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CLOSED PRODUCT FORMULAS FOR EXTENSIONS
OF GENERALIZED VERMA MODULES

RICCARDO BIAGIOLI

Abstract. We give explicit combinatorial product formulas for the polyno-
mials encoding the dimensions of the spaces of extensions of (g, p)-generalized
Verma modules, in the cases when (g, p) corresponds to an indecomposable
classic Hermitian symmetric pair. The formulas imply that these dimensions
are combinatorial invariants. We also discuss how these polynomials, defined
by Shelton, are related to the parabolic R-polynomials introduced by Deodhar.

1. Introduction

Let g be a complex, semisimple Lie algebra with Cartan subalgebra h and let
b be a Borel subalgebra of g with nilradical n and Levi component h. Let p be a
parabolic subalgebra of g containing b with nilradical u ⊆ n and Levi component
m ⊇ h. So we have Levi decompositions b = h ⊕ n and p = m ⊕ u. The prob-
lem of computing the u-cohomology of irreducible highest weight (g, p)-modules is
completely solved by the Kazhdan-Lusztig conjectures ([7]). On the other hand,
the “Extension Problem”, namely the problem of computing the u-cohomology of
the (g, p)-generalized Verma modules, is as yet unsolved in general, and there are
not even conjectures for the form of the answer. If p = b, the modules in question
are the Verma modules (see [9]). There was a conjecture that solved the problem,
known as the Gabber-Joseph conjecture (see, e.g., [14] or [8]), but this was dis-
proved by Boe in [2]. In the cases when (g, p) corresponds to an indecomposable
Hermitian symmetric pair (see, e.g., [9, §4]), Shelton gives a solution to this prob-
lem. His answer is in terms of a recursion relations for the polynomials encoding
the dimensions of the spaces of extensions between generalized Verma modules [17].

In this paper we solve these recursion relations, in the cases when (g, p) is an
indecomposable classic Hermitian symmetric pair (see Table 1 at the end of §2).
Our main results are explicit combinatorial product formulas for these polynomials.
These formulas can be stated in two different ways, one in terms of Weyl group
elements and one in terms of partitions or shifted partitions. Moreover, these
formulas imply that these polynomials are combinatorial invariants.

The organization of the paper is as follows. In the next section we collect some
definitions and results that are needed in the rest of the work. In §3 we study the
case of the symmetric pair (An−1, Ai−1×An−i−1), in §4 the case of (Cn, An−1), in §5
the case of (Dn, An−1), and in §6 the remaining cases (Bn, Bn−1) and (Dn, Dn−1).
In the first three cases we give two statements of these results, one in terms of
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permutations or signed permutations and one in terms of partitions or shifted par-
titions. In §7 we derive some consequences of our results and in particular we prove
that these polynomials are combinatorial invariants. We also discuss how they
are related to the parabolic R-polynomials introduced in [12], and the pleasant
“symmetry” that follows with the Gabber-Joseph conjecture [14].

2. Notation, definitions, and preliminaries

In this section we give some definitions, notation and results that will be used
in the rest of this work. We let P := {1, 2, 3, . . .},N := P ∪ {0}, and Z be the
set of integers; for a ∈ N we let [a] := {1, 2, . . . , a} (where [0] := ∅) and [±n] :=
[−n, n] \ {0}. The cardinality of a set A will be denoted by |A|. For any sequence
(a1, . . . , an) ∈ Zn, we let N1(a1, . . . , an) := |{i ∈ [n] : ai < 0}|. Let Sn be the set
of all bijections σ : [n] → [n]. If σ ∈ Sn, then we write σ = σ1 . . . σn to mean that
σ(i) = σi, for i = 1, . . . , n. If σ ∈ Sn, then we will also write σ in disjoint cycle form
(see, e.g., [18], p.17) and we will usually omit writing the 1-cycles of σ. For example,
if σ = 64175823, then we also write σ = (2, 4, 7)(1, 6, 8, 3). Given σ, τ ∈ Sn we let
στ := σ ◦ τ (composition of functions) so that, for example, (1, 2)(2, 3) = (1, 2, 3).
We follow Chapter 3 of [18] for poset notation and terminology. In particular, given
a poset (P,≤) and u, v ∈ P we let [u, v] := {z ∈ P : u ≤ z ≤ v} and call this
an interval of P . If P has a minimal element, denoted 0̂, then we call a subset of
the form [0̂, u], for u ∈ P , a lower interval of P . Given any Q ⊆ P we will always
consider Q as a poset with the partial ordering induced by P and call Q a subposet
of P . We say that z ∈ P is join-irreducible if it covers at most one element of P .
Given two posets P and Q we write P ∼= Q to mean that they are isomorphic as
posets.

We follow §7.2 of [19] for any undefined notation and terminology concerning
partitions. By an (integer) partition we mean a sequence of positive integers λ =
(λ1, . . . , λk) such that λ1 ≥ λ2 ≥ . . . ≥ λk and we write |λ| =

∑
λi. The number

of parts of λ is the length of λ, denoted l(λ). We identify a partition λ with its
diagram,

{(i, j) ∈ P2 : 1 ≤ i ≤ k, 1 ≤ j ≤ λi}.
If we replace the dots (i, j) by juxtaposed squares, we obtain the Young diagram
of λ, and we draw it rotated counterclockwise by π

4 radians. So, for example, the
diagram of (5, 4, 2, 1) is illustrated in Figure 1.

We call the elements of P2, and hence of λ, cells. Expressions such as “to the
left of”, or “directly above”, always refer to these rotated diagrams. We denote by
P the set of all integer partitions. For any µ, λ ∈ P we define µ ⊆ λ if and only

Figure 1.
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if µi ≤ λi for all i. If we identify a partition with its (Young) diagram, then the
partial order ⊆ is given simply by containment of diagrams. It is well known, and
not hard to see, that this makes P into a lattice, usually called Young’s lattice (see,
e.g., [19, §7.2]). Given n ∈ P and i ∈ [n− 1] we let

P(n, i) := {µ ∈ P : µ ⊆ (n− i)i}.

Given λ = (λ1, . . . , λk) ∈ P we let d(λ) be the length of the Durfee square of λ, so

d(λ) := max {i ∈ [k] : λi ≥ i}.(1)

Let µ, λ ∈ P , µ ⊆ λ. We then call λ \ µ a skew partition. Note that, in
poset theoretic language, partitions (respectively, skew-partitions) are the finite
order ideals (respectively, finite convex subsets) of P2. Given two skew partitions
ρ, ν ⊂ P2 we write ρ ≈ ν if ρ is a translate of ν. Given a skew partition ν ⊆ P2 its
conjugate is

ν
′

:= {(j, i) ∈ P2 : (i, j) ∈ ν}.
We follow [15] for general Coxeter groups notation. In particular, given a Coxeter

system (W,S) and σ ∈ W we denote by l(σ) the length of σ in W , with respect
to S, and we let D(σ) := {s ∈ S : l(σs) < l(σ)}. We denote by e the identity of
W , and we let T := {σsσ−1 : σ ∈ W, s ∈ S} be the set of reflections of W . Given
J ⊆ S we let WJ be the parabolic subgroup generated by J and

W J := {σ ∈W : l(sσ) > l(σ) for all s ∈ J}.

Note that W ∅ = W . The quotient W J is a poset and it is partially ordered by
(strong) Bruhat order. Recall (see, e.g., [15, §5.9]) that this means that x ≤ y
if and only if there exist r ∈ N and t1, . . . , tr ∈ T such that tr . . . t1 x = y and
l(ti . . . t1 x) > l(ti−1 . . . t1x) for i = 1, . . . , r. In this order, e is the minimal element
and, if W is finite, wJ0 and w0

J denote the unique maximal elements in W J and WJ ,
respectively. Given u, v ∈W J , u ≤ v, we let

[u, v]J := {z ∈ W J : u ≤ z ≤ v},

and consider [u, v]J as a poset with the partial ordering induced by W J .
In the remainder of this section, we recall a result of Shelton, for which we need

some notation from [13] and [17]. Let g be a complex, semisimple Lie algebra with
Cartan subalgebra h, and let b be a Borel subalgebra of g with nilradical n and
Levi component h. Let p be a parabolic subalgebra of g with nilradical u and
Levi component m. Let W and WJ be the Weyl groups of g and m, respectively.
Let ∆, ∆(m) be the root systems of g and m, with positive systems ∆+ and
∆+(m), determined by n. Let 2ρ be the sum of the positive roots in g and fix
a ∆+-antidominant integral weight λ ∈ h∗. For any µ ∈ h∗ we denote by M(µ)
the g-Verma module with highest weight µ − ρ. Then L(µ) and N(µ) denote the
unique irreducible quotient and the maximal m-locally finite quotient of M(µ),
respectively. If µ is ∆+(m)-dominant regular and integral, then N(µ) is the (g, p)-
generalized Verma module of highest weight µ − ρ. For u ∈ W and w ∈ W J we
denote by Mu the module M(uλ) and by Nw the module N(w0

