
Thesis Proposal:

Python Static Code Security Analysis

Jurriaan Bremer
6297196

jurriaanbremer@gmail.com

February 8, 2013

1 Introduction

Through this proposal I will present an, in my opinion, very interesting project on which I’d
like to do my thesis.

1.1 Motivation

Besides studying I spend most some of my free time studying and researching computer
security related issues as I find these very interesting. For example, I’m one of the main
developers of Cuckoo Sandbox, which is an automated malware analysis system. Other than
that, I’ve got experience with various topics, such as Reverse Engineering, analyzing custom
and/or proprietary (network) protocols, language safety in general (think locating security
issues and securing software), exploitation of these bugs, etc.

Given my interest in computer security, I think this project is a very good match as project
for my thesis.

1.2 Cuckoo Sandbox

Cuckoo Sandbox is a well-respected project in the security world and is internationally used
by people and companies ranging from hobbyists to (big) companies to government agencies.

Cuckoo monitors potential malware by dynamically logging its behavior. It does this by
executing the malware inside a virtual machine. My involvement in this project is all the
low-level stuff, i.e., I develop the component that actually analyzes and logs the sample 1, as
well as the communication between the component and Cuckoo.

Furthermore, I brainstorm and suggest improvements on other parts of the code, e.g.,
improvements on the design of Cuckoo, performance issues, new or extended functionality,
etc.

1a sample is any kind of potential malware, an office word file, a pdf file, etc.

1

jurriaanbremer@gmail.com

2 The Project

The official page for the project can be found as Bug 811876 2 on the Mozilla website. (Note
that, although the link doesn’t mention my name yet, I’ve already been accepted as partici-
pant, due to my past experience, as partially described above.)

2.1 Goals

The goal of this project is to automatically identify and report common mistakes, vulnera-
bilities, and other security flaws in applications using Python web-frameworks as basis. As
of now I couldn’t find any known tools with similar capabilities; there are some static code
analysers, but not with security in mind (e.g., syntax highlighting.)

2.2 Interesting Applications

The scope of this project is mostly limited to analyzing and detecting flaws in websites using
Python web-frameworks.

2.3 Vulnerabilities

For a brief list of possible vulnerabilities, see also the following link 3.

2.4 Scientific Research

Given the fact that Python is a dynamically typed language, there will be quite some chal-
lenges to overcome when it comes to analyzing the source code.

2.4.1 Research Contributions

• Static Taint-Analysis for Python, a Dynamically Typed Language

• A set of Security Rules, describing possible flaws

• Benchmarks for testing the Security Rules

2.4.2 Python Code Analysis

In order to cope with the analysis of Python, a dynamically typed language, we will first
get the Abstract Syntax Tree of each invididual source file, which can be retrieved using the
built-in ast module. We will then translate all code to be in Single Static Assignment (SSA),
an intermediate representation in which every single variable is assigned only once. [1]

From there on we will perform Taint Analysis in order to find Sources, Sinks, and Sanitiz-
ers. Sources, Sinks, and Sanitizers are based on the set of rules, as referenced in the subsection
Research Contributions.

We will process the various functions using a flow-insensitive algorithm, e.g., take the
following code.

2https://bugzil.la/811876
3https://wiki.mozilla.org/Python_Static_Code_Analysis#Practical_Goals

2

https://bugzil.la/811876
https://wiki.mozilla.org/Python_Static_Code_Analysis#Practical_Goals

class A:

def a(self, value):

self.abc = value

def b(self, value):

self.def = value

In this sample code, we cannot accurately, in most cases, determine whether function a
will be called first or function b. Therefore we assume that, when function a is called, the
member def already exists (which is only defined when function b is called.) This results in
the fact that when function b is called somewhere in the code with source data, i.e., data we
don’t want to emit into the sink directly, then the def member will be tainted as well. This
is called flow-insensitive analysis.

However, when analyzing single functions, such as function a, we use a flow-sensitive
algorithm, which is automatically the case since we use an intermediate SSA representation,
as described earlier in this subsection. Take for example the following code.

class A:

def a(self, value):

a = 42

do something

...

self.abc = value

return self.abc

In this code, the return value self.abc is only known after it is assigned with value. In
other words, when the local variable a is assigned, the abc member is not yet defined.

