
EdgeCast Networks, Inc.

Token-Based Authentication
Administration Guide

Disclaimer
Care was taken in the creation of this guide. However, EdgeCast Networks Inc. cannot accept
any responsibility for errors or omissions. There are no warranties, expressed or implied,
including the warranty of merchantability or fitness for a particular purpose, accompanying this
product.

Trademark Information
EDGECAST is a registered trademark of EdgeCast Networks, Inc.

FLASH is a registered trademark of Adobe Systems Incorporated.

WINDOWS is a registered trademark of Microsoft Corporation.

About This Guide
Token-Based Authentication Administration Guide
Version 2.1
1/23/2012

© EdgeCast Networks, Inc. All rights reserved.

Table of Contents EdgeCast Page i

Table of Contents

Introduction .. 1

Overview ... 1

How Does It Work? ... 1

Choosing a Platform to Secure.. 2

Setting Up Token-Based Authentication ... 4

Overview ... 4

Setting an Encryption Key ... 4

Changing Your Encryption Key .. 5

Protecting Your Content by Folder ... 6

HTTP-Based Platforms ... 7

Flash Media Streaming Platform... 8

Windows Media Streaming Platform .. 10

Authentication Folder Administration .. 12

Protecting your Content by Request Type .. 13

Interaction with CDN Settings ... 13

Determining How to Protect Your Content .. 14

Overview ... 14

Setting Content Expiration Date ... 14

Allowing or Blocking Users by Country ... 15

Preventing the Reuse of Token Values ... 15

Allowing or Blocking Users by Host... 19

Allowing or Blocking Users by Referrer .. 20

Allowing Users by IP address .. 23

Allowing or Blocking Users by Protocol .. 23

Preventing Changes to Bandwidth Throttling Settings ... 24

Generating Tokens .. 25

Table of Contents EdgeCast Page ii

Overview ... 25

Manually Generating a Token ... 25

Using Our Token Generation Application ... 26

Building a Token Generator .. 27

Decrypting an Existing Token .. 27

Providing Access to Protected Content .. 28

Overview ... 28

HTTP Large Object Example .. 28

HTTP Small Object Example .. 28

ADN Example .. 29

Flash Media Streaming Example ... 29

Windows Media Streaming Example .. 30

Redirecting Unauthorized Users ... 30

Quick Reference .. 32

Security Parameters .. 32

Bandwidth Throttling Reference ... 35

Appendix A .. 36

Country Codes (ISO 3166) ... 36

Appendix B .. 45

Flash Content Security Scenarios .. 45

Flash Media Streaming (Live StreamCast) .. 45

Flash Media Streaming (On-Demand Content) ... 46

Glossary ... 49

Token-Based Authentication EdgeCast Page 1

Introduction

Overview

Token-Based Authentication provides security for assets accessed through our content delivery
network. For example, you can secure your content by the country, URL, IP address, protocol, or
the referrer used to request access to your content. Additionally, you can protect your content
by only allowing it to be available for a certain amount of time. Regardless of how you decide to
protect your content, only authorized users that provide a valid token when requesting an asset
will be able to access your content.

How Does It Work?

There are three main Token-Based Authentication phases, which are configuration, content
linking, and client requests. The order under which these phases should take place is illustrated
below.

Token-Based Authentication Setup Overview

Platform-Specific Configuration

Before content can be secured, you will need to determine which platforms will be protected by
Token-Based Authentication and then configure each desired platform. Token-Based
Authentication configuration consists of specifying at least one encryption key and then
determining how content will be secured.

One way in which content can be secured is by specifying a directory. All requests for content in
that directory or a sub-folder of that location will be secured. An additional method for securing
content is only available if you have purchased HTTP Rules Engine. A rule can be created within
HTTP Rules Engine that enables or disables Token-Based Authentication when a request meets
predefined criteria. For example, you can specify that all Microsoft Word documents will be
protected by Token-Based Authentication.

Token-Based Authentication EdgeCast Page 2

Content Linking

Once Token-Based Authentication has been configured on the desired platform, encrypted
tokens can be generated that define which users will be able to access your content. Protected
content can then be made available to your clients by providing a link that includes a CDN or
edge CNAME URL to the desired asset and a query string parameter that contains the token
value that defines the security parameters that must be met before a user can access the
requested content.

Note: Assets that reside in unprotected folders cannot be secured through the use of security
parameters. An unsecured asset may be accessed using a standard CDN or edge CNAME URL.

Handling Client Requests for Secured Content

When a client attempts to access an asset protected by Token-Based Authentication, they will
need to provide a properly formatted URL and meet the security requirements defined in the
HTTP request. A more detailed explanation is provided below.

1. An authorized request must contain a valid security token that is appended to the file
name in the CDN or edge CNAME URL (e.g., http://data.server.com/asset.txt?
c1019f8a6942b46a1ce679e168d5797670f3ee7e39068054ee4534d8a5a859dc06).

2. Our edge servers will decrypt the token using either the current primary or backup
encryption key for the platform associated with the request. The decrypted value will
reveal the security requirements for the requested content.

3. The user must satisfy all of the security requirements defined for the requested content.
If the user meets the requirements defined in the decrypted token value, then access
will be granted to the requested content. Otherwise, the user will be denied access. If a
user is denied access, then you may choose to redirect the user to another web page.

Choosing a Platform to Secure

Token-Based Authentication can secure content stored on any of our platforms (e.g., HTTP Large
Object, HTTP Small Object, Flash Media Streaming, etc.). However, you will need to configure
each platform individually. This provides complete control over how content is secured on each
platform. The following table lists the available features and security parameters for each
platform.

Feature/Security Parameter HTTP-
Based
Platform

Windows
Media
Streaming

Flash
Media
Streaming

Primary Key

Backup Key

Folder-Level Security

Token-Based Authentication EdgeCast Page 3

Feature/Security Parameter HTTP-
Based
Platform

Windows
Media
Streaming

Flash
Media
Streaming

Expiration Date Parameter (ec_expire)

Allow URL Parameter (ec_url_allow)

Allow Country Parameter (ec_country_allow)

Deny Country Parameter (ec_country_deny)

Allow Host Parameter (ec_host_allow)

Deny Host Parameter (ec_host_deny)

Allow Referrer Parameter (ec_ref_allow)

Deny Referrer Parameter (ec_ref_deny)

Allow Protocol Parameter (ec_proto_allow)

Deny Protocol Parameter (ec_proto_deny)

Allow Client IP Address Parameter (ec_clientip)

Token Encryption/Decryption

Custom Denial Handling

Note: The term "HTTP-Based Platform" encompasses the HTTP Large Object, HTTP Small Object,
and the Application Delivery Network (ADN) platforms.

Note: HTTP-based platforms support the use of the ec_host_allow and the ec_host_deny
parameters, even though they are not available from the Encrypt Tool section of the Token
Auth page. For more information, please refer to the Allowing or Blocking Users by Host section
in the Determining How to Protect Your Content chapter.

Note: Although the Windows Media Streaming platform supports the use of the ec_ref_allow
and the ec_ref_deny parameters, these parameters have a slightly different behavior than when
used with other platforms and they are not available from the Encrypt Tool section of the Token
Auth page. For more information, please refer to the Allowing or Blocking Users by Referrer
section in the Determining How to Protect Your Content chapter.