Jwλ). All Ext∗

groups will be computed in Om, the usual Bernstein-Gelfand-Gelfand category of
g-modules relative to the pair (g, p) (see, e.g., [1]). The following result is due to
Shelton, and we refer the reader to [17] for its proof. He defines for any u and v in
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W J , a polynomial Eu,v(q) by

Eu,v(q) =
∑
k≥0

(−1)l(v)−l(u)−kqkdim(Extk(Nu, Nv)),(2)

and proves that

Theorem 2.1. Suppose that (g, p) corresponds to an indecomposable Hermitian
symmetric pair. Then for all u, v ∈W J :

i) Eu,v(q) = 0 if u 6≤ v;
ii) Eu,u(q) = 1;
iii) if u < v and s 6∈ D(u) with us ∈W J , then

Eu,v(q) =


Eus,vs(q) if s 6∈ D(v) and vs ∈W J ;
(q − 1)Eus,v(q) if s ∈ D(v) and us 6≤ vs;
(q − q−1)Eus,v(q) + Eus,vs(q) if u ≤ us ≤ vs ≤ v;
qEus,v(q) if vs 6∈ W J .

In this paper we solve these recurrence relations in the cases when (g, p) is an
indecomposable classic Hermitian symmetric pair (see Table 1). Our main results
are explicit product formulas for these polynomials. Moreover, these formulas imply
that the polynomials are combinatorial invariants.

Table 1. The indecomposable classic Hermitian Symmetric pairs (g, p).

(g, p) g [m,m]
SU(r, s) AN Ar−1 ×As−1

SO(2n− 1, 2) Bn Bn−1

Sp(2n,R) Cn An−1

SO(2n− 2, 2) Dn Dn−1

SO∗(2n) Dn An−1

3. The case (An−1, Ai−1 ×An−i−1)

In this section, we give an explicit product formula for the polynomials Eu,v(q)
in the case of the pair (An−1, Ai−1×An−i−1). We give two different formulations of
this result, one in terms of permutations and one in terms of partitions. Throughout
this section we fix n ∈ P and i ∈ [n − 1], and we let W := Sn, si := (i, i + 1) for
i = 1, . . . , n − 1, S := {s1, . . . , sn−1}, and J := S \ {si}. It is well known that
(Sn, S) is a Coxeter system of type An−1 and that the following characterization
holds (see, e.g., [15]).

Proposition 3.1. Let v ∈ Sn. Then

D(v) = {si ∈ S : v(i) > v(i+ 1)}.
For symmetric groups, the parabolic subgroups of Sn are called Young subgroups.

In the case of maximal parabolic subgroups (i.e. J = S \ {si}) their quotients take
this particularly simple form:

W J = {w ∈ W : w−1(1) < . . . < w−1(i) and w−1(i+ 1) < . . . < w−1(n)}.
Given v ∈W J we associate to v the partition

Λ(v) := (v−1(i)− i, . . . , v−1(2)− 2, v−1(1)− 1).(3)
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Figure 2. The lattice path corresponding to (5, 4, 2, 1) if n = 9
and i = 4.

Figure 3. The lattice path corresponding to (5, 4, 2, 1) if n = 12
and i = 5.

The following is well known (see [4, Proposition 2.8]).

Proposition 3.2. The map Λ defined by (3) is a bijection between W J and P(n, i).
Furthermore u ≤ v in W J if and only if Λ(u) ⊆ Λ(v), and l(v) = |Λ(v)| for all
u, v ∈ W J .

We will find it sometimes convenient to identify a partition λ ∈ P(n, i) with
a lattice path, with (1, 1) and (1,−1) steps. This path is the union of the lower
boundary of the diagram of the skew-partition (n− i)i \λ and the upper boundary
of the partition λ. Note that it starts at (0, 0) and ends at (n, 2i−n) (equivalently,
it has n steps and exactly i are (1, 1)-steps). We call a (1, 1)-step (respectively,
(1,−1)-step) an up-step (respectively, down-step). Given j ∈ [n− 1] we say that λ
has a peak at j if the j-th step of λ is up and its (j+1)-th step is down. For example,
if we take the partition of Figure 1, λ = (5, 4, 2, 1) ∈ P(9, 4), then the associated
path is the one shown in Figure 2 and it has peaks at 1, 3, 6, and 8. Note that this
identification between partitions and paths depends on n and i. For example, the
same partition (5, 4, 2, 1) corresponds to the path in Figure 3 if n = 12 and i = 5.
Since n and i are fixed throughout this section, this will cause no confusion.

The following elementary lemma is known (see [4, Lemma 2.9]).

Lemma 3.3. Let v ∈W J , and j ∈ [n− 1]. Then sj ∈ D(v) if and only if Λ(v) has
a peak at n− j.

Note that the k-th step of Λ(v) is an up step if and only if

k ∈ {n+ 1− v−1(i), n+ 1− v−1(i− 1), . . . , n+ 1− v−1(1)}.
Let u, v ∈W J , u ≤ v. For j ∈ [n] we let, following [4],

aj(u, v) := |{r ∈ u−1([i]) : r < j}| − |{r ∈ v−1([i]) : r < j}|.(4)

For example, if n = 9, i = 4, u = 123564789, and v = 516278394, then

(a1(u, v), . . . , a9(u, v)) = (0, 1, 1, 2, 1, 1, 2, 1, 1).(5)

Note that it follows easily from Proposition 3.2 that aj(u, v) ≥ 0 for j = 1, . . . , n
if and only if u ≤ v, and that aj(u, v) > 0 if j ∈ v−1([i]) \ u−1([i]) and u ≤ v. Also
note that, if u ∈W J and j ∈ [n], then

|{r ∈ u−1([i]) : r < j}| =
{
u(j)− 1, if j ∈ u−1([i]),
j + i− u(j), if j 6∈ u−1([i]).
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This may be used to obtain a more explicit formula for aj(u, v), if desired.
We can now state and prove the main result of this section.

Theorem 3.4. Let u, v ∈W J , u ≤ v. Then

Eu,v(q) = ql(v)−l(u)
∏

j∈v−1([i])\u−1([i])

(1− q−2aj(u,v)+1).(6)

Proof. Let, for brevity, Di(u, v) := v−1([i]) \ u−1([i]). We proceed by induction
on l(wJ0 ) − l(u). If l(wJ0 ) − l(u) = 0, we have wJ0 = v = u and the result is
trivially true. So suppose that l(wJ0 )− l(u) > 0 and let s = (k, k + 1) be such that
s 6∈ D(u) and us ∈ W J . Note that, since u ∈ W J , this implies that k ∈ u−1([i])
and k + 1 6∈ u−1([i]). We have four cases to consider.

a) s 6∈ D(v), and vs ∈ W J .

Since v ∈ W J , this implies that k ∈ v−1([i]) and k + 1 6∈ v−1([i]). Moreover,
us, vs ∈ W J and so Di(us, vs) = Di(u, v) and aj(us, vs) = aj(u, v) for all j ∈ [n],
since (us)−1([i]) is obtained from u−1([i]) by replacing k by k+ 1, and similarly for
v. Hence, by Theorem 2.1 and our induction hypothesis,

Eu,v(q) = Eus,vs

= ql(vs)−l(us)
∏

j∈Di(us,vs)
(1 − q−2aj(us,vs)+1)

= ql(v)−l(u)
∏

j∈Di(u,v)

(1− q−2aj(u,v)+1),

as desired.

b) s ∈ D(v), and us 6≤ vs.
Since v ∈ W J this implies that k 6∈ v−1([i]), k + 1 ∈ v−1([i]), and vs ∈W J . So we
have that Di(us, v) = Di(u, v) \ {k + 1},

aj(us, v) = aj(u, v) = aj(us, vs)(7)

for all j ∈ [n] \ {k + 1}, and

ak+1(us, vs) = ak+1(u, v)− 2.(8)

Since us 6≤ vs by (8) and the note before the statement of this theorem, we conclude
that ak+1(u, v) = 1. Hence, by Theorem 2.1 and the induction hypothesis,

Eu,v(q) = (q − 1)Eus,v(q)

= (q − 1)ql(v)−l(u)−1
∏

j∈Di(u,v)\{k+1}
(1− q−2aj(us,v)+1)

=
(q − 1)ql(v)−l(u)−1

(1 − q−2ak+1(u,v)+1)

∏
j∈Di(u,v)

(1− q−2aj(u,v)+1)

= ql(v)−l(u)
∏

j∈Di(u,v)

(1− q−2aj(u,v)+1),

as desired.
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c) s ∈ D(v), and us ≤ vs.