2.4.3 Sources, Sink & Sanitizers Example

Sources are sources of data, such as data given as parameter to a HTTP GET request. These
sources represent sensitive data, which, depending on the rules, we don’t want to emit directly
into the HTTP response. Sinks are destination points for the source data; when source data
goes straight to a sink, without passing through a sanitizer, then there’s a security flaw in
the code. The sanitizer, as the name indicates, sanitizes the input, after which it is safe to be
passed to a sink.

For example, a sink could be the HTTP response, which is emitted to the client. Given a
GET parameter as source data, e.g., in http://example.com/api?a=b a is a GET parameter
and b is its value, and the HTTP response as the sink, then the application will want to sanitize
the source data before emitting it to the sink because otherwise a Cross-Site Scripting 4 attack
might occur, i.e., a malicious attacker can inject arbitrary javascript into a benign website.
In this example, a valid sanitizer would be one that encodes a string into a html-sanitized
string, i.e., replacing ’<’ by ’<’, etc.

4http://en.wikipedia.org/wiki/Cross-site_scripting

3

http://en.wikipedia.org/wiki/Cross-site_scripting

2.4.4 References

Although I had a clear idea of how I would have wanted to approach this project, I’ve used
terminology as described in [1], [2], and [3], as these papers describe similar techniques but
for different programming languages (JavaScript, C, and Java, respectively.)

2.5 Mentor from Mozilla

Finally, as this is a project originally mentored by Mozilla, there will also be a Mozilla guy
involved, namely Stefan Arentz. Although we will have to come to an agreement between the
different parties involved, this shouldn’t give any additional problems, except for some extra
communication for myself, but that’s no problem.

Note that Mozilla will mainly be collecting sample data, e.g., misconfigured scripts, vul-
nerable scripts, etc. And will not, unless discussed and agreed upon by both parties, help with
writing any code and/or part of the thesis (doh). (We will be using Git as revision control,
so this isn’t too hard to track.)

However, given the fact that this project will be modularized, other parties will be able to
add new modules containing other, previously unsupported, web-frameworks, and/or other
kind of security bugs which are not already included.

3 Security Hazards

This section discusses various security hazards which can be approached using the tool, how
we can approach them, etc. Although unrelated to analyzing the source code itself, the
tool will also support detection of e.g. misconfiguration, in order to make it an all-in-one
tool. (Note that such scanners / modules can be generated by external people, due to the
modularity of the project.)

3.1 Misconfiguration

An obvious but common mistake is one of the various types of misconfigurating a project.
Configuration data can be stored in various locations; an external configuration file, an ex-
ternal python file, hardcoded inside a python file.

For external configuration files one can check the filetype, such as ini files, python files (in
the form of key = value statements), or even json files. The information from these various
kinds of configuration files can then be parsed as required.

3.1.1 Finding Configuration Files

First the module has to find all possible configuration files. It can find configuration files by
recursively searching from the root directory through all subdirectories. Furthermore, python
source files can be scanned for strings such as ”config.ini”.

3.1.2 Preconfigured credentials

It is common for an application to have some sort of admin interface, in these cases there will
be a password for the root, admin, or similar user. The password, however, may be anything

4

but plaintext. For example, a project may have a md5 hash as password, which is considered
broken.

3.1.3 Hardcoded Keys

Some applications may use some sort of public/private key encryption, OAuth authentication,
or other mechanisms to enforce trusted communication. Just like preconfigurd credentials,
hardcoded keys should not be stored inside configuration files.

Specific submodules can be used to scan for certain thirdparty libraries (such as OAuth.)

3.1.4 False-positive configuration files

Libraries commonly ship with an example configuration file. In these cases, the source code
should be scanned for statements which copy (or import) the example configuration file to
the real configuration file (e.g., an application might use the example configuration file when
it doesn’t find a real one.)

Furthermore, it should be checked that an example configuration file doesn’t contain real
(or usable) entries. That is, an example configuration file might have the prototype to fill in
real credentials for the library, but it should not contain weak and default credentials.