Token-Based Authentication EdgeCast Page 4

Setting Up Token-Based
Authentication

Overview

There are two main aspects for setting up Token-Based Authentication, which are setting an
encryption key and determining the location(s) that will be protected by it. Both of these items
must be configured on each platform that will be secured by Token-Based Authentication. If
either setting is not properly configured, then content on that platform will not be properly
secured. This chapter explains how you can properly set up Token-Based Authentication on a
per platform basis.

Setting an Encryption Key

Content on a particular platform will not be protected by Token-Based Authentication until an
encryption key has been assigned to it. Once a key has been assigned to a particular platform, all
requests for assets in protected folders for that platform will require a token value. When an
edge server receives a request for a secure asset, it will decrypt the associated token value using
the encryption key configured for that platform.

An encryption key can consist of any combination of alphanumeric characters. All other
characters, including spaces, are not valid for encryption keys. You should also keep in mind that
encryption keys are case-sensitive. In other words, the case of an encryption key determines
how token values will be decrypted.

Setting an encryption key is as simple as navigating to the Token Auth page for the desired
platform in the MCC, assigning a value to the Primary Key option, and then clicking Update.
Once you have set a primary key, you will need to specify which folders you would like to
protect.

When assigning an encryption key for the first time, keep in mind that your changes (i.e., setting
an encryption key and specifying the folder(s) to be protected) may take up to an hour to take
effect. During this time period, the content of your protected folders can be accessed normally.

Important: Token values are not folder or platform-specific. This means that a user that satisfies
a token’s requirements can use that token to retrieve content from any protected folder that
has been associated with the encryption key used to generate it. Therefore, it is possible to use
a single token value to gain access to protected content from various folders across different
platforms.

Token-Based Authentication EdgeCast Page 5

Changing Your Encryption Key

The encryption key assigned to a platform is crucial for decrypting token values. If the
encryption key used to generate a token value is no longer set for that platform, then access will
be denied to that asset. The following factors may prevent you from instantly switching to a new
encryption key:

• The amount of time it takes to update all of your links to protected content.

• Cached assets that contain links to protected content using old token values.

• The amount of time it takes for your new encryption key to take effect (approximately 1
hour).

As a result of all of these factors, it is recommended that you have two active encryption keys to
ensure that authorized users enjoy uninterrupted access to your assets. This procedure would
require that you assign your old key as a backup key when creating a new encryption key. Since
your old key is still an active encryption key, users will still be able to access your data using old
tokens. You can remove your encryption key after the new encryption key has taken effect, all of
your links have been updated, and your old assets are no longer being served. This process will
ensure a smooth transition to a new encryption key.

Note: Windows Media Streaming does not have a backup key. If you have to change your
encryption key, it is recommended that you do so at a time when demand for your videos is at
its lowest.

To change your encryption key (recommended procedure)

1. From the MCC, navigate to the Token Auth page for the desired platform.

2. From the Token-Based Authentication section, copy the value from the Primary Key
option to the Backup Key option.

3. In the Primary Key option, type your new encryption key.

4. Click Update to save your changes. It may take up to an hour for your primary key to
become active.

5. After an hour has elapsed, update all of your links that point to protected content to use
tokens generated with the new encryption key.

6. Once all of your links have been updated, purge all of the assets that point to protected
content. Purges can be performed from the My Edge page, which is available for each of
the platforms, in the MCC. Keep in mind that you may purge a folder recursively.

7. Clear the Backup Key option. Click Update to save your changes. It may take up to an
hour for your backup key to become deactivated. After which, links that use token
values based on the old encryption key will be rejected.

Token-Based Authentication EdgeCast Page 6

Protecting Your Content by Folder

As previously mentioned, Token-Based Authentication secures content by platform (e.g., HTTP
Large Object, HTTP Small Object, Flash Media Streaming, etc.) and a primary and/or backup
encryption key must be specified for each desired platform. Keep in mind that an encryption key
by itself will not secure your content on that platform. An additional step is required; which is
identifying the content that will be secured by Token-Based Authentication. One way of
accomplishing this is to specify the location(s) that will be secured by Token-Based
Authentication on a per platform basis. The Directories to Authenticate section allows you to
define one or more protected locations using a relative path to the desired folder. The starting
point for this relative path is defined below:

• CDN URL: It starts directly after the CDN account number in the content access point
(e.g., /000001, /200001, or /800001). This means that you will not have to specify any
part of the URL that appears prior to the account number in the content access point.

• Edge CNAME URL: For CDN origin servers, it starts directly after the hostname (e.g.,
http://www.domain.com). For customer origin servers, it starts with the customer origin
configuration name (e.g., /MyCustomerOrigin).

Note: The path to a protected folder always starts with a forward slash (/).

Note: It may take up to an hour before a new location is fully protected.

Note: Wildcard characters (e.g., *) are not supported when setting up protected directories.

Securing Content on a Customer Origin Server
If you would like to protect a location other than the root folder on a customer origin server,
then you must include the name assigned to the customer origin configuration (e.g.,
/MyCustomerOrigin) when specifying the location that will be authenticated. This configuration
is required regardless of whether you plan on using a CDN or edge CNAME URL to access your
content. Failure to include the customer origin name may prevent that location on your
customer origin server from being protected by Token-Based Authentication.

Important: Although an edge CNAME URL does not include the name of a customer origin
server and may not include the path to the desired folder, it will be treated as if the
corresponding CDN URL had been used. As a result, when securing such a location you must
specify the name of the customer origin server followed by the relative path to the desired
folder (e.g., /MyCustomerOrigin/Presentations/2012).

Note: There is an exception that only applies to the HTTP Large Object, HTTP Small Object, and
the ADN platforms. A customer origin configuration name does not have to be specified when it
contains a period (e.g., www.domain.com). However, for the purpose of clarity and consistency,
it is still recommended to do so.

Token-Based Authentication EdgeCast Page 7

Scope
When choosing which folders to protect, keep in mind that security is applied recursively to that
folder. This means that all assets residing in the specified folder or its subfolders will be
protected by Token-Based Authentication.

Important: Protecting a folder’s content through Token-Based Authentication will only provide
security through the configured platform. This means that a user could potentially download the
secured content by using a URL for a different platform (e.g., HTTP Large Object instead of HTTP
Small Object). If you would like to ensure that your content is protected across all platforms,
then you should configured Token-Based Authentication on the desired folders across all of your
platforms.

If you do not wish to protect your content by specific folders, you can choose to protect all of
your content for a specific platform. This can be accomplished by simply making sure that the
New option, which can be found in the Directories to Authenticate section, is set to forward
slash (/). Click Add. This procedure will add the root folder to the list of protected folders. Due
to the recursive nature of Token-Based Authentication, the contents of the root folder and all of
its subfolders will be secured. Therefore, you do not need to specify any additional folders under
the Directories to Authenticate section for this platform.

Note: Protecting the root folder (/) will also secure content stored on each customer origin
server.