Since v ∈ W J this implies that k 6∈ v−1([i]), k + 1 ∈ v−1([i]), and vs ∈W J . So we
have that

Di(us, v) = Di(u, v) \ {k + 1},
Di(us, vs) = (Di(u, v) \ {k + 1}) ∪ {k},

aj(us, v) = aj(us, vs) = aj(u, v) for all j ∈ [n]\{k+1}, ak+1(us, vs) = ak+1(u, v)−2
and ak+1(u, v) = ak(u, v)+1. Hence, by Theorem 2.1 and our induction hypothesis,

Eu,v(q) = (q − q−1)Eus,v(q) + Eus,vs(q)

= (q − q−1)ql(v)−l(u)−1
∏

j∈Di(u,v)\{k+1}
(1− q−2aj(us,v)+1)

+ ql(v)−l(u)−2
∏

j∈(Di(u,v)\{k+1})∪{k}
(1− q−2aj(us,vs)+1)

= (q − q−1)ql(v)−l(u)−1
∏

j∈Di(u,v)\{k+1}
(1− q−2aj(u,v)+1)

+ ql(v)−l(u)−2(1− q−2ak(u,v)+1)
∏

j∈Di(u,v)\{k+1}
(1 − q−2aj(u,v)+1)

= ql(v)−l(u)−2 (q2 − q−2ak(u,v)+1)
(1− q−2ak+1(u,v)+1)

∏
j∈Di(u,v)

(1− q−2aj(u,v)+1)

= ql(v)−l(u)
∏

j∈Di(u,v)

(1− q−2aj(u,v)+1),

and the result again follows.

d) vs 6∈W J .

Then s 6∈ D(v) and we have two cases. In the first one, we have k, k+ 1 ∈ v−1([i]),
which implies that Di(us, v) = (Di(u, v)\{k+1})∪{k} and aj(us, v) = aj(u, v) for
j ∈ [n] \ {k + 1}, ak+1(u, v) = ak(us, v). Hence, by Theorem 2.1 and the induction
hypothesis,

Eu,v(q) = qEus,v(q)

= ql(v)−l(u)
∏

j∈(Di(u,v)\{k+1})∪{k}
(1− q−2aj(us,v)+1)

= ql(v)−l(u) (1− q−2ak(us,v)+1)
(1− q−2ak+1(u,v)+1)

∏
j∈Di(u,v)

(1− q−2aj(u,v)+1)

= ql(v)−l(u)
∏

j∈Di(u,v)

(1− q−2aj(u,v)+1).

In the second case we have, k, k + 1 6∈ v−1([i]), hence Di(us, v) = Di(u, v) and
aj(us, v) = aj(u, v) for j ∈ [n] \ {k+ 1}. Hence, by Theorem 2.1 and the induction
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hypothesis,

Eu,v(q) = qEus,v(q)

= ql(v)−l(u)
∏

j∈Di(u,v)

(1 − q−2aj(us,v)+1)

= ql(v)−l(u)
∏

j∈Di(u,v)

(1 − q−2aj(u,v)+1),

and the result again follows.
This completes the induction step and hence the proof. �

Because W J is isomorphic, as a poset, to a lower interval in Young’s lattice (by
Proposition 3.2), it is natural to rephrase Theorem 3.4 in the language of partitions
rather than permutations.

Let µ, λ ∈ P(n, i), with µ ⊆ λ. Think of µ and λ as paths as explained above.
Then, by Proposition 3.2, the path λ lies (weakly) above the path µ. Let 1 ≤ j ≤ n
and consider the j-th step of λ (from the left). Following [4], we say that such a
step is allowable with respect to µ if it is an up-step and the j-th step of µ is a
down-step. For example, if n = 9, i = 4, λ = (5, 4, 2, 1), and µ = (2, 0, 0, 0), then
the j-th step of λ is allowable with respect to µ exactly if j ∈ {1, 3, 6} (see Figure
4). Now let ãj(µ, λ) be the vertical distance (divided by two, since it is always even)
between the (right end of the) j-th step of λ and the (right end of the) j-th step
of µ. We then have the following result, and we refer the reader to [4, Proposition
3.3] for its proof.

Proposition 3.5. Let u, v ∈W J , u ≤ v. Then

aj(u, v) = ãn+1−j(Λ(u),Λ(v))

for j = 1, . . . , n. Furthermore n+ 1− j ∈ v−1([i]) \ u−1([i]) if and only if the j-th
step of Λ(v) is allowable with respect to Λ(u).

We can now rephrase Theorem 3.4 in terms of partitions.

Corollary 3.6. Let u, v ∈W J , u ≤ v. Then

Eu,v(q) = q|λ\µ|
∏
j

(1− q−2ãj(µ,λ)+1),(9)

where µ = Λ(u), λ = Λ(v) and j runs over all the allowable steps of λ with respect
to µ. In particular, Eu,v(q) depends only on Λ(v) \ Λ(u). �

In the case of a lower interval, formula (9) takes up a particularly simple form.
The proof of the next result is analogous to the one of [4, Corollary 3.5], and we
leave it to the reader.

Corollary 3.7. Let v ∈ W J . Then

Ee,v(q) = q|µ|
d(µ)∏
j=1

(1− q−2j+1),

where µ = Λ(v) and d(µ) is the length of the Durfee square of µ. �
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Figure 4.

Figure 5.

We close this section with an example to illustrate Theorem 3.4 and Corollary
3.6. We use the various calculations made in §2 and §3. Let u = 123564789 and
v = 516278394 in S

S\{(4,5)}
9 ; we have D4(u, v) = {4, 7, 9}. From (5) and (6), it

follows that

Eu,v(q) = q10(1− q−1)(1− q−3)(1 − q−3).(10)

Observe that we have Λ(v) = (5, 4, 2, 1) = λ and Λ(u) = (2, 0, 0, 0) = µ. The
diagram of the skew-partition Λ(v) \ Λ(u) is drawn in Figure 4. The allowable are
indicated by arrows and ã1(µ, λ) = 1, ã3(µ, λ) = 2, ã6(µ, λ) = 2.

4. The case (Cn, An−1)

A partition (λ1, λ2, . . . , λk) is strict if λ1 > λ2 > . . . > λk. We denote by Ps
the set of all (integer) strict partitions. Let

H := {(i, j) ∈ P2 : i ≤ j}
with the ordering induced by the product ordering on P2. We call the finite order
ideals of H shifted partitions. Denote by I the set of all finite order ideals of H .
Note that I is partially ordered by set inclusion. It is well known that this makes
I into a distributive lattice. We identify a shifted partition with its diagram

{(i, j) ∈ P2 : 1 ≤ i ≤ k, i ≤ j ≤ λi − 1 + i},
and as in §3 we draw it rotated counterclockwise by π

4 radians. So for example the
diagram of (7, 6, 5, 4, 2) is illustrated in Figure 5.
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Let
P̃ := {λ ∈ P : λ ⊇ l(λ)l(λ)}.

Note that there are inclusion preserving bijections between strict partitions, shifted
partitions and partitions in P̃, given by

(λ1, λ2, . . . , λk)↔ {(i, j) ∈ P2 : 1 ≤ i ≤ k, i ≤ j ≤ λi − 1 + i}
↔ (λ1, λ2 + 1, . . . , λk + k − 1).

For this reason, we will freely identify these objects. Note, however, that only the
bijection between strict partitions and shifted partitions preserves size. In fact, if
λ, µ,∈ P̃ and ν ∈ P , with µ ⊆ ν ⊆ λ, then it does not necessarily follow that ν ∈ P̃.
Therefore the subposet

{ν ∈ P : µ ⊆ ν ⊆ λ}
of P is not isomorphic to the subposet

{ν ∈ I : µ ⊆ ν ⊆ λ}
of I.

Our purpose in this section is to obtain an explicit product formula for the E-
polynomials in the case of the pair (Cn, An−1). Therefore, let SBn be the group of
all the bijections of the set [±n] in itself such that

w(−a) = −w(a)

for all a ∈ [±n], with composition as group operation. If w ∈ SBn , then, following
[6], we write w = [a1, . . . , an] to mean that w(i) = ai, for i = 1, . . . , n, and call this
the window notation of w. Because of this notation the group SBn is often called the
group of all signed permutations on [n]. Since the elements of SBn are permutations
of [±n] we can also write them in disjoint cycle form; as in §2, we multiply elements
“from the right”. We identify Sn as a subgroup of SBn in the natural way. For the
rest of this section, we fix n ∈ P and we let W := SBn , si := (i, i + 1)(−i − 1,−i)
for i = 1, . . . , n − 1, s0 := (1,−1), S := {s0, s1, . . . , sn−1} and J := S \ {s0}. It
is well known that (SBn , S) is a Coxeter system of type Bn and that the following
characterization holds (see, e.g., [6]).