An incorrect example configuration file:

user = root

pass = toor

Whereas a correct example configuration file may look like the following:

admin username

user =

admin password

pass =

3.2 Pickle

Pickle is a Python library which allows one to store and load a Python object to or from
memory, or file. For this particular reason it is known to be a vulnerable library among the
Python libraries. Hence one should be very cautious to use it. This means that pickled data
must not be loaded from untrusted data, such as that of a http request.

That being said, Pickle can be put directly on the list of Sinks.

3.3 Local File Inclusion

Local file inclusion occurs when an application loads a file from a path that is given through
untrusted data, such as client data. Example attacks of this attack are reading configuration
files; either specific to the library being used, or files such as /etc/passwd.

5

3.4 Cross Site Scripting

Cross Site Scripting is when a website passes user-data unescaped back into a website. This
results in a malicious user being able to craft a special URL which will execute some javascript,
therefore being able to steal a users cookie 5, etc.

3.5 Cross Site Request Forging

Cross Site Request Forging is when an attacker can predict the URL query for a specific
request/action upfront. In other words, when an application (or a specific part of it) is
vulnerable to CSRF, then an attacker can embed such URL in for example a html image
element, therefore giving instructions to the website without the user knowing about it.

An example request vulnerable to CSRF looks like the following:

GET request to permanently remove a user from a website

/user/delete?user=jbremer&permanent=true

However, a website which has protection against CSRF requests, may have a page where
the user can permanently delete the account using an URL like the one above, but it would
include a unique token which is recreated every time the page is opened. For example, multiple
requests to such page may result in the following URLs:

first visit

/user/delete?user=jbremer&permanent=true&token=76847839753872398

second visit

/user/delete?user=jbremer&permanent=true&token=79352769297489523

Due to the fact that the URL is randomized every time now, a malicious user cannot
predict the URL, and will therefore not be able to trigger it using CSRF.

3.6 XSS & CSRF

Some websites might implement a correct mitigation against CSRF, but forget to protect
against a combination of XSS and CSRF attacks. In this particular case, an attacker can
use an XSS attack vector to do an XMLHttpRequest 6 (or similar) to the page on which the
CSRF token can be found, and from there on do another request to the /user/delete URL
with the correct token.

A mitigation against this combination of attacks can be pulled off by checking the Referer
of a request, and there’s also some Origin HTTP headers, but both of these mitigations need
some further research.

5http://en.wikipedia.org/wiki/HTTP_cookie
6http://www.w3.org/TR/XMLHttpRequest/

6

http://en.wikipedia.org/wiki/HTTP_cookie
http://www.w3.org/TR/XMLHttpRequest/

3.7 SQL Injection

SQL Injection vulnerabilities are often abused in order to steal various kinds of user data
such as full names, email addresses, and even credit card information. SQL injections can
be found by searching for strings. In a perfect world all the websites written in python use
SQLAlchemy 7, which is not vulnerable to SQL injection. In other cases, the SQL queries will
be checked. For example, many PHP applications are vulnerable to SQL injection because
they modify the SQL query directly, rather than using so-called prepared statements 8. An
example of a vulnerable and a safe, prepared statement, follow:

vulnerable SQL query

query = ’SELECT * FROM users WHERE id=’ + user_data

safe, prepared statement, SQL query

query = (’SELECT * FROM users WHERE id = ?’, user_data)

The syntax of the prepared statement may differ between SQL libraries, but the question
mark indicates an extra parameter, in this case user data. This way the SQL query and the
data are seperated, and therefore not vulnerable.

3.8 Captcha

When used, it may not be a good idea to use a homegrown captcha system, due to various
reasons such as being too easy to defeat programmatically.

Furthermore, pages such as register pages, should usually be using a Captcha in order to
prevent spammers from taking over the entire site (i.e., mass registering accounts, etc.)

3.9 Denial of Service

Certain sequences of code might be error prone to Denial of Service.