HTTP-Based Platforms

This section illustrates how the following URLs interact with Token-Based Authentication:

1. http://wpc.0001.edgecastcdn.net/000001/Secure/index.html

2. http://wpc.0001.edgecastcdn.net/000001/Secure/Data/index.html?c1019f8a6942b46a
1ce679e66cd579767

3. http://wpc. 0001.edgecastcdn.net/800001/MyServer/Secure/index.html

4. http://secure.server.com/index.html?c1019f8a6942b46a1ce679e66cd579767

Note: Although the above sample URLs are specific to the HTTP Large Object platform, the
analysis provided below also applies to the HTTP Small Object and the ADN platforms.

We will now examine the effect of securing a location called "/Secure" will have on the above
URLs.

1. The first URL points to an asset stored in a folder called "Secure" on a CDN origin server.
Since the asset is stored in a folder protected by Token-Based Authentication, it requires
a token. Since a token was not specified for this request, the asset will not be served to
the client.

Token-Based Authentication EdgeCast Page 8

2. The second URL points to an asset stored on a CDN origin server. Since this asset is
located in a subfolder of a protected folder, it is also protected by Token-Based
Authentication. The requested asset will be delivered to the client, as long as the token
is valid and the user requesting it meets the requirements specified in the provided
token.

3. The third URL points to a customer origin server. The "MyServer" folder is the name
assigned to the customer origin configuration for the server hosting your assets. Since
the relative path does not start with "/Secure," the requested asset is not protected. As
a result, the unprotected asset will be served to the client.

4. The fourth URL uses an edge CNAME in the URL. In this particular case, this edge CNAME
takes advantage of a customer origin configuration called "MyServer" and points to a
folder called "Secure." Although the edge CNAME URL points to the "Secure" folder, the
relative path for a customer origin server starts with the customer origin configuration
name. As a result, the unprotected asset will be served to the client.

We have just examined how several URLs would be affected when the "/Secure" location was
secured on an HTTP-based platform. We will now examine how alternate configurations will
affect how Token-Based Authentication interacts with those URLs.

Note: Each row in the following table represents a separate Token-Based Authentication
configuration.

Secured Location Description

/ A valid token is required for all four URLs.

/Secure/Data A valid token is only required for the second URL.

/MyServer A valid token is required for the third and fourth URLs.

/MyServer/Secure A valid token is required for the third and fourth URLs.

Flash Media Streaming Platform

The Flash Media Streaming platform provides two different mechanisms for delivering content,
which are Live StreamCast and On-Demand. Although content generated for the Live
StreamCast and On-Demand services are served from different servers, setting up a location
that will require authentication can potentially protect streams requested from both of these
services.

Tip: For detailed scenarios that describe how to secure a live event or on-demand content,
please refer to Appendix B: Flash Content Security Scenarios.

Note: Wildcard characters (e.g., *) are not supported when setting up the folders or live
ingestion points that will be secured.

Token-Based Authentication EdgeCast Page 9

Live StreamCast

Keep the following items in mind when protecting your live streams:

• The publishing point URL is used to determine whether a live stream will be protected
by Token-Based Authentication.

• Live streams cannot be protected on a per stream basis. Flash content can only be
protected by securing a folder path.

• If you publish your live event to the root folder, then it will only be protected by Token-
Based Authentication when the root folder is secured. Keep in mind that securing the
root folder will require a token to be specified for all live and on-demand Flash content.

Securing Live Streams (Flash Media Streaming Platform)
In order to protect a live stream, you will need to set the publishing point location as a secure
location. The publishing point location is the location referenced by the publishing point URL in
the encoder. This relative path starts directly after the content access point for all CDN and edge
CNAME URLs. This means that you have to specify the entire path after the content access point
(e.g., /20xxxx). Additionally, the path to a protected folder always starts with a forward slash (/).

Sample Configuration A

If an encoder is set to publish to:

• rtmp://fso.lax.xxxx.edgecastcdn.net/20xxxx

Then the following location should be secured in the Directories to Authenticate option:

• /

Reminder: Securing the root folder (i.e., /) will require a valid token for all live streams and on-
demand content.

Sample Configuration B

If an encoder is set to publish to:

• rtmp://fso.lax.xxxx.edgecastcdn.net/20xxxx/2012/Videos

Then one of the following locations should be secured in the Directories to Authenticate option:

• /

• /2012

• /2012/Videos

Reminder: All three of the above configurations can protect the specified live event due to the
fact that security is applied recursively to all of the locations specified under the Directories to
Authentication section.

Token-Based Authentication EdgeCast Page 10

On-Demand Content

Keep the following items in mind when protecting your on-demand content:

• Unlike Live StreamCast, the storage location of your on-demand content is used to
determine whether it will be protected by Token-Based Authentication.

• On-demand content cannot be protected on a per file basis. Flash content can only be
protected by securing a folder path.

• Securing the root folder will require a valid token for all live and on-demand content.

Securing On-Demand Content
In order to protect on-demand content, you will need to set the storage location of the desired
on-demand content as a secure location. When specifying the location to be authenticated, you
should only include the relative path that appears after the content access point. This
configuration is required regardless of whether you plan on using a CDN or edge CNAME URL to
access your content. Failure to include the entire path after the content access point will
prevent that location from being protected by Token-Based Authentication.

Note: Although an edge CNAME URL does not include the name of a customer origin server and
may not include the path to the requested content, it will be treated as if the corresponding
CDN URL had been used. As a result, when securing such a location you must specify the name
of the customer origin server followed by the relative path to the desired folder (e.g.,
/MyCustomerOrigin/Presentations/2012).

Windows Media Streaming Platform

The Windows Media Streaming platform allows you to stream live events and on-demand
content. Although these services behave differently, securing a location will protect streams
requested from both of these services.

Note: Wildcard characters (e.g., *) are not supported when setting up the folders or live
ingestion points that will be secured.

Live Streams

Your live streams can be secured by either securing the root folder or by adding each live
ingestion point that should be protected. If you secure the root folder (/), then a valid token will
be required when connecting to any live or on-demand Windows Media stream. If you prefer to
secure individual live ingestion points, then you should make sure to only specify the name of
the desired live ingestion point when adding a new authentication location (e.g.,
MyLiveIngestionPoint).

Important: If you would like to secure live ingestion points individually, then you should not
prepend a forward slash (/). Simply add the name as it appears under the Name column of the
Publishing Points page, which can be found on the Windows tab in the MCC.

Token-Based Authentication EdgeCast Page 11

Important: If you are streaming content that has been protected by Token-Based
Authentication, then you will need to verify that a token is appended to the live playback URL
every time that it is referenced in your code.

On-Demand Content

On-demand content can be protected by either securing the root folder or the path to the folder
where the desired on-demand content is stored. If you choose to secure content in a particular
location, then you will need to specify the relative path from the root folder of the CDN origin
server. A forward slash (/) is used to represent the root folder. If you secure the root folder (/),
then a valid token will be required when connecting to any live or on-demand Windows Media
stream.

Important: On-demand content cannot be protected on a per file basis. It can only be protected
by securing a folder path.

This section illustrates how different URLs interact with Token-Based Authentication. The URLs
that will be studied are listed below.