Proposition 4.1. Let v ∈ SBn . Then

D(v) = {si ∈ S : v(i) > v(i+ 1)},
where v(0) := 0.

From Proposition 4.1 we have that

W J = {v ∈W : v−1(1) < v−1(2) < . . . < v−1(n)}.
Therefore, given v 6= e, v ∈W J , there is a unique k ∈ [n] (in fact, k = N1(v)) such
that

v−1(k) < 0 < v−1(k + 1)(11)

and we associate to v the shifted partition

ΛB(v) := (−v−1(1),−v−1(2), . . . ,−v−1(k)).(12)

Let

Ĩ(n) := {λ ∈ I : λ ⊆ (n, n− 1, . . . , 2, 1)}.
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Figure 6.

The following is known:

Proposition 4.2. The map ΛB defined by (12) is a bijection between W J and
Ĩ(n). Furthermore u ≤ v in W J if and only if ΛB(u) ⊆ ΛB(v) and l(v) = |ΛB(v)|
for all u, v ∈W J .

As before it is convenient to identify a shifted partition λ ∈ Ĩ(n) with a lattice
path with (1, 1) and (1,−1) steps starting at (0, 0) and having n steps. We have
the obvious bijection between the peaks of λ as a path and the upper peaks of λ as
a partition. Note that, as in Proposition 3.2, this bijection depends on n, but for us
n is fixed and so there is no confusion. For example, the partition λ = (7, 6, 5, 4, 2)
corresponds to the path in Figure 6.

Lemma 4.3. Let v ∈ W J and j ∈ [n − 1]. Then sj ∈ D(v) if and only if ΛB(v)
has a peak at n− j. Furthermore, so ∈ D(v) if and only if the last step of ΛB(v) is
up.

This result can be proved in a way similar to Lemma 3.3 (see also Lemma 5.3)
and is due to Brenti [5]. Note that i-th step of ΛB(v) is an up-step if and only if

i ∈ {n+ 1 + v−1(1), n+ 1 + v−1(2), . . . , n+ 1 + v−1(k)}.(13)

Proposition 4.4. Let v ∈ W J and i ∈ [n]. Then the i-th step (from the left) of
ΛB(v) (seen as a path) is an up-step if and only if v(n+ 1− i) < 0.

Proof. We know that the i-th step of v ∈ W J is an up-step if and only if

n+ 1− i ∈ {−v−1(1),−v−1(2), . . . ,−v−1(k)}.(14)

But this, by the definition of k, happens if and only if v(n+1−i) < 0, as desired. �

We are now ready to prove the main theorem of this section, which gives an
explicit product formula for the polynomials Eu,v(q) in the case of the symmetric
pair (Cn, An−1). As in the preceding section we give two different formulations
of this result, one in terms of signed permutations and one in terms of shifted
partitions.

Let u, v ∈W J , u ≤ v. For j ∈ [n] let, following [5],

bj(u, v) := |{r ≥ j : v(r) < 0}| − |{r ≥ j : u(r) < 0}|.(15)

For example, if u = [4, 5,−3,−2, 6, 7,−1] and v = [6,−5, 7,−4,−3,−2,−1], then

(b1(u, v), . . . , b7(u, v)) = (2, 2, 1, 2, 2, 1, 0).(16)

Note that it follows from Proposition 4.2 that bj(u, v) ≥ 0 for j = 1, . . . , n if and
only if u ≤ v. Also, if u ≤ v, then bj(u, v) > 0 when v(j) < 0 < u(j). We let

N(u, v) := {r ∈ [n] : u(r)v(r) < 0}(17)
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and

D(u, v) := {r ∈ N(u, v) : (−1)br(u,v) < 0}.(18)

Theorem 4.5. Let u, v ∈W J , u ≤ v. Then

Eu,v(q) = ql(v)−l(u)
∏

j∈D(u,v)

(1 − q−b̃j(u,v)),(19)

where

b̃j(u, v) :=
{

2bj(u, v)− 1 if u(j) > 0,
2bj(u, v) + 1 if u(j) < 0.(20)

Proof. We proceed by induction on l(wJ0 ) − l(u). If l(wJ0 ) − l(u) = 0, we have
wJ0 = v = u and the result is trivially true. So suppose that l(wJ0 ) − l(u) > 0 and
let s be such that s 6∈ D(u) and us ∈ W J .

Suppose first that s = (−i−1,−i)(i, i+1) for some i ∈ [n−1]; then u(i) < u(i+1).
Note that, since u ∈ W J , this implies that u(i) < 0 < u(i+ 1). We have four cases
to consider.

a) s 6∈ D(v), and vs ∈ W J .

Since v ∈ W J , this implies that v(i) < 0 < v(i + 1). Moreover us, vs ∈ W J , and
so N(us, vs) = N(u, v) and bj(us, vs) = bj(u, v) for all j ∈ [n], so that D(us, vs) =
D(u, v) and b̃j(us, vs) = b̃j(u, v) for all j ∈ [n] \ {i, i+ 1}. Hence, by Theorem 2.1
and our induction hypothesis,

Eu,v(q) = Eus,vs(q)

= ql(vs)−l(us)
∏

j∈D(us,vs)

(1− q−b̃j(us,vs))

= ql(v)−l(u)
∏

j∈D(u,v)

(1− q−b̃j(u,v)),

as desired.

b) s ∈ D(v), and us 6≤ vs.

Then v(i) > 0 > v(i + 1), therefore N(us, v) = N(u, v) \ {i, i + 1}, bj(us, v) =
bj(u, v) = bj(us, vs) for all j ∈ [n] \ {i+ 1}, and

bi(u, v) = bi+1(u, v)− 1.(21)

Since us 6≤ vs, it follows from the note before the statement of the theorem that
bi+1(u, v) > 0 > bi+1(us, vs). Also bi+1(u, v) − bi+1(us, vs) = 2, so bi+1(u, v) =
1. This and (21) imply that i 6∈ D(u, v) and i + 1 ∈ D(u, v). It follows that
D(us, v) = D(u, v) \ {i + 1}, b̃j(us, v) = b̃j(u, v) for all j ∈ [n] \ {i, i + 1}, and
that b̃i+1(u, v) = 2bi+1(u, v) − 1 = 1. Hence, by Theorem 2.1 and the induction
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hypothesis,

Eu,v(q) = (q − 1)Eus,v(q)

= (q − 1)ql(v)−l(u)−1
∏

j∈D(u,v)\{i+1}
(1− q−b̃j(us,v))

=
(q − 1)ql(v)−l(u)−1

(1− q−b̃i+1(u,v))

∏
j∈D(u,v)

(1− q−b̃j(u,v))

= ql(v)−l(u)
∏

j∈D(u,v)

(1− q−b̃j(u,v)).

c) s ∈ D(v), and us ≤ vs.

Then, as above, v(i) > 0 > v(i + 1), N(us, v) = N(u, v) \ {i, i + 1}, bj(us, v) =
bj(u, v) for all j ∈ [n] \ {i+ 1}, and

bi(u, v) = bi+1(u, v)− 1.(22)

It follows that D(us, v) = D(u, v) \ {i, i + 1} and b̃j(us, v) = b̃j(u, v), for all j ∈
[n] \ {i, i + 1}. On the other hand, we have N(us, vs) = N(u, v) and bj(us, vs) =
bj(u, v) for all j ∈ [n] \ {i + 1}, and bi+1(us, vs) = bi+1(u, v) − 2. It follows that
D(us, vs) = D(u, v) and b̃j(us, vs) = b̃j(u, v) for all j ∈ [n] \ {i, i+ 1}. Hence, by
Theorem 2.1 and the induction hypothesis,

Eu,v(q) = (q − q−1)Eus,v(q) + Eus,vs(q)

= (q − q−1)ql(v)−l(u)−1
∏

j∈D(u,v)\{i,i+1}
(1− q−b̃j(us,v))

+ ql(v)−l(u)−2
∏

j∈D(u,v)

(1− q−b̃j(us,vs)).(23)

From (22) we have that i ∈ D(u, v) if and only if i + 1 6∈ D(u, v), so we have two
cases. If i ∈ D(u, v), then D(us, v) = D(u, v)\{i} and b̃i(us, vs) = 2bi(us, vs)−1 =
2bi(u, v)− 1 = b̃i(u, v)− 2 because u(i) < 0 < u(i+ 1). Hence, by (23),

Eu,v(q) = (q2 − 1)ql(v)−l(u)−2
∏

j∈D(u,v)\{i}
(1− q−b̃j(u,v))

+ ql(v)−l(u)−2(1− q−b̃i(us,vs))
∏

j∈D(u,v)\{i}
(1− q−b̃j(u,v))

= ql(v)−l(u)−2 (q2 − q−b̃i(us,vs))
(1 − q−b̃i(u,v))

∏
j∈D(u,v)

(1 − q−b̃j(u,v))

= ql(v)−l(u)
∏

j∈D(u,v)

(1− q−b̃j(u,v)).
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If i+1 ∈ D(u, v), thenD(us, v) = D(u, v)\{i+1} and b̃i+1(us, vs) = 2bi+1(us, vs)
+ 1 = (2bi+1(u, v)− 1)− 2 = b̃i+1(u, v)− 2. Hence, by (23),

Eu,v(q) = (q2 − 1)ql(v)−l(u)−2
∏

j∈D(u,v)\{i+1}
(1− q−b̃j(u,v))

+ ql(v)−l(u)−2(1 − q−b̃i+1(us,vs))
∏

j∈D(u,v)\{i+1}
(1 − q−b̃j(u,v))

= ql(v)−l(u)−2 (q2 − q−b̃i+1(us,vs))
(1− q−b̃i+1(u,v))

∏
j∈D(u,v)

(1− q−b̃j(u,v))

= ql(v)−l(u)
∏

j∈D(u,v)

(1 − q−b̃j(u,v)),

and the result follows also in this case.

d) vs 6∈W J .

