ⊆ B is an independent set, or H = Hx for some x ∈ X \ B. Let
x1, . . . , xk ∈ X \B, k ≥ 2, be the distinct elements contained in H ∩ (X \B). Then,
by linear independence, the sum H + Hx1

+ · · · + Hxk
⊆ B must be nonempty,

in which case it is an independent set contained in H, a contradiction. Therefore
{Hx : x ∈ X \B } is a maximal linearly independent set. �

Corollary 5.2. The matroid rank of a prespace matroid is |X|−h, where |H| = 2h.

Proof. By the previous theorem, the dimension of H is |X \B| = |X| − |B|; hence
|B| = |X| − h for any basis B of M. �

The proof of the previous theorem is actually more general than stated. It does
not use the fact that we want X ∈ H or that H separates the points of X. Thus it
applies to the class of binary matroids [O, 9.2.3].

Special cases of this theorem can be proved in other ways. For example the
general rank formula for a contraction [O, 3.1.7] can be used to prove the following.

Corollary 5.3. Let Mn be the prespace matroid associated with the group ring
Z[G], where |G| = 2n, so |X| = 2n and |H| = 2n+1. Then the rank is 2n − (n+ 1).

These ranks are called Eulerian numbers and comprise the second column of
Euler’s triangle, but we see no combinatorial connection.
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6. Prespace matroids versus graphical matroids

We can completely answer the question of which graphs give rise to prespace
matroids. The converse issue seems more difficult.

Theorem 6.1. Let M(G) be a prespace matroid induced by a connected graph G.
Then G is a 4-edge-connected Eulerian circuit or consists of a single vertex and
loop.

Proof. Let X be the edge set of G. The set X is nonempty since prespace matroids
are necessarily so. Furthermore, since M(G) is a prespace matroid, we haveX ∈ H.
Therefore all edges of G form a single circuit and G is Eulerian. Thus if |X| = 1,
we have a single loop. Assume that |X| > 1. Let K ⊂ X such that the subgraph
consisting of the edges X \K is disconnected. It suffices to prove that K contains
at least 4 edges. We proceed case-by-case showing that K cannot have fewer than
4 edges. If |K| = 0, then G is disconnected. If |K| = 1, then the element of K
cannot be part of any circuit and therefore G is not Eulerian. If |K| = 2, then the
elements of K cannot be separated (i.e., are not contained in disjoint circuits). If
|K| = 3, then G is not Eulerian. �

The next theorem confirms that Theorem 6.1 gives precisely the connected
graphs which induce prespace matroids. If the graph is not connected, it can
contain only isolated points added to one of these graphs since extra edges prevent
the edge set from being a circuit. Thus the graphs are completely characterized.

Theorem 6.2. Let G be a 3-edge-connected Eulerian circuit. Then the matroid
M(G) induced by G is a prespace matroid.

Proof. Let X be the edge set of G, and let H be the set of all subsets of X which
represent circuits or sums of circuits of G. Because G is Eulerian, we have X ∈ H.
At this point, it suffices to prove that the points of X (edges of G) can be separated
by circuits. Suppose that C1 ∈ H is a circuit. Let e1, e2 be two distinct edges of
C1. If either e1 or e2 is a loop, then we are done, so assume that neither is a loop.
Let X ′ = X − {e1, e2}. Then, by hypothesis, the subgraph G′ consisting of the
edges X ′ is connected. It follows that there is a path P connecting the adjacent
vertices of e1 in G′. Let C2 be the circuit in P ∪ {e1} containing e1. Then e1 ∈ C2

and e2 �∈ C2. Therefore H separates the points of X. �

As an example of these theorems, we see that a complete graph Kn induces a
prespace matroid if and only if n is odd and at least 5. Being Eulerian requires
that n be odd and being 4-edge-connected forces n ≥ 5. We note the following in
passing without defining the terms for which we shall have no further use.

Proposition 6.3. The class of prespace matroids is not minor-closed.

Proof. Take for instance the Fano matroid F7 which is a prespace matroid. If x
denotes any element of the basis set of F7, then it is easy to see that F7\x ∼= M(K4),
the matroid of the complete graph [O, Example 1.5.6], which is not a prespace
matroid as just noted. �

Now we can take up the issue of when a given prespace matroid is graphical.

Theorem 6.4. Every graphical prespace matroid has stability index at most 2.
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1516 THOMAS C. CRAVEN AND ZACHARY A. KENT

Proof. By Theorem 6.1, a corresponding graph G must be 4-edge-connected. Let
e = (u, v) be any edge of G (i.e. point of the matroid) with endpoints u and v. If
u = v, then e is a loop, hence a circuit. Otherwise, by Menger’s Theorem, there
are four edge-disjoint paths from u to v, so two of them can be combined with e to
form two circuits that intersect in e. Thus the stability index of the matroid is 1
or 2. �

Define aWitt matroid to be a prespace matroid which comes from a representable
finitely generated torsion free Witt ring. These have been characterized in [Cr2],
where it is shown that they all can be constructed recursively from a one-point pre-
space using the operations of sum and extension from Section 2. As a consequence,
we can prove the following.

Proposition 6.5. A Witt matroid is graphical if and only if its stability index is
at most two.

Proof. We have shown one direction. We must now construct graphs to show these
matroids are graphical. SAPn comes from a graph with one vertex and n loops,
which takes care of stability index one. The extension of SAPn by Z2 comes from
an n-cycle to which we add an extra edge between each pair of adjacent vertices.
Finally, a graph for a sum of such prespaces is obtained by choosing a vertex from
each individual graph and identifying them. �

Arbitrary prespace matroids are not yet fully understood in this regard. Con-
trolling the stability index is not sufficienct to make them graphical.

Example 6.6. (1) Though Proposition 6.5 does not apply, the matroid induced
by the prespace En is graphical for all n. Indeed, it comes from a graph with two
vertices and 2n edges connecting those vertices.

(2) The matroid induced by the prespace SAP3 × SAP3 is not graphical, even
though it has stability index 2. To see this, assume to the contrary that it comes
from a graph G. Then G must have 9 edges, the number of points in the prespace.
Since no circuit of the matroid has size one or two, the graph can have no loops or
multiple edges. By Theorem 6.1, every vertex of G has even degree at least four.
Since the sum of the degrees is 18, twice the number of edges, there must be a
vertex of degree six. But then there are at least seven vertices, each of degree at
least four, so there must be at least 14 edges, a contradiction.
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