1. mms://wms.0001.edgecastcdn.net/000001/ Secure/Presentation01.wmv

2. mms://wms.0001.edgecastcdn.net/000001/ Secure/2012/Presentation01.wmv?
c1019f8a6942b46a1ce679e66cd579767

We will now examine the effect of securing a location called "/Secure" will have on the above
URLs.

1. The first URL points to an asset stored in a folder called "Secure" on a CDN origin server.
Since the asset is stored in a folder protected by Token-Based Authentication, it requires
a token. Since a token was not specified for this request, the asset will not be served to
the client.

2. The second URL points to an asset stored on a CDN origin server. Since this asset is
located in a subfolder of a protected folder, it is also protected by Token-Based
Authentication. The requested asset will be delivered to the client, as long as the token
is valid and the user requesting it meets the requirements specified in the provided
token.

We have just examined how different URLs would be affected when the "/Secure" location was
secured for the Windows Media Streaming platform. We will now examine how alternate
configurations will affect on-demand content streamed for those same URLs.

Note: Each row in the following table represents a separate Token-Based Authentication
configuration.

Token-Based Authentication EdgeCast Page 12

Name Description

/ All requests will require a valid token.

/Secure/2012 Only the second URL will require a valid token.

/Secure/2012/Presentation01 None of the requested assets will be protected by Token-Based
Authentication.

Authentication Folder Administration

The locations that will be secured through Token-Based Authentication can be administered on
a per platform basis. You can choose to add, modify, or delete each location from the Token
Auth page for the desired platform.

Note: It may take up to an hour for the creation, modification, or deletion of a location secured
by Token-Based Authentication to take effect.

To specify a new location that will be secured by Token-Based Authentication

1. From the MCC, navigate to the Token Auth page for the desired platform.

2. From the Directories to Authenticate section, type the relative path to the folder whose
contents you would like to protect in the New option.

3. Click Add.

To modify a location that will be secured by Token-Based Authentication

1. From the MCC, navigate to the Token Auth page for the desired platform.

2. From the Directories to Authenticate section, click . The desired relative path will
now be displayed in an edit box.

3. Modify the relative path to point to the folder whose contents you would like to protect.

4. Click .

To delete a location that will be secured by Token-Based Authentication

1. From the MCC, navigate to the Token Auth page for the desired platform.

2. From the Directories to Authenticate section, click next to the relative path that you
would like to delete.

3. When prompted, click OK to confirm that the relative path will be deleted.

Token-Based Authentication EdgeCast Page 13

Protecting your Content by Request Type

Token-Based Authentication can be enabled or disabled based on the type of request that was
received. HTTP Rules Engine, which must be purchased separately, provides this functionality.
HTTP Rules Engine allows an administrator to set up rules that determine how requests that
meet predefined criteria will be handled. For example, it can be configured to require a token
value to be specified for all HTML assets that reside on a particular customer origin server. For
detailed information on HTTP Rules Engine, please refer to the HTTP Rules Engine
Administration Guide.

Note: The extent of HTTP Rules Engine functionality is not limited to determining whether a
request will require Token-Based Authentication. There are a wide range of features that can be
applied to a request that matches the criteria specified in a rule.

Interaction with CDN Settings

HTTP Rules Engine both complements and overrides the default manner that our CDN handles
requests for content. This means that a rule will only override your CDN configuration when it
conflicts with the actions defined in that rule. This allows you to define a base configuration and
then using HTTP Rules Engine to customize it to meet the specific needs of your organization.

For example, HTTP Rules Engine can be used to override the directories that have been secured
by Token-Based Authentication for certain file types. You can create a rule that turns off Token-
Based Authentication for all HTML, JavaScript, and CSS files. This type of rule ensures that those
file types will not be protected by Token-Based Authentication regardless of where they are
stored.

Token-Based Authentication EdgeCast Page 14

Determining How to Protect Your
Content

Overview

There are many different requirements that you can set to control access to assets stored in
protected folders. You can mix-and-match these requirements as required to secure your
content. Adding, modifying, or removing requirements will simply create another unique token.
Clients that use the older token will still be able to access your content as long as they still meet
its requirements and the encryption key used to generate it is still active.

Tip: You can make tokens specific to a particular folder or asset. This will prevent that token
from being reused to access other protected content. For more information, please refer to the
Preventing the Reuse of Token Values section.

Note: If you would like to invalidate old tokens, then you will need to change your encryption
key. For more information, please refer to the Changing Your Encryption Key section.

As previously noted, content in protected folders can only be accessed by appending a token
value to the requested asset. Since each protected asset must be assigned a token, this allows
you the flexibility to choose how requirements are applied to protected content. You can choose
to apply the same set of requirements to all of your protected content or you can customize
your requirements to fit the security needs of each asset.

Setting Content Expiration Date

Time-sensitive content can be configured to only be available for a limited amount of time. Once
the specified time frame for a token has expired, users will be denied access to that asset when
requested using that token value.

The security parameter that controls time-based authentication is ec_expire. This parameter
uses the number of seconds since Unix time (a.k.a. POSIX time or Unix epoch) to specify a date
and time. Once the specified date and time has passed, requests that pass that token will be
denied. Unix time starts on 1970-01-01 at 00:00:00 GMT. For example, setting this parameter to
"1356955200" would set the expiration date and time to 12/31/2012 12:00:00 GMT.

Tip: If you would like to set this parameter manually (rather than programmatically) or if you are
trying to troubleshoot a particular token, then you can take advantage of one of the many
websites that provide conversion to and from standard time conventions to Unix time.

Token-Based Authentication EdgeCast Page 15

Allowing or Blocking Users by Country

You can choose to allow or block access to protected content based on the country from which
the request originated. If you choose to allow customers by the country from which the request
originated, then all countries that have not been specified will not have access to your content.
On the other hand, if you choose to block by country, then all countries that have not been
specifically blocked will continue to have access to your content, provided that they meet all
other requirements specified by the token used to request the desired asset.

Note: If you would like to restrict access by country for the HTTP Large Object, HTTP Small
Object, or the ADN platforms, then you have another option at your disposal. The option to filter
by country is available from the Country Filtering page on the tab corresponding to the desired
platform. Setting security from the Country Filtering page doesn’t require the use of tokens,
which speeds up your security implementation across your desired folders. For more
information on country filtering options, please refer to the HTTP Large Object, HTTP Small
Object, or the ADN Administration Guide.

The security parameter that allows access by country is called "ec_country_allow," while the
one that denies access by country is called "ec_country_deny." The valid values for these
parameters consist of any two-letter ISO 3166 country code. If you would like to specify more
than one country per parameter, then simply separate each country code with a comma (e.g.,
US,GB,MX,FR). For a list of valid country codes, please refer to the Appendix A: Country Codes.

Warning: When specifying multiple country codes, make sure that you do not add a space along
with the comma delimiter. Country codes that are preceded by a space will be excluded from a
token’s requirements.

Note: Although a typical configuration should not include both parameters, it is possible for a
token to contain both of these requirements. In such a case, the Allow Country parameter (i.e.,
ec_country_allow) takes precedence over the Deny Country parameter (i.e., ec_country_deny).