Then s 6∈ D(v) and we have two cases. In the first one, we have v(i) < v(i+ 1) < 0
and this implies that N(us, v) = (N(u, v) \ {i + 1}) ∪ {i}, bj(us, v) = bj(u, v) for
all j ∈ [n] \ {i+ 1}, bi(us, v) = bi+1(u, v). It follows that

D(us, v) \ {i} = D(u, v) \ {i+ 1},

i ∈ D(us, v), if and only if i+1 ∈ D(u, v), b̃j(us, v) = b̃j(u, v) for all j ∈ [n]\{i, i+1}
and b̃i(us, v) = b̃i+1(u, v). Hence, by Theorem 2.1 and the induction hypothesis,
if i 6∈ D(us, v), D(us, v) = D(u, v) and the thesis easily follows. Otherwise if
i ∈ D(us, v), we have

Eu,v(q) = qEus,v(q)

= qql(v)−l(u)−1
∏

j∈D(us,v)

(1− q−b̃j(us,v))

= ql(v)−l(u) (1− q−b̃i(us,v))
(1− q−b̃i+1(u,v))

∏
j∈D(u,v)

(1− q−b̃j(u,v))

= ql(v)−l(u)
∏

j∈D(u,v)

(1− q−b̃j(u,v)),

because b̃i(us, v) = b̃i+1(u, v).
In the second case, we have 0 < v(i) < v(i+ 1) and this implies that N(us, v) =

(N(u, v) \ {i}) ∪ {i + 1}, bj(us, v) = bj(u, v) for all j ∈ [n] \ {i + 1}, bi+1(us, v) =
bi(u, v). It follows that

D(us, v) \ {i+ 1} = D(u, v) \ {i},

i+1 ∈ D(us, v), if and only if i ∈ D(u, v), b̃j(us, v) = b̃j(u, v) for all j ∈ [n]\{i, i+1}
and b̃i+1(us, v) = b̃i(u, v). Hence, by Theorem 2.1 and the induction hypothesis,
if i + 1 6∈ D(us, v), D(us, v) = D(u, v) and the thesis easily follows. Otherwise if
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i+ 1 ∈ D(us, v), we have

Eu,v(q) = qEus,v(q)

= ql(v)−l(u)
∏

j∈D(us,v)

(1− q−b̃j(us,v))

= ql(v)−l(u) (1− q−b̃i+1(us,v))
(1− q−b̃i(u,v))

∏
j∈D(u,v)

(1− q−b̃j(u,v)),

since b̃i+1(us, v) = b̃i(u, v), the result again follows.
Suppose now that s = (−1, 1) = s0. Then u(1) > 0, and we observe that

us, vs ∈ W J . We therefore have three cases to consider.

1) s 6∈ D(v).

Then vs ∈ W J and v(1) > 0. Hence N(us, vs) = N(u, v), bj(us, vs) = bj(u, v) for
all j ∈ [n] and so D(us, vs) = D(u, v) , 1 6∈ D(u, v), b̃j(us, vs) = b̃j(u, v), for all
j ∈ [n]\ {1} and the result follows from Theorem 2.1 and the induction hypothesis.

2) s ∈ D(v), and us 6≤ vs.

Then v(1) < 0 so N(us, v) = N(u, v) \ {1}, bj(us, v) = bj(u, v) for all j ∈ [n] \ {1}.
Therefore D(us, v) = D(u, v) \ {1} and b̃j(us, v) = b̃j(u, v) for all j ∈ [n] \ {1}.
Also, u < v and us 6≤ vs, so by the remark before the statement of the theorem,
b1(u, v) = 1 and hence b̃1(u, v) = 1. Hence,

Eu,v(q) = (q − 1)Eus,v(q)

= (q − 1)ql(v)−l(u)−1
∏

j∈D(u,v)\{1}
(1− q−b̃j(u,v))

= ql(v)−l(u)
∏

j∈D(u,v)

(1− q−b̃j(u,v)).

3) s ∈ D(v), and us ≤ vs.

Then v(1) < 0, N(us, vs) = N(u, v), N(us, v) = N(u, v) \ {1}, bj(us, vs) =
bj(u, v) = bj(us, v) for all j ∈ [n]\ {1}, and b1(us, vs) = b1(u, v)−2 = b1(us, v)−1.
It follows that

D(us, v) = D(u, v) \ {1} = D(us, vs) \ {1}

and b̃j(us, vs) = b̃j(u, v) = b̃j(us, v) for all j ∈ [n] \ {1}. Hence,

Eu,v(q) = (q − q−1)Eus,v(q) + Eus,vs(q)

= (q − q−1)ql(v)−l(u)−1
∏

j∈D(u,v)\{1}
(1− q−b̃j(us,v))

+ ql(v)−l(u)−2
∏

j∈D(us,vs)

(1− q−b̃j(us,vs)).(24)
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Now we have two cases. If 1 ∈ D(u, v), then 1 ∈ D(us, vs) and b̃1(us, vs) =
b̃1(u, v)− 2, so from (24),

Eu,v(q) = (q2 − 1)ql(v)−l(u)−2
∏

j∈D(u,v)\{1}
(1− q−b̃j(u,v))

+ ql(v)−l(u)−2(1− q−b̃1(us,vs))
∏

j∈D(u,v)\{1}
(1− q−b̃j(u,v))

= ql(v)−l(u) (1− q−b̃1(us,vs)−2)
(1− q−b̃1(u,v))

∏
j∈D(u,v)

(1− q−b̃j(u,v)).

If 1 6∈ D(u, v), then 1 6∈ D(us, vs) and from (24) we have that

Eu,v(q) = (q2 − 1)ql(v)−l(u)−2
∏

j∈D(u,v)

(1− q−b̃j(u,v))

+ ql(v)−l(u)−2
∏

j∈D(u,v)

(1− q−b̃j(u,v))

= ql(v)−l(u)
∏

j∈D(u,v)

(1− q−b̃j(u,v))

and the result follows. This completes the induction step and hence the proof. �

As in the previous section it is natural to rephrase Theorem 4.5 in the language
of shifted partitions. Let µ, λ ∈ Ĩ(n), with µ ⊆ λ. We think of µ and λ as paths, as
explained at the beginning of this section. Then, by Proposition 4.2, the path λ lies
(weakly) above the path µ. Let j ∈ [n] and consider the j-th step of λ (from the left).
Following [5] we say that such a step is B-allowable with respect to µ if the j-th step
of µ is not parallel to it and ãj(µ, λ) is odd. For example, if µ = (7, 4, 3, 0, 0, 0, 0)
and λ = (7, 6, 5, 4, 2, 0, 0), then the j-th step of λ is B-allowable with respect to µ
exactly if j ∈ {2, 5} (see Figure 7).

Proposition 4.6. Let u, v ∈W J , u ≤ v. Then

bj(u, v) = ãn+1−j(ΛB(u),ΛB(v))

for i = 1, . . . , n. Furthermore n + 1 − j ∈ D(u, v) if and only if the j-th step of
ΛB(v) is B-allowable with respect to ΛB(u).

This result can be proved in a way similar to Proposition 3.5 and is due Brenti
[5].

We can now rephrase Theorem 4.5 in terms of shifted partitions.

Corollary 4.7. Let u, v ∈W J , u ≤ v. Then

Eu,v(q) = q|λ\µ|
∏
j

(1− q−āj(µ,λ)),(25)

where µ = ΛB(u), λ = ΛB(v), j runs over all the B-allowable steps of λ with respect
to µ, and

āj(µ, λ) :=
{

2ãj(µ, λ)− 1 if the j-th step of µ is down,
2ãj(µ, λ) + 1 if the j-th step of µ is up.

