
An Automated Approach for Software Bug Classification

Neelofar
Department of Computer Engineering

National University of Science and Technology
Rawalpindi, Pakistan

Neelofar.eme@gmail.com

Prof Dr. Muhammad Younus Javed
Department of Computer Engineering

National University of Science and Technology
Rawalpindi, Pakistan

myjaved@ceme.nust.edu.pk

Hufsa Mohsin
Department of Computer Engineering

National University of Science and Technology
Rawalpindi, Pakistan

hufsamohsin@gmail.com

Abstract— Open source projects for example Eclipse and
Firefox have open source bug repositories. User reports bugs
to these repositories. Users of these repositories are usually
non-technical and cannot assign correct class to these bugs.
Triaging of bugs, to developer, to fix them is a tedious and
time consuming task. Developers are usually expert in
particular areas. For example, few developers are expert in
GUI and others are in java functionality. Assigning a
particular bug to relevant developer could save time and
would help to maintain the interest level of developers by
assigning bugs according to their interest. However, assigning
right bug to right developer is quite difficult for tri-ager
without knowing the actual class, the bug belongs to. In this
research, we have classified the bugs in different labels on the
basis of summary of the bug. Multinomial Naïve Bayes text
classifier is used for classification purpose. For feature
selection, Chi-Square and TFIDF algorithms were used.
Using Naïve Bayes and Chi- square, we get average of 83 %
accuracy.

Key-Words: Text mining, classification, software
repositories, open source software projects, triaging, feature
extraction

1. Introduction
Data mining is the process of extracting useful

information through data analysis. It is also known as
knowledge discovery. Useful knowledge obtained as a
result of data mining can be use to cut costs, increase
revenues or both. Target data for mining purpose is
categorical and numerical having data types like integer,
decimal, float, char, varchar2 etc.

Data mining techniques cannot be applied to data
that is not numerical or categorical. 85% of enterprise data
falls in the category of non numerical or non categorical
[1]. For the success of business, knowledge extraction from
this unstructured data can be critical. Unstructured data is

processed using text mining techniques so that it can be
processed by data mining algorithms and techniques.
Techniques from information extraction, information
retrieval and natural language processing are used by text
mining .

Classification is a function of data mining to assign
classes/categories to items in a collection. Basic goal of
classification is the accurate prediction of target class for
each case in data. For example, loan applications can be
classified into high, medium or low risks on the basis of
classification model.

1.1 Mining Software Repositories
To understand constantly evolving software systems is

a very daunting task. Software systems have history of
how they come to be and this history is maintained in
software repositories. Software repositories are the artifacts
that document the evolution of software systems. Software
repositories often contain data from years of development
of a software project [2].

Examples of software repositories are:

a) Runtime Repositories: Example of runtime
repositories is deployment logs that contain useful
information about application usage on
deployment sites and its execution.

b) Historical Repositories: Examples of historical
repositories are bug repositories, source code
repositories and archived communication logs.

c) Code Repositories: Examples of code repositories
are Google code and codeforge.net that store
source code of various open source projects [3].

MSR is the process of software repositories
analysis to discover meaningful and interesting information

2012 Sixth International Conference on Complex, Intelligent, and Software Intensive Systems

978-0-7695-4687-2/12 $26.00 © 2012 IEEE

DOI 10.1109/CISIS.2012.132

414

hidden in these repositories. There is a huge Software
Engineering data over the course of time. MSR picks this
data, processes and analyzes it, and detects patterns in this
data. MSR is an open field, both in what can be mined and
what one can learn from the practice. Any software
repository can be mined not necessarily the code, bug or
archived communication repositories.

In this paper we present an automated bug
classification system. Proposed system uses Naïve Bayes
text classifier to classify bugs from open bug repository.
Data from eclipse and Firefox is used and maximum of
85% of precision accuracy is obtained.

2. Problem Formulation
Triaging of bugs to developer to fix them is a

tedious and time consuming task. Developers are usually
expert in some particular area. For example few developers
are expert in GUI and others are in pure java functionality.
Assigning a particular bug to relevant developer could save
time as well as would help to maintain the interest level of
developers by assigning those bugs according to their
interest. However assigning right bug to right developer is
quite difficult for tri-ager without knowing the actual class
a bug belongs to. This research proposes a technique for
classification of open source software bugs using the
summary provided by bug reporters.