Note: Country codes are case-insensitive.

Preventing the Reuse of Token Values

Most security parameters generate tokens that are valid across all protected content. However,
the Allow URL parameter (i.e., ec_url_allow) allows you to tailor your tokens to a particular asset
or path. This parameter only validates requests that originate from certain URLs. The
configuration for this parameter varies according to the platform through which your protected
content will be accessed.

Note: The Allow URL parameter is not available for the Windows Media Streaming platform.

Token-Based Authentication EdgeCast Page 16

Allow URL Parameter & HTTP-Based Platforms

This security parameter only verifies that the path to the requested object begins with the value
assigned to it. This allows it the flexibility to validate the recursive contents of a folder or a
specific asset. The starting point for this comparison occurs directly after the hostname specified
in the URL. This occurs regardless of whether you are using a CDN or edge CNAME URL. For
example, the Allow URL parameter would be compared against "/2012/06/Video.flv" for the
following request URL: http://secure.mydomain.com/2012/06/Video.flv.

Important: A CDN or edge CNAME URL is case-sensitive. Please make sure to use the proper
case when linking to CDN content or setting a value for the ec_url_allow parameter.

This parameter can also validate access to multiple folders or assets. This can be accomplished
by separating each path with a comma (e.g.,
/000001/Folder1,/000001/Folder1/SubfolderA,/000001/Folder1/index.htm).

Warning: When specifying multiple assets or folders, make sure that you do not add a space
along with the comma delimiter. Relative paths that are preceded by a space will be excluded
from a token’s requirements.

In order to demonstrate the proper syntax for this parameter, we have provided three sample
URLs that point to a folder called "Secure." This folder has been secured with Token-Based
Authentication.

1. http://wpc.0001.edgecastcdn.net/000001/Secure/index.html

2. http://wpc.0001.edgecastcdn.net/800001/MyServer/Secure/index.html

3. http://secure.server.com/index.html

Note: Although the above sample URLs are specific to the HTTP Large Object platform, the
analysis of these URLs also applies to the HTTP Small Object and the ADN platforms.

We will now examine the base value that must be assigned to the ec_url_allow parameter to
grant access to the above URLs. The first URL points to a CDN origin server. As such, the base
value that you should assign to the ec_url_allow parameter is "/000001." If you would like to
secure each asset individually, then you would set the ec_url_allow parameter to the desired
asset, which in this case would be "/000001/Secure/index.html." If this same folder contained
another asset called "Confidential.doc," then you could grant access to both assets by either
generating a token for the parent folder, for each individual asset, or for both assets. The last
scenario can be achieved by setting the ec_url_allow parameter to
"/000001/Secure/index.html,/000001/Secure/Confidential.doc."

The second URL points to a customer origin server. The "MyServer" folder is the name assigned
to the customer origin configuration for the server hosting your content. In this example, you
would use "/800001/MyServer" as the base value for the ec_url_allow parameter.

Token-Based Authentication EdgeCast Page 17

The third example uses an edge CNAME in the URL. In this particular case, "secure.server.com"
points to the same "Secure" folder used in the second example. The base value for the
ec_url_allow parameter would be "/," since this example uses an edge CNAME (i.e., MyServer).

We will now use the base edge CNAME URL from the third example to demonstrate how access
will be granted or denied based on tokens that take advantage of the ec_url_allow parameter.
The following scenario assumes that the token used to request access has the following
requirement:

• ec_url_allow=/Folder1/movie1,/Folder2

In this scenario, the following requests would be allowed:

• http:// secure.server.com/Folder1/movie1.flv

• http:// secure.server.com/Folder1/movie1.mpg

• http:// secure.server.com/Folder1/movie1/index.htm

• http:// secure.server.com/Folder2/film.mpg

The following requests would be denied:

• http:// secure.server.com/Folder1/movie2.flv

• http:// secure.server.com/Folder3

Allow URL Parameter & Flash Media Streaming Platform

For each request, a comparison is performed between the value assigned to this parameter and
the CDN URL path. This occurs regardless of whether a CDN or edge CNAME URL was used to
request the secured content. The CDN URL path is the portion of the URL that appears directly
after the CDN domain. If the CDN URL path begins with the specified value, then this token
requirement will be satisfied. This allows it the flexibility to validate the recursive contents of a
folder or a specific asset.

Important: A CDN URL is case-sensitive. In addition to making sure that your CDN URL uses the
proper case, you should also ensure that the case matches when specifying a value for the
ec_url_allow parameter.

Important: This parameter always compares URLs against the CDN URL path. This occurs
regardless of whether you are using a CDN or edge CNAME URL. For example, if you are securing
an asset stored on a CDN origin server and your account number is 0001, then the starting value
for this parameter would be: /000001. The fact that the content access point (e.g., /000001) is
not displayed for an edge CNAME URL does not affect this behavior.

This parameter can also validate access to multiple folders or assets. This can be accomplished
by separating each path with a comma (e.g.,
/000001/Folder1,/000001/Folder1/SubfolderA,/000001/Folder1/movie.flv).

Token-Based Authentication EdgeCast Page 18

Warning: When specifying multiple assets or folders, make sure that you do not add a space
along with the comma delimiter. Relative paths that are preceded by a space will be excluded
from a token’s requirements.

In order to demonstrate the proper syntax for this parameter, we have provided three sample
URLs that point to a folder called "Secure." This folder has been secured with Token-Based
Authentication.

• rtmp://fms.0001.edgecastcdn.net/000001/Secure/movie.flv

• rtmp://fms.0001.edgecastcdn.net/800001/MyServer/Secure/movie.flv

• rtmp://secure.server.com/movie.flv

We will now examine the starting value that must be assigned to ec_url_allow for the above
URLs. The first URL points to a CDN origin server. As such, the base value that you should assign
to the ec_url_allow parameter is "/000001." If you would like to secure each asset individually,
then you would set the ec_url_allow parameter to the desired asset, which in this case would be
"/000001/Secure/movie.flv." If this same folder contained another asset called
"Confidential.mp4," then you could grant access to both assets by either generating a token for
the parent folder (Secure), for each individual asset, or for both assets. The last scenario can be
achieved by setting the ec_url_allow parameter to
"/000001/Secure/movie.flv,/000001/Secure/Confidential.mp4."

The second URL points to a customer origin server. The "MyServer" folder is the name assigned
to the customer origin configuration for the server hosting your content. In this example, you
would use "/800001/MyServer" as the base value for the ec_url_allow parameter.

The third example uses an edge CNAME in the URL. In this particular case, "secure.server.com"
points to the same "Secure" folder used in the second example. Since this example uses an edge
CNAME (i.e., MyServer) that points to a subfolder of that server (i.e., Secure), you would use
"/800001/MyServer/Secure" as the base value for the ec_url_allow parameter.