In particular, Eu,v(q) depends only on ΛB(v) \ ΛB(u). �



CLOSED PRODUCT FORMULAS FOR VERMA MODULES 175

Figure 7.

In the case of a lower interval, the formulas (19) and (25) take up a particularly
simple form.

Corollary 4.8. Let v ∈ W J . Then

Ee,v(q) = ql(v)

bN1(v)+1
2 c∏
j=1

(1− q−4j+3) = q|λ|
b l(λ)+1

2 c∏
j=1

(1− q−4j+3),

where λ = ΛB(v).

Proof. We know from Theorem 4.5 that

Ee,v(q) = ql(v)
∏

j∈D(e,v)

(1 − q−b̃j(e,v)).(26)

Clearly, N(e, v) = {r ∈ [n] : v(r) < 0}, b̃j(e, v) = 2bj(e, v) − 1 for all j ∈ [n].
However, bj(e, v) = |{r ≥ j : v(r) < 0}| for j ∈ [n], and D(e, v) = {r ∈ N(e, v) :
br(e, v) is odd}. Hence,

Ee,v(q) = ql(v)

bN1(v)+1
2 c∏
j=1

(1− q−4j+3),

as desired. From the definition we have that l(ΛB(v)) = N1(v), so the second
equation follows. �

We close this section with an example. Let n = 7, u = [4, 5,−3,−2, 6, 7,−1],
and v = [6,−5, 7,−4,−3,−2,−1] ∈ (SB7 )J . We have N(u, v) = {2, 3, 5, 6} and
D(u, v) = {3, 6}. Since u(3) < 0 and u(6) > 0, from (20) and (19) it follows that

Eu,v(q) = q10(1 − q−3)(1− q−1).

Observe that ΛB(u) = (7, 4, 3, 0, 0, 0, 0) = µ and ΛB(v) = (7, 6, 5, 4, 2, 0, 0) = λ.
The paths corresponding to ΛB(v) and ΛB(u) are drawn in Figure 7, and the B-
allowable steps are indicated by arrows. We have that ā2(µ, λ) = 1 and ā5(µ, λ) = 3.

5. The case (Dn, An−1)

In this section we study the E-polynomials in the case of the pair (Dn, An−1).
Hence we consider SDn , the subgroup of SBn consisting of all the signed permutations
having an even number of negative entries in their window notation. More precisely,

SDn := {w ∈ SBn : N1(w(1), . . . , w(n)) ≡ 0 (mod 2)}.
For the rest of this section, we fix n ∈ P and we let W := SDn , si := (i, i + 1)
(−i − 1,−i) for i = 1, . . . , n − 1, s0 := (1,−2)(−1, 2), S := {s0, s1, . . . , sn−1} and
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Figure 8.

J := S \ {s0}. It is well known that (SDn , S) is a Coxeter system of type Dn and
that the following characterization holds (see, e.g., [6]).

Proposition 5.1. Let v ∈ SDn . Then

D(v) = {si ∈ S : v(i) > v(i+ 1)},
where v(0) := −v(2) and v(n+ 1) := 0.

As in §4 we have that W J = {v ∈ W : v−1(1) < v−1(2) < . . . < v−1(n)} and for
every v ∈ W J v 6= e, there is a unique k ∈ [n] such that

v−1(k) < 0 < v−1(k + 1)(27)

and we associate to v the shifted partition

ΛD(v) := (−v−1(1)− 1,−v−1(2)− 1, . . . ,−v−1(k)− 1).(28)

It is not so hard to see that

Proposition 5.2. The map ΛD defined by (28) is a bijection between W J and
Ĩ(n − 1). Furthermore u ≤ v in W J if and only if ΛD(u) ⊆ ΛD(v) and l(v) =
|ΛD(v)| for all u, v ∈ W J . �

Let A be the subset of Ĩ(n) consisting of all the shifted partitions with an even
number of entries different to zero. More precisely,

A := {λ = (λ1, λ2, . . . , λk) ∈ Ĩ(n) : k is even}.
We call this set the even shifted partitions. Observe that ΛB(W J) = A. Since, for
u, v ∈ W J , u ≤ v in (SBn )J if and only if u ≤ v in (SDn )J , we have an inclusion
preserving bijection between the shifted partition in Ĩ(n − 1) and even shifted
partitions in Ĩ(n). Thanks to this bijection we can identify λ ∈ Ĩ(n − 1) with the
lattice path associated to λ ∈ Ĩ(n) as explained in §4 after Proposition 4.2. We
observe that this lattice path starts at (0, 0), ends after n steps, and has an even
number of up-steps. For example, let v = [−4, 5,−3, 6,−2,−1] ∈ (SD6 )J . Then
ΛD(v) = (5, 4, 2, 0), ΛB(v) = (6, 5, 3, 1) and the lattice path associate to v is drawn
in Figure 8.

Lemma 5.3. Let v ∈ W J and j ∈ [n − 1]. Then sj ∈ D(v) if and only if ΛD(v)
has a peak at n − j. Furthermore, so ∈ D(v) if and only if the last two steps of
ΛD(v) are up.

Proof. Let k be defined by (27) and j ∈ [n− 1]; we have that sj ∈ D(v) if and only
if v(j) > v(j + 1). Since v ∈ W J , this happens if and only if v(j) > 0 > v(j + 1).
Equivalently, this happens if and only if j ∈ v−1([n]) and j+1 6∈ v−1([n]). However,
ΛD(v) (as a path) has a peak at n− j if and only if its (n− j)-th step is up and its
(n− j + 1)-th step is down. But the i-th step of ΛD(v) is an up-step if and only if

i ∈ {n+ 1 + v−1(1), n+ 1 + v−1(2), . . . , n+ 1 + v−1(k)}.(29)
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Therefore ΛD(v) has a peak at n− j if and only if

− j = v−1(i) + 1(30)

for some i ∈ [k], and

− j 6= v−1(i)(31)

for all i ∈ [k]. Equivalently, if and only if j 6∈v−1([−k,−1]) and j+1∈v−1([−k,−1]),
but by the definition of k, i 6∈ v−1([−k,−1]) if and only if i 6∈ v−1([−n,−1]), which
is if and only if i ∈ v−1([n]), for all i ∈ [n]. The result follows.

Now let so ∈ D(v). This happens if and only if v(1) + v(2) < 0 and implies that
v(1) < v(2) < 0. It follows that v−1(k) = −1 and v−1(k − 1) = −2, and that the
n-th and the n− 1-th steps of ΛD(v) are up. �

The following is exactly the analogue of Proposition 4.4 for permutation in
(SDn )J .

Proposition 5.4. Let v ∈ W J and i ∈ [n]. Then the i-th step (from the left) of
ΛD(v) (seen as a path) is an up-step if and only if v(n+ 1− i) < 0. �

Now we are ready to prove the analogue of Theorem 4.5 for the permutations in
(SDn )J . The formula is exactly the same, but observe that the polynomials are not
always the same; in fact the function length is different.

Theorem 5.5. Let u, v ∈W J , u ≤ v. Then

Eu,v(q) = ql(v)−l(u)
∏

j∈D(u,v)

(1 − q−b̃j(u,v)),(32)

where b̃j(u, v) is defined as in Theorem 4.5.

Proof. We proceed by induction on l(wJ0 ) − l(u). If l(wJ0 ) − l(u) = 0, we have
wJ0 = v = u and the result is trivially true. So suppose that l(wJ0 ) − l(u) > 0 and
let s be such that s 6∈ D(u) and us ∈ W J . If s = (−i − 1,−i)(i, i + 1) for some
i ∈ [n− 1], then the proof is exactly the same as for Theorem 4.5. So suppose that
s = (−1, 2)(1,−2) = s0; then we have u(1) + u(2) > 0. We observe that us ∈ W J

implies that 0 < u(1) < u(2). Moreover we have that b1(u, v) is even for every
u, v ∈ W J , and so 1 6∈ D(u, v) . We have four cases to consider.

a) s 6∈ D(v) and vs ∈ W J .
We have 0 < v(1) < v(2). Then N(us, vs) = N(u, v) and bj(us, vs) = bj(u, v) for
all j ∈ [n] and so D(us, vs) = D(u, v) and b̃j(us, vs) = b̃j(u, v) for all j ∈ [n]\{1, 2}.
Hence, by Theorem 2.1 and our induction hypothesis,

Eu,v(q) = Eus,vs(q)

= ql(v)−l(u)
∏

j∈D(u,v)

(1 − q−b̃j(u,v)).