3.9.1 Expensive operations inside Web Handlers

When handling a request coming from the web, it is preferably fast. For example, actions
such as reading (big) files, dns requests, and http request from inside a web handler function
might be expensive and, when triggered a few thousand times, create a Denial of Service.

This counts especially for web handlers which operate without any kind of verification
from the client (i.e., it’s quite common for complex applications to have some handlers which
perfrom quite some work when authenticated.)

3.9.2 Exceptions

Some web frameworks might not handle correctly when an exception is thrown in one of the
page handlers, e.g., if a request to the URL /api/get requires a GET parameter id, but this is
not given, a dictionary lookup might throw an error. If a web-framework doesn’t handle this
correctly, e.g., it completely shuts down the website, then this is a serious Denial of Service
bug.

7http://www.sqlalchemy.org/
8http://en.wikipedia.org/wiki/Prepared_statement

7

http://www.sqlalchemy.org/
http://en.wikipedia.org/wiki/Prepared_statement

4 Internals

We’ve already outlined various techniques for analyzing the source code in the Scientific
Research section.

4.1 SAT or SMT solver

Finally, we may want to proof that a sanitizer function a does in fact work as advertised, e.g.,
correctly html encodes an arbitrary string.

For this to work, we may be interested in using an SMT solver.

4.2 Modular

A very important feature of the project is to support various different frameworks and libraries.
In order to keep all of this as modular as possible, each framework or library gets its own
module (or maybe even multiple submodules.)

5 Conclusion

In this proposal I have introduced an interesting project, which has as far as I am aware
not been done before (or atleast has not been made available to the public.) The aim of this
project to research various ways to automatically and efficiently analyse websites implemented
using Python web-frameworks for security vulnerabilities in order to improve the security of
millions of people that rely on these website on a daily basis.

References

[1] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet, and Ryan
Berg. Saving the world wide web from vulnerable JavaScript. In Proceedings of the 2011
International Symposium on Software Testing and Analysis (ISSTA ’11). ACM, New York,
NY, USA, 177-187, 2011.

[2] Eric Bodden. Static flow-sensitive & context-sensitive information-flow analysis for soft-
ware product lines: position paper. In Proceedings of the 7th Workshop on Programming
Languages and Analysis for Security. ACM, New York, NY, USA, 2012.

[3] Jürgen Graf, Martin Hecker, Martin Mohr. Using JOANA for Information Flow Control
in Java Programs — A Practical Guide Programming Paradigms Group, 76131 Karlsruhe.

6 References

Secure Programming with Statis Analysis: http://www.amazon.com/Secure-Programming-Static-Analysis-Brian/
dp/0321424778/ref=sr_1_1?ie=UTF8&qid=1357429171&sr=8-1&keywords=0321424778

Google Results for Static Analysis Security: http://scholar.google.de/scholar?hl=

de&q=static+analysis+security&btnG=&lr

8

http://www.amazon.com/Secure-Programming-Static-Analysis-Brian/dp/0321424778/ref=sr_1_1?ie=UTF8&qid=1357429171&sr=8-1&keywords=0321424778
http://www.amazon.com/Secure-Programming-Static-Analysis-Brian/dp/0321424778/ref=sr_1_1?ie=UTF8&qid=1357429171&sr=8-1&keywords=0321424778
http://scholar.google.de/scholar?hl=de&q=static+analysis+security&btnG=&lr
http://scholar.google.de/scholar?hl=de&q=static+analysis+security&btnG=&lr

	Introduction
	Motivation
	Cuckoo Sandbox

	The Project
	Goals
	Interesting Applications
	Vulnerabilities
	Scientific Research
	Research Contributions
	Python Code Analysis
	Sources, Sink & Sanitizers Example
	References

	Mentor from Mozilla

	Security Hazards
	Misconfiguration
	Finding Configuration Files
	Preconfigured credentials
	Hardcoded Keys
	False-positive configuration files

	Pickle
	Local File Inclusion
	Cross Site Scripting
	Cross Site Request Forging
	XSS & CSRF
	SQL Injection
	Captcha
	Denial of Service
	Expensive operations inside Web Handlers
	Exceptions

	Internals
	SAT or SMT solver
	Modular

	Conclusion
	References