2.1 literature survey
Some of the already implemented techniques for software
bugs classification are:

a) Micheal W. Godfrey, Olga Baysal and Robin
Cohen presented a framework for automatic
assignment of bugs to developers for fixation
using vector space model [4].

b) Hemant Josh, Chuanlei Zhouang, Oskum Bayrak
presented a methodology to predict future bugs
using history data [5].

c) Lei Xu, Lian Yu, Jingtao Zhao, Changzhu Kong,
and HuiHui Zhang proposed a technique using
data mining that automatically classifies the bugs
of web-based applications by predicting their bug
type. They further proposed debug strategy
association rules which find the relationship
between bug types and bug fixing solutions [6].

d) Nicholas Jalbert and Westley Weimer proposed a
system that automatically indicates whether an
arriving bug report is original or duplicate of an
already existing report. It saves developer’s time.
To predict bug duplication, system uses textual
semantics, graph clustering and surface features
[7].

e) Tilmann Bruckhaus provided a technique for
Escalation Prediction to avoid escalations by
predicting the defects that have high escalation
risk and then by resolving them proactively [8].

3. Problem Solution
This section describes the proposed system for bug
classification, data used for classification task and results
obtained in different experiments.

3.1 Input Data
Eclipse and Mozilla firefox data is obtained from

bugzilla -an open bug repository [9] [10]. Dataset of almost
29,000 record set is obtained. This data is divided into
training and testing groups and experiments are performed
on different set of data from these groups.

3.2 Model for prediction
When the bug is first reported to repository, it is submitted
to our proposed system as shown in Fig. 1. System extracts
all the terms in these reports using bag of words approach.
The vocabulary is that of extremely high dimensionality
and thus numbers of features are reduced by using chi-
square algorithm. These features are used for training of
classification algorithm which is then used for
classification of bug reports. The classification algorithm
used in proposed system is multinomial Naïve Bayes.

3.2.1 Pre-processing
Data pre-processing is the most important step of data
mining. Data obtained from bug repositories is in raw form
and cannot be directly used for training the classification
algorithm. The data is first pre-processed to make it useful
for training purpose. Data pre-processing is the major time
consuming step of data mining and most important as well.
Stop-words dictionary and regular expression rules are used
to filter useless words and filter the punctuations
respectively. Porter stemming algorithm is used to stem the
vocabulary

3.2.2 Feature Selection
The vocabulary obtained after applying “bag of words”

approach on data has very large dimensionality. Most of
these dimensions are not related to text categorization and
thus result in reducing the performance of the classifier. To
decrease the dimensionality, the process of feature selection
is used which takes the best k terms out of the whole
vocabulary which contribute to accuracy and efficiency.

There are a number of feature selection techniques
such as Chi-Square Testing, Information Gain (IG), Term

415

Figure 1. Bug Classification System

Frequency Inverse Document Frequency (TFIDF), and
Document Frequency (DF). In this research, chi-square and
TFIDF algorithms are used for feature selection.

3.2.3 Classifier Modeling
Text classification is an automated process of

finding some metadata about a document. Text
classification is used in various areas like document
indexing by suggesting its categories in a content
management system, spam filtering, automatically sorting
help desk requests etc.

Naïve Bayes text classifier is used in this research
for bug classification. Naïve Bayes classifier is based on
Bayes’ theorem with independent assumption and is a
probabilistic classifier. INDEPENDENCE means the
classifier assumes that any feature of a class is unrelated to
the presence or absence of any other feature.

4. Experimental Results
Results are obtained on the basis of prediction accuracy.
Prediction Accuracy is defined as
“Ratio of the bug reports with correct class to the total
number of bug reports [6].”

For feature extraction TFIDF and Chi Square algorithms
are used. Experimental results showed that Chi Square
gives better results in case of bug classification from open
source bug repositories. Comparison of results with TFIDF
and Chi Square as feature selection algorithm is given in
fig. 2. Chi Square gives higher accuracy as compared to
TFIDF with same testing to training ratio.

Fig. 3 shows the effect of changing the training to testing
ratio on prediction accuracy. It clearly shows that
prediction accuracy increases as training to testing ratio
increases. Highest accuracy is obtained when this ratio is
1:11. Increasing the training to testing ratio although
increases the prediction accuracy but execution time of
algorithm increases as well. So, increasing the training
vocabulary data beyond a certain limit is not feasible in real
time applications.