We will now use the base edge CNAME URL from the third example to demonstrate how access
will be granted or denied based on tokens that take advantage of the ec_url_allow parameter.
The following scenario assumes that the token used to request access has the following
requirement:

ec_url_allow=/800001/MyServer/Secure/Folder1/movie1,/800001/MyServer/Secure/Folder2

In this scenario, the following requests would be allowed:

• rtmp://fms.0001.edgecastcdn.net/800001/MyServer/Secure/Folder1/movie1.flv

• rtmp://fms.0001.edgecastcdn.net/800001/MyServer/Secure/Folder2/movie1.mp4

• rtmp://secure.server.com/Folder1/movie1/video.mp4

• rtmp://secure.server.com/Folder2/film.f4v

Token-Based Authentication EdgeCast Page 19

The following requests would be denied:

• rtmp://secure.server.com/Folder1/movie2.flv

• rtmp://secure.server.com/Folder3/movie1.flv

Allowing or Blocking Users by Host

You can choose to allow or block users based on the host requesting protected content. A host,
which is reported by the Host request header field, identifies the hostname of the server from
which the content was requested.

Reminder: Although these parameters can be used with the HTTP Large Object, HTTP Small
Object, and the ADN platforms, they are not available from the Encrypt Tool section of the
Token Auth page. However, you can still generate an encrypted token value by using the Token
Generation application or by creating your own token generator.

The security parameter that allows access by host is called "ec_host_allow," while the one that
denies access by host is called "ec_host_deny." When specifying a hostname, you should not
include the protocol (e.g., http://) or the port number (e.g., :100) associated with the host. If
you would like to validate more than one host within a single parameter, you may do so by
separating each one with a comma.

Warning: When specifying multiple hosts, make sure that you do not add a space along with the
comma delimiter. Hostnames that are preceded by a space will be ignored.

Note: Although the Host request header field will include port information when a non-default
port (e.g., www.domain.com:100) is used, it is ignored by this security parameter. This security
parameter performs comparisons on the hostname without port information.

Note: Although a typical configuration should not include both parameters, it is possible for a
token to contain both of these security parameters. In such a case, the ec_host_allow parameter
takes precedence over the ec_host_deny parameter.

 Wildcard Matching for Subdomains (HTTP-Based Platforms)

If you would like to specify a wildcard hostname, then you may do so by specifying a host using
this format: *.Domain. This type of configuration will match any host that contains the specified
domain (e.g., www.domain.com, secure.domain.com, and videos.domain.com).

Note: The asterisk (*) character only acts as a wildcard character when it occurs as the first
character in the specified hostname.

Token-Based Authentication EdgeCast Page 20

Allow/Deny Host Examples

We will now use a sample URL to demonstrate how access will be granted or denied based on
tokens that take advantage of the ec_host_allow parameter. The following scenario assumes
that the token used to request access has the following requirement:

• ec_host_allow=www.server1.com,data.server1.com,*.server2.com

In this scenario, the following hosts would be allowed:

• www.server1.com

• data.server1.com

• secure.server2.com

• en.secure.server2.com

The following requests would be denied:

• secure.server1.com

• server2.com

The ec_host_deny parameter works in the same way. The following scenario assumes that the
token used to request access has the following requirement:

• ec_host_deny=www.server1.com,data.server1.com,*.server2.com

In this scenario, the following hosts would be allowed:

• secure.server1.com

• server2.com

Requests with the following hosts would be denied:

• www.server1.com

• data.server1.com

• secure.server2.com

• en.secure.server2.com

Allowing or Blocking Users by Referrer

You can choose to allow or block users based on the referrer used to access protected content.
A referrer is the URL for the web page from which the link was followed. The security parameter
that allows access by referrer is called "ec_ref_allow," while the one that denies access by
referrer is called "ec_ref_deny." When specifying a referrer, you should not include the protocol
portion of the URL (e.g., http://). If a referrer's URL path begins with the specified value, then
this token requirement will be satisfied. This allows the flexibility to validate a domain and/or a

Token-Based Authentication EdgeCast Page 21

particular path on that domain. Additionally, if you would like to validate more than one referrer
within a single parameter, you may do so by separating each one with a comma.

Warning: When specifying multiple referrers, make sure that you do not add a space along with
the comma delimiter. Referrers that are preceded by a space will be ignored.

Important: The referrer that is passed for the Windows Media Streaming platform is different
from the one used by the other platforms. It is only passed when the media player is embedded
on a web page. In such a case, the URL for that web page is the referrer that will be reported. All
other configurations will result in a blank referrer.

Note: Although a typical configuration should not include both parameters, it is possible for a
token to contain both of these security parameters. In such a case, the ec_ref_allow parameter
takes precedence over the ec_ref_deny parameter.

Reminder: Although these parameters can be used with the Windows Media Streaming
platform, they are not available from the Encrypt Tool section of the Token Auth page.
However, you can still generate an encrypted token value by using the Token Generation
application or by creating your own token generator.

Wildcard Matching for Subdomains (HTTP-Based Platforms)

If you are protecting content for either the HTTP Large Object, HTTP Small Object, or the ADN
platform, then you may use a single asterisk (*) as a wildcard at the beginning of the assigned
parameter value. Parameters configured in this way will match zero or more characters for the
subdomain portion of the URL (e.g., secure in secure.domain.com). A wildcard will not match
forward slashes (/), nor can it be used to match characters in other portions of the URL.

Handling Missing or Blank Referrers

Some browsers can be configured to not send referrer information. By default, the ec_ref_allow
parameter will block these requests, since they do not match the specified criteria. Likewise, the
default behavior of ec_ref_deny is to allow these requests. If you would like to change the
default way in which blank or missing referrers are handled, then you should assign either a
"Missing" or a blank value to the desired parameter.

All of the following sample values will grant access for requests with blank or missing referrers.

• ec_ref_allow=www.server1.com/Folder1/movie1,data.server1.com,MISSING

• ec_ref_allow=www.server1.com/Folder1/movie1,data.server1.com,

• ec_ref_deny= www.server1.com/Folder1/movie1,data.server1.com

Note: The trailing comma in the second example allows blank or missing referrers.

All of the following sample values will deny access for requests with blank or missing referrers.

• ec_ref_allow=www.server1.com/Folder1/movie1,data.server1.com

• ec_ref_deny= www.server1.com/Folder1/movie1,data.server1.com,MISSING

Token-Based Authentication EdgeCast Page 22

• ec_ref_deny= www.server1.com/Folder1/movie1,data.server1.com,

Referrer Examples

We will now use a sample URL to demonstrate how access will be granted or denied based on
tokens that take advantage of the ec_ref_allow parameter. The following scenario assumes that
the token used to request access has the following requirement:

• ec_ref_allow=www.server1.com/Folder1/movie1,data.server1.com,*.server2.com

Reminder: Wildcards are only supported for this security parameter on the HTTP Large Object,
HTTP Small Object, or the ADN platforms.

In this scenario, requests with the following referrers would be allowed:

• http:// www.server1.com/Folder1/movie1.flv

• http:// www.server1.com/Folder1/movie1.mpg

• http:// www.server1.com/Folder1/movie1/index.htm

• https:// data.server1.com/Folder2/movie123.mpg

• https://secure.server2.com/index.html

• https://en.secure.server2.com/index.html

Requests with the following referrers would be denied:

• [Blank or not provided]

• http://www.server1.com/

• http:// secure.server1.com/Folder1/movie1.flv

• http://server2.com/index.html

• http://domain.com/secure.server2.com/index.html

The ec_ref_deny parameter works in the same way. The following scenario assumes that the
token used to request access has the following requirement:

• ec_ref_deny=www.server1.com/Folder1/movie1,data.server1.com,*.server2.com

Reminder: Wildcards are only supported for this security parameter on the HTTP Large Object,
HTTP Small Object, or the ADN platforms.