b) s ∈ D(v) and us 6≤ vs.
Hence v(1)+v(2) < 0 and v(1) < v(2) < 0. We have thatN(us, v) = N(u, v)\{1, 2},
bj(us, v) = bj(u, v) for all j ∈ [n] \ {1, 2}. Using reasoning as in Theorem 4.5b),
b1(u, v) > b2(u, v) ≥ 0, so b1(u, v) ≥ 2; b2(us, vs) > b1(us, vs) so b1(us, vs) ≤ −2,
and b1(u, v) − b1(us, vs) = 4 so b1(u, v) = 2 and b2(u, v) = 1. So D(us, v) =
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D(u, v) \ {2} and b̃j(us, v) = b̃j(u, v) for all j ∈ [n] \ {1, 2} and b̃2(u, v) = 1. Hence,
by Theorem 2.1 and the induction hypothesis,

Eu,v(q) = (q − 1)Eus,v(q)

= (q − 1)ql(v)−l(u)−1
∏

j∈D(u,v)\{2}
(1− q−b̃j(u,v))

= ql(v)−l(u)
∏

j∈D(u,v)

(1− q−b̃j(u,v)).

c) s ∈ D(v) and us ≤ vs.
We have v(1) + v(2) < 0 and v(1) < v(2) < 0. So N(us, vs) = N(u, v), N(us, v) =
N(u, v) \ {1, 2}, bj(us, vs) = bj(u, v) = bj(us, v) for all j ∈ [n] \ {1, 2}, and
b2(us, vs) = b2(u, v)− 2. It follows that

D(us, v) = D(u, v) \ {2}, D(us, vs) = D(u, v),

b̃j(us, vs) = b̃j(u, v) = b̃j(us, v) for all j ∈ [n] \ {1, 2}, and b̃2(us, vs) = b̃2(u, v)− 2.
Hence, by Theorem 2.1 and our induction hypothesis,

Eu,v(q) = (q − q−1)Eus,v(q) + Eus,vs(q)

= (q − q−1)ql(v)−l(u)−1
∏

j∈D(u,v)\{2}
(1− q−b̃j(u,v))

+ ql(v)−l(u)−2(1− q−b̃2(us,vs))
∏

j∈D(u,v)\{2}
(1− q−b̃j(u,v))

= ql(v)−l(u) (1− q−b̃2(us,vs)−2)
(1− q−b̃2(u,v))

∏
j∈D(u,v)

(1− q−b̃j(u,v)),

and the result follows.
d) vs 6∈W J .

We have two cases. Suppose that v(1) > 0 and v(2) < 0. We have N(us, v) =
(N(u, v) ∪ {1}) \ {2}, bj(u, v) = bj(us, v) for all j ∈ [n] \ {1, 2}, and

b1(u, v) = b2(u, v),(33)

b1(us, v) = b1(u, v)− 2.(34)

Since b1(u, v) is even, (33) implies that 2 6∈ D(u, v), and (34) implies that 1 6∈
D(us, v). It follows that D(u, v) = D(us, v) and b̃j(us, v) = b̃j(u, v) for all j ∈
[n] \ {1, 2}, so the thesis follows immediately by induction.

Suppose now that v(1) < 0 and v(2) > 0. Then N(us, v) = (N(u, v)∪{2})\{1},
bj(u, v) = bj(us, v) for all [n] \ {1, 2}, and

b1(u, v) = b2(us, v) + 2.(35)

Since b1(u, v) is even, (35) implies that 2 6∈ D(us, v). It follows that D(u, v) =
D(us, v) and b̃j(us, v) = b̃j(u, v) for all j ∈ [n] \ {1, 2}, so the thesis follows imme-
diately by induction. This completes the proof. �

As in the previous cases it is natural to rephrase Theorem 5.5 in the language
of shifted partitions. Let λ, µ ∈ A, with λ ⊆ µ. We think of µ and λ as paths as
explained in §4. So using Proposition 4.6 we have that
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Corollary 5.6. Let u, v ∈W J , u ≤ v. Then

Eu,v(q) = q|λ\µ|
∏
j

(1− q−āj(µ,λ))(36)

where µ = ΛD(u), λ = ΛD(v), j runs over all the B-allowable steps of λ with respect
to µ, and āj(u, v) is defined as in Corollary 4.7. In particular, Eu,v(q) depends only
on ΛD(v) \ ΛD(u). �

For lower intervals we obtain the following

Corollary 5.7. Let v ∈ W J . Then

Ee,v(q) = ql(v)

N1(v)
2∏
j=1

(1− q−4j+3) = q|λ|

l(λ)
2∏

j=1

(1− q−4j+3),

where λ = ΛD(v).

Proof. The results follows immediately from Corollary 4.8 , observing that N1(v)
is even for every v ∈W J . �

6. The cases (Bn, Bn−1) and (Dn, Dn−1)

In this section we analyze the E-polynomials in the cases (Bn, Bn−1) and
(Dn, Dn−1). We start with the first one. We use the same notations as in §4, hence
W = SBn , S = {s0, s1, . . . , sn−1}, and so = (−1, 1), but now we let J := S \{sn−1},
so as to have WJ = Bn−1. It follows that the quotient W J is a totally ordered set,
more precisely, is the chain

W J = {e, sn−1, . . . , sn−1sn−2 . . . s1s0, sn−1 . . . s1s0s1, . . . ,

sn−1sn−2 . . . s1s0s1 . . . sn−1}.

Proposition 6.1. Let (W,S) be a Coxeter system, J ⊂ S and u, v ∈W J such that
u ≤ v. If [u, v]J is a chain, then

Eu,v(q) = ql(v)−l(u)(1− q−1).

Proof. We proceed by induction on l(wJ0 ) − l(u). If l(wJ0 ) − l(u) = 0, the result is
trivially true. So suppose that l(wJ0 ) − l(u) > 0 and let s 6∈ D(u) and us ∈ W J .
We have four cases to consider.

a) s 6∈ D(v) and vs ∈ W J .
Then the result follows immediately by induction.

b) s ∈ D(v) and us 6≤ vs.
We know that [u, v]J is a chain, so us 6≤ vs implies that us = v. It follows that

Eu,v(q) = (q − 1)Eus,v(q) = q(1− q−1).

c) s ∈ D(v) and us ≤ vs.
We have

Eu,v(q) = (q − q−1)ql(v)−l(u)−1(1− q−1) + ql(v)−l(u)−2(1− q−1)

= ql(v)−l(u)−2(1 − q−1)q2 = ql(v)−l(u)(1− q−1).
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Figure 9.

d) vs 6∈W J .

Then the result follows immediately by induction. �

By the comment preceding the proposition this settles the case (Bn, Bn−1).
Let us examine the case (Dn, Dn−1). Using the notations of §5 we let W = Dn,

S = {s0, . . . , sn−1}, and s0 = (−1, 2)(1,−2). Now we let J := S \ {sn−1}. The
quotient can be written in the form

W J = {w ∈W : w−1(−2) < w−1(1) < . . . < w−1(n− 1)},

and its Bruhat order is drawn in Figure 9.
Moreover we know the unique reduced expression of each w ∈ W J , in fact the

n − 1 elements in the chain on the bottom are e, sn−1, . . . , sn−1 · · · s2, the n − 1
elements in the chain on the top are sn−1 · · · s2s0s1, . . . , sn−1 · · · s2s0s1s2 · · · sn−1,
and the remaining two elements are exactly sn−1 · · · s2s0 and sn−1 · · · s2s1. So every
i ∈ [2, n− 1] identifies two elements in the quotient, ui := sn−1 · · · si in the chain
on the bottom, and vi := sn−1 · · · s2s0s1 · · · si in the chain on the top. Moreover,
we define un := e.

Note that for all i ∈ [2, n] and for all j ∈ [1, n− 1] we have lD(ui) = n − i and
lD(vj) = n+ j − 1.

We call (u, v) a equidistant pair if there exists i ∈ [2, n] such that u = ui and
v = vi−1.

The verification of the following observation is left to the reader.

Lemma 6.2. Let u, v ∈W J . If (u, v) is an equidistant pair, then u−1(j) = v−1(j)
for all j ∈ [2, n− 1]. �

Proposition 6.3. Let u, v ∈W J . Then

Eu,v(q) =
{

(ql(v)−l(u) − q)(1− q−1) if (u, v) is equidistant,
ql(v)−l(u)(1− q−1) otherwise.

Proof. We have three cases to consider.

1) (u, v) = (ui, vj), with i ∈ [2, n] and j ∈ [1, n− 1] \ {i− 1}.
If j ≥ i, then ui = sn−1 · · · si and vj = sn−1 · · · s2s0s1 · · · sj . Hence si−1 6∈ D(ui)
and uisi−1 = ui−1 ∈ W J , while vjsi−1 6∈ W J , so we have Eui,vj (q) = qEui−1,vj (q).
We have i− 2 steps like this to do, and one more step for s = s0, so at the end we
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have

Eui,vj (q) = qi−2Eu2,vj (q) = qi−1Eu2s0,vj (q).(37)

Now [u2s0, vj ]J is a chain with j steps and so by Proposition 6.1 it follows that
Eu2s0,vj (q) = qj−1(q − 1) and so from (37) we are done.