Proposed system using Naïve Bayes classifier is a
probability based approach that works on the prior
probability of classes and conditional probability of
features in the classes. Another important model for text
classification is support vector machine. Changzhu Kong,
Lian Yu, Lei Xu, HuiHui Zhang and Jingtao Zhao used
SVM for bug classification. Proposed technique using
naïve Bayes text classifier has following advantages over
the proposed system:

a) When training data is small, proposed system
performs better than SVM based system of Lei Xu
[6]. Training curve for SVM is much greater than
Naïve Bayes and when enough training set is not
given it does not perform well.

b) As far as processing time is concerned Lei system
is in a disadvantage. Processing time is much
higher then the other proposed technique and it
grows quadratically as the number of documents
increases in training set. Comparison of the two
systems is given in fig. 4 and 5.

5. Conclusion
In open source bug repositories, bugs are reported by users.
Triaging of these bugs is a tedious and time consuming

416

Figure 2. Comparison of Chi-Square and TFIDF

Figure 3. Accuracy with change in Training to testing ratio

45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85

1:01 1:02 1:03 1:04 1:05 1:06 1:07 1:08 1:09 1:10

A
c
c
u
r

a

c
y

%

Training/testing ratio

Comparison of chi-square and TFIDF

Chi

TFIDF

60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90

1:
01

1:
02

1:
03

1:
04

1:
05

1:
06

1:
07

1:
08

1:
09

1:
10

1:
11

1:
12

1:
13

1:
14

1:
15

A
c
c
u
r

a

c
y

%

Training/Testing ratio

Accuracy with change in training to testing ratio

Accuracy

417

Figure 4. Accuracy Comparison of proposed system and one proposed by Lian Yu

Figure 5. Comparison of Naïve Bayes (2) and SVM (1) on the basis of processing time

63

68

70

74
75

76

80

82
83

84

88
89

65

70

77

84

62

64

66

68

70

72

74

76

78

80

82

84

86

88

1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:101:111:12

A
c
c
u
r

a

c
y

%

Training to testing ratio

Accuracy Comparison of Proposed System and SVM

Proposed System

SVM

418

task. If some proper class is assigned to these bugs it would
be easier to assign these bugs to relevant developers to fix
them. However, as reporters of these bugs are mostly non-
technical it would not be possible for them to assign correct
class to these bugs. In this research an automated system
for classifying software bugs is devised, using multinomial
Naïve Bayes text classifier. Chi Square and TFIDF are used
for feature selection. Maximum of 86% prediction accuracy
is obtained.

6. Future Work
The system can be further improved by applying feature
selection techniques other than Chi-Square and TFIDF.
Synonym dictionary can be used so that system can tackle
the issue of understanding the synonyms of the same
words. For instance, if a user reports a bug related to
Firefox, system should consider it Firefox whether user
uses the word browser or Mozilla Firefox for it.

REFERENCES

[1] A. Hotho, A. Nürnberger and G. Paaß, "A Brief Survey of Text
Mining," vol. 20, GLDV Journal for Computational Linguistics and
Language Technology, 2005, pp. 19-62.

[2] A. E. Hassan, "The Road Ahead for Mining Software Repositories,"
IEEE Computer society, pp. 48-57, 2008.

[3] S. Diehl, H. C. Gall and A. E. Hassan, "Special issue on mining
software repositories," in Empirical Software Engineering An
International Journal © Springer Science+Business Media, 2009.

[4] O. B. Michael and G. C. Robin, "A Bug You Like: A Framework for
Automated Assignment of Bugs.," IEEE 17th international
conference, 2009.

[5] C. Zhang, H. Joshi, S. Ramaswamy and C. Bayrak, "A Dynamic
Approach to Software Bug Estimation," in SpringerLink, 2008.

[6] L. Yu, C. Kong, L. Xu, J. Zhao and H. Zhang, "Mining Bug
Classifier and Debug Strategy Association Rules for Web-Based
Applications," in 08 Proceedings of the 4th international conference
on Advanced Data Mining and Applications , 2008.

[7] N. Jalbert and W. Weimer, "Automated Duplicate Detection for Bug
Tracking Systems," in IEEE computer society, 2008.

[8] T. Bruckhaus, C. X. Ling, N. H. Madhavji and S. Sheng, "Software
Escalation Prediction with Data Mining," in Data Mining, Fifth
IEEE International Conference, 2006.

[9] [Online]. Available: https://bugzilla.mozilla.org/.

[10] [Online]. Available: https://bugs.eclipse.org/bugs/.

419