In this scenario, requests with the following referrers would be allowed:

• [Blank or not provided]

• http://www.server1.com/

• http:// secure.server1.com/Folder1/movie1.flv

Token-Based Authentication EdgeCast Page 23

• http://server2.com/index.html

• http://domain.com/secure.server2.com/index.html

Requests with the following referrers would be denied:

• http:// www.server1.com/Folder1/movie1.flv

• http:// www.server1.com/Folder1/movie1/index.htm

• https:// data.server1.com/Folder2/movie123.mpg

• https://secure.server2.com/index.html

• https://en.secure.server2.com/index.html

Allowing Users by IP address

You can choose to only allow requests that originate from a specific IP address access to content
stored in a protected folder. All other IP addresses will be denied access. This can be
accomplished through the ec_clientip parameter. This parameter uses standard IPv4 notation
(e.g., 100.10.123.45).

Allowing or Blocking Users by Protocol

You can choose to allow or block users depending on the protocol used to request the desired
content. The security parameter used to allow access by protocol is called "ec_proto_allow,"
while the one that is used to deny access by protocol is called "ec_proto_deny." The only valid
values for these parameters are "http" and "https." You can choose to allow or deny both
parameters by setting the desired parameter to "http,https."

Important: Keep in mind that the values specified for this parameter are case-sensitive. Make
sure to specify the protocol in lower-case letters (e.g., http or https).

Note: The Allow Protocol and the Deny Protocol security parameters are not available for Flash
Media Streaming or the Windows Media Streaming platforms. Additionally, parameter values
for the protocols associated with these platforms are not available. This means that you cannot
use these parameters to prevent access to assets from the Windows Media Streaming or the
Flash Media Streaming platform.

Note: Although a typical configuration should not include both parameters, it is possible for a
token to contain both of these requirements. In such a case, the ec_proto_allow parameter
takes precedence over the ec_proto_deny parameter.

Token-Based Authentication EdgeCast Page 24

Preventing Changes to Bandwidth Throttling Settings

Bandwidth throttling provides the ability to limit the rate at which a user can download an asset.
This capability is controlled by the ec_rate and ec_prebuf parameters. Typically, these
parameters are specified as query string parameters. However, if you would like to encrypt
these parameters, then you will need to generate a token value that includes the desired values
for these parameters. By preventing a user from altering the values assigned to these
parameters, you can ensure that data downloads are throttled to the desired level.

Note: Both of these parameters are not available from the Encrypt Tool section of the Token
Auth page. However, you can still generate an encrypted token value by using the Token
Generation application or by creating your own token generator.

Note: Bandwidth throttling is only available for the HTTP Large Object platform. For more
information, please refer to the HTTP Large Object Administration Guide.

Token-Based Authentication EdgeCast Page 25

Generating Tokens

Overview

A token value is required to access all content protected by Token-Based Authentication. Before
you can assign a token value to a link, you will need to generate it with the desired security
requirements for the asset in question. When generating a token, keep in mind that there is no
limit to the number of security parameters that can be combined. In other words, a token value
can consist of a single or multiple parameters. Additionally, you should also keep in mind that
certain parameters support multiple values. This permits a lot of flexibility when determining
the security requirements for your protected content.

Note: Regardless of the manner in which you generate tokens, keep in mind that this process
will not affect your Token-Based Authentication configuration in any way. Additionally, there is
no limit to the number of token values that you can generate for a particular encryption key.

We offer two direct ways to generate a token, which are through the MCC and using the Token
Generation application (ec_encrypt.exe). Additionally, we also provide source code for a token
generator that allows you to incorporate token generation capabilities into your code. All three
methods for generating tokens are explained below.

Reminder: Token values are not inherently folder or platform-specific. This means that a user
that satisfies a token’s requirements can use that token to retrieve content from any protected
folder that has been associated with the encryption key used to generate it, as long as the
token’s requirements are not specific to that path or asset. This type of configuration makes it
possible to gain access to protected content from various folders across different platforms.

Manually Generating a Token

An individual token value can be generated through the MCC. This can be accomplished through
the Encrypt Tool section of the Token Auth page. The sole purpose of this section is to generate
a token value based on either the primary or backup key. Once you have specified values for
each desired parameter, simply select the desired key, and then click Encrypt. A token specific
to the selected key will then be generated. This token value will appear next to the Generated
Token label. You may then append a question mark and this token value to the desired request.

Token-Based Authentication EdgeCast Page 26

Using Our Token Generation Application

Another way to generate token values is by downloading our Token Generation application
(ec_encrypt). By offering an executable through which you can generate tokens, you can use a
script to generate a token value and then use that value when creating links to protected
content. We provide both a Windows (ec_encrypt.exe) and a Linux (ec_encrypt) version of this
executable.

Note: The Windows version of our executable requires Blowfish.dll and Blowfish.xml. Please
make sure that these assets are stored in the same folder as the encryption executable.

The proper syntax for specifying a single parameter with ec_encrypt is the following:

 ec_encrypt.exe KeyName "parameter=value"

The proper syntax for specifying multiple parameters is to use an ampersand (&) between
parameters. This can be seen in the following syntax example:

ec_encrypt.exe KeyName "parameter1=value¶meter2=value1,value2"

For example, if you wanted to generate a token that meets the following requirements:

• Uses an encryption key called "MyKey."

• Expires on 12/31/2012 12:00:00.

• Only allows access to North American countries.

• Only allows referrers from "TrustedDomain.com."

Then you would use the following syntax:

ec_encrypt.exe MyKey
"ec_expire=1356955200&ec_country_allow=US,CA,MX&ec_ref_allow=*.TrustedDomain.com"

The token value associated with this security configuration would be:

1ea46ba396e88f03a9f6b7b06ab32d2f6acf8cd3f674597be08059b7655bd77e35cca67cabfd149b
46af1c37a6c8c790f2ecbac7d84ee6a8cfc88409f12ba7635f1123a5e9e71ee92bae503dbd7c71314
29b79f9809dbc3df2d5e46328

You would then append this token value to your protected content as can be seen below:

http://secure.server.com/MyProtectedAsset.html?1ea46ba396e88f03a9f6b7b06ab32d2f6acf8c
d3f674597be08059b7655bd77e35cca67cabfd149b46af1c37a6c8c790f2ecbac7d84ee6a8cfc8840
9f12ba7635f1123a5e9e71ee92bae503dbd7c7131429b79f9809dbc3df2d5e46328

Tip: The proper syntax for your desired security configuration can be viewed after manually
generating a token through the Encrypt Tool section of the Token Auth page, which can be
found in the MCC. Once you have encrypted a token value with the desired requirements, the

Token-Based Authentication EdgeCast Page 27

exact syntax that should be used to generate that token will appear next to the Token
Generator Call label.