If j < i− 1, after (i− j − 2) steps in the diagram we have

Eui,vj (q) = qi−j−2Euj+2,vj (q).(38)

The next step is for s = sj+1; sj+1 6∈ D(uj+2) and sj+1 6∈ D(vj), so by the first
part of the proof we have

Euj+2,vj (q) = Euj+1,vj+1(q) = q2j+1(1− q−1),

and the result follows from (38).
2) (u, v) is an equidistant pair.

We proceed by induction on i. If i = 2, then u2 =sn−1 · · · s2 and v1 =sn−1 · · · s2s0s1.
Hence s0 6∈ D(u2), s0 ∈ D(v1) and u2s0 6≤ v1s0, so Eu2,v1(q) = (q−1)Eu2s0,v1(q). In
the second step, s := s1, we have u2s0s1 6≤ v1s1, so Eu2,v1(q) = (q−1)2Eu2s0s1,v1(q)
= (q − 1)2, since v1 = u2s0s1.

So suppose i > 2. Then si−1 6∈ D(ui), uisi−1 = ui−1 ∈ W J , and vi−1si−1 =
vi−2 ∈W J , so since ui−1 ≤ vi−2, we have

Eui,vi−1(q) = (q − q−1)Eui−1,vi−1(q) + Eui−1,vi−2(q).

By case 1), Eui−1,vi−1(q) = ql(vi−1)−l(ui−1)(1− q−1) and by induction, Eui−1,vi−2(q)
= ql(vi−2)−l(ui−1)(1 − q−1). The result follows.

3) [u, v]J is a chain.
The result follows by Proposition 6.1. This completes the proof. �

7. Consequences and further remarks

In this section we derive some consequences of our results. We start by proving
that the E-polynomials are combinatorial invariants, i.e. that they depend only
on the poset [u, v]J . To do this we need a purely order theoretic result on skew
partitions that was first proved in [4, Lemma 5.5].

Lemma 7.1. Let ρ, ν be two connected skew partitions that are isomorphic as
posets. Then either ρ ≈ ν or ρ ≈ ν′ .

We can now prove the main result of this section.

Corollary 7.2. Let J ⊂ S, as in §3, §4, and §5, and u, v ∈ W J , x, y ∈ W J be
such that [u, v]J ∼= [x, y]J . Then

Eu,v(q) = Ex,y(q).

Proof. Now we prove this result in the case when W = Sn. By Proposition 3.2 we
have that [u, v]J is isomorphic, as a poset, to the interval [Λ(u),Λ(v)] in Young’s
lattice. But it follows immediately from the definitions and well-known results in
the theory of partially ordered sets (see, e.g., [18, §3.4]) that the subposet of join-
irreducibles of [Λ(u),Λ(v)] is isomorphic to Λ(v) \ Λ(u), where the skew partition
Λ(v) \ Λ(u) is seen as a poset. Therefore, since [u, v]J ∼= [x, y]J , we conclude that
Λ(v) \ Λ(u) ∼= Λ(y) \ Λ(x) (as poset), and the result follows from Lemma 7.1 and
Corollary 3.6.
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Similarly, we can prove the result for the other cases, but we need to replace
Proposition 3.2, Corollary 3.6 and Λ for (Cn, An−1) with Proposition 4.2, Corol-
lary 4.7 and ΛB, and for (Dn, An−1) with Proposition 5.2, Corollary 5.6 and ΛD,
respectively. �

Note that in the case when W = Sn the proof of Corollary 7.2 applies whenever
[u, v]K ∼= [x, y]H with K,H ⊂ S, |K| = |H | = |S| − 1.

We conclude this section by discussing the connections mentioned at the end of
the Introduction. In [14], Gabber and Joseph define for every u, v ∈W a polynomial

R
′

u,v(q) =
∑
k≥0

(−1)l(v)−l(u)−kqkdim(Extk(Mu,Mv))

and they conjectured (although this is not explicitly stated) that

R
′

u,v(q) = Ru,v(q).

This conjecture is not true (see [2]), but the R
′

and the R-polynomials are not
so different. In fact, Carlin shows that the R

′
-polynomials are monic of degree

l(v) − l(u) (see [8, Theorem 3.8]), as are the R-polynomials, and proves that the
conjecture is true in two cases: when l(v) − l(u) ≤ 3 (see [8, Proposition 3.13])
and when (u, v) is a Coxeter pair ([8, Proposition 3.11]). The E-polynomials play
the same role as the R

′
-polynomials in the generalized case, so it is natural to

wonder about the analogous question, i.e. if Eu,v(q) = RJu,v(q), where RJu,v(q)
are the parabolic R-polynomials (see e.g., [12]). This question also has a negative
answer. In fact, for example, let v = [3, 4, 1, 2, 5] ∈ SS\{(2,3)}

5 . Then we have that
RJe,v(q) = q4(1− q−1)(1 − q−2), while Ee,v(q) = q4(1 − q−1)(1− q−3).

However, we can prove the analogue of the results of Carlin, for generalized
Verma modules. The first two results are very simple, and their proofs are imme-
diate from Theorems 3.4, 4.5 and 5.5.

Corollary 7.3. Let u, v ∈ W J , u ≤ v. Then Eu,v(q) is a monic polynomial of
degree l(v)− l(u). �

Corollary 7.4. Let u, v ∈W J . If u ≤ v, then

dim(Extl(v)−l(u)(Nu, Nv)) = 1.

�

In [4] Brenti finds explicit formulas for the maximal parabolic R-polynomials
of the symmetric group and, in [5] for the group of signed permutations, when
J = S \ {s0}. He proves the following

Theorem 7.5. Let u, v ∈ SJn , u ≤ v. Then

RJu,v(q) = q|Λ(v)\Λ(u)|
∏
j

(1− q−ãj(Λ(u),Λ(v)))

where j runs over the allowable steps of Λ(v) with respect to Λ(u).

Theorem 7.6. Let u, v ∈ (SBn )J , u ≤ v. Then

RJu,v(q) = q|ΛB(v)\ΛB(u)|
∏
j

(1 − q−b̄j(ΛB(u),ΛB(v)))
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where j runs over the B-allowable steps of ΛB(v) with respect to ΛB(u) and

b̄j(ΛB(u),ΛB(v)) :=
{
ãj(ΛB(u),ΛB(v)) if the j-th step of ΛB(u) is down,
ãj(ΛB(u),ΛB(v)) + 1 if the j-th step of ΛB(u) is up.

The author will prove in another paper that the formula in Theorem 7.6 can be
extended to the case W = SDn , but we need to replace ΛB by ΛD.

Our formulas are very similar to Brenti’s, and it is easy to see that the following
results hold. The statements and proofs are given for W = Sn, but the results are
also true for SBn and SDn . We simply need to replace Λ by ΛB and ΛD, respectively.

We say that a skew partition is a border strip (also called a ribbon) if it contains
no 2× 2 square of cells.

Proposition 7.7. Let u, v ∈ W J be such that the skew partition Λ(v) \ Λ(u) is a
border strip. Then

Eu,v(q) = RJu,v(q).

�

So, in particular, we obtain the analogue of Proposition 3.13 of [8].

Corollary 7.8. Let u, v ∈W J . If l(v)− l(u) ≤ 3, then

dim(Extk(Nu, Nv)) = rJk (u, v),

where rJk (u, v) is the absolute value of the coefficient of qk in RJu,v(q). �

Let u, v ∈W J ; we call (u, v) a generalized Coxeter pair if rJ1 (u, v) = l(v)− l(u).
The next result is the analogue of Proposition 3.11 of [8].

Proposition 7.9. Let u, v ∈W J . If (u, v) is a generalized Coxeter pair, then

dim(Extk(Nu, Nv)) = rJk (u, v) =
(
n

k

)
,

for k = 0, . . . , n, where n = l(v)− l(u).

Proof. If (u, v) is a generalized Coxeter pair, then the only possibility is that RJu,v(q)
= qn(1− q−1)n. This means that the skew partition Λ(v) \ Λ(u) is a border strip,
and so the result follows by Proposition 7.7. �

It seems that the situation is exactly analogous, hence we are led to think that,
as for the generalized Verma modules, there should also exist a recursion formula
for the ordinary ones. So, we close this paper with this proposal.

Problem. Find a recursion formula for the R
′
-polynomials.
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Dipartimento di Matematica, Università di Roma “La Sapienza”, 00185 Roma, Italy
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