Building a Token Generator

We provide C, C#, and PHP source code that can be used to incorporate our token generating
capabilities with your code. This code, as well as information on implementation, is available
upon request. Please contact your CDN account manager for more information.

Decrypting an Existing Token

If you know the exact encryption key that was used for a particular token, then you can decrypt
it. Decrypting an existing token allows you to view its security requirements. If you suspect that
a particular client is having trouble viewing your protected content, you can decrypt his/her
token to discover which security requirement is not being met.

A token can be decrypted from the Decrypt Tool section of the Token Auth page. Once you have
copied the token value to the Token To Decrypt option, simply select the appropriate
encryption key, and then click Decrypt. The security requirements for that token will appear
next to the Original Parameters label.

Note: If the decryption tool indicates that it was unable to decrypt the specified token value,
then you have selected an invalid encryption key. Keep in mind that the token value may have
been generated with an outdated encryption key. If you suspect that you know the encryption
key that was used for that token value, then you can temporarily set the backup encryption key
to that value, decrypt the token value, and then clear the backup key.

Token-Based Authentication EdgeCast Page 28

Providing Access to Protected Content

Overview

Providing access to protected content is quite simple. It is just a matter of appending a question
mark and an appropriate token value to the name of the asset being requested. Below you will
find examples for each platform.

Note: Please refer to the Generating Tokens section for information on how to generate a
token.

HTTP Large Object Example

The sample code excerpt provided below demonstrates how to provide access for content
requested through a CDN and an edge CNAME URL on the HTTP Large Object platform.

<a href="http://wpc.0001.edgecastcdn.net/000001/secure/index.html?
c1019f8a6942b46a1ce679e168d5797670f3ee7e39068054ee4534d8a5a859dc06&user=Joe">

<img src="http://images.mydomain.com/images/myimage.jpg?
c1019f8a6942b46a1ce679e168d5797670f3ee7e39068054ee4534d8a5a859dc06">

The first sample CDN URL contains a custom query string parameter called "user." As you can
tell, custom query string parameters can be appended to the URL through the use of an
ampersand. The second sample URL demonstrates how a token value can be specified with an
edge CNAME URL.

HTTP Small Object Example

The sample code excerpt provided below demonstrates how to provide access for content
requested through a CDN and an edge CNAME URL on the HTTP Large Object platform.

<a href="http://wac.0001.edgecastcdn.net/000001/secure/index.html?
c1019f8a6942b46a1ce679e168d5797670f3ee7e39068054ee4534d8a5a859dc06&user=Joe">

<img src="images.mydomain.com/images/myimage.jpg?
c1019f8a6942b46a1ce679e168d5797670f3ee7e39068054ee4534d8a5a859dc06">

The first sample CDN URL contains a custom query string parameter called "user." As you can
tell, custom query string parameters can be appended to the URL through the use of an
ampersand. The second sample URL demonstrates how a token value can be specified with an
edge CNAME URL.

Token-Based Authentication EdgeCast Page 29

ADN Example

The sample code excerpt provided below demonstrates how to provide access for content
requested through a CDN and an edge CNAME URL on the ADN platform. Notice how a query
string parameter called "user" is appended to the URL through the use of an ampersand.

<a href="http://adn.0001.edgecastcdn.net/000001/secure/default.php?
c1019f8a6942b46a1ce679e168d5797670f3ee7e39068054ee4534d8a5a859dc06&user=Joe">

<a href="http://dynamic.mydomain.com/secure/default.php?
c1019f8a6942b46a1ce679e168d5797670f3ee7e39068054ee4534d8a5a859dc06&user=Joe">

Flash Media Streaming Example

Although the URLs used for the Live StreamCast and On-Demand services are different, the
syntax for specifying a token value is the same. Sample code excerpts are provided for each
service below.

Live StreamCast:

<script type="text/javascript">

jwplayer("container").setup({

flashplayer: "player.swf",

height: 270,

width: 480,

file: "StreamName?c1019f8a6942b46a1ce679e168d5797670f3ee7e39068054ee4534d8a5",

provider: "rtmp",

streamer: "rtmp://fml.0001.edgecastcdn.net/200001/My_Folder",

'rtmp.subscribe':'true'

});

</script>

On-Demand:

<script type="text/javascript">

jwplayer("container").setup({

flashplayer: "player.swf",

height: 270,

width: 480,

file: "Presentation01.flv?c1019f8a6942b46a1ce679e168d5797670f3ee7e39068054e4",

provider: "rtmp",

streamer: "rtmp://fms.0001.edgecastcdn.net/000001/My_Folder"

});

</script>

Token-Based Authentication EdgeCast Page 30

Windows Media Streaming Example

Although the URLs used for a live event or on-demand content are different, the syntax for
specifying a token value is the same. Sample code excerpts are provided for each service below.

Live Streaming:

src="mms://wms.0001.edgecastcdn.net/200001/MyStream?c1019f8a6942b46a1ce679e168d5797670f
3ee7e39068054ee4534d8a5a859dc06"

On-Demand:

src="mms://wms.0001.edgecastcdn.net/000001/My_Folder/Presentation01.wmv?c1019f8a6942b46
a1ce679e168d5797670f3ee7e39068054ee4534d8a5a859dc06"

Redirecting Unauthorized Users

By default, a user that does not meet the minimum security requirements for protected content
will view a web page with a 403 Forbidden status code. If the protected content is accessed
through either the HTTP Large Object, HTTP Small Object, or the ADN platform, then you can
customize the status code that is returned or even redirect users to another web page.

The available alternative response codes are listed below.

Response
Code

Response
Name

Description

301 Moved
Permanently

This status code redirects unauthorized users to the URL specified
in the Location header.

302 Found This status code redirects unauthorized users to the URL specified
in the Location header. This status code is the industry standard
method of performing a redirect.

307 Temporary
Redirect

This status code redirects unauthorized users to the URL specified
in the Location header.

403 Forbidden This is the standard 403 Forbidden status message that an
unauthorized user will see when trying to access protected
content.

404 File Not Found This status code indicates that the HTTP client was able to
communicate with the server, but the specified asset was not
found.

Token-Based Authentication EdgeCast Page 31

To redirect unauthorized users to a user-friendly error page (recommended configuration)

1. From the MCC, navigate to the Token Auth page for the desired platform.

2. From the Custom Denial Handling section, select "302" from the Response Code option.
The Header Name option should automatically be set to "Location."

3. Make sure that the Enabled option is marked.

4. In the Header Value option, type the full URL to the user-friendly error page (e.g.,
http://www.server.com/PurchaseContent.aspx).

5. Click Save.

Note: The Location header URL can reside on any domain. It does not have to be hosted by our
CDN.

Note: Keep in mind that your changes may take up to an hour to take effect.

Token-Based Authentication EdgeCast Page 32

Quick Reference

Security Parameters

This section provides a brief description for each available security parameter. For a detailed
explanation of a particular parameter, please refer to the Determining How to Protect your
Content section in the previous chapter.

Parameter Description

ec_clientip Limits connections to requests originating from a specific IP address. This
parameter uses standard IPv4 notation.

Sample value: 111.11.111.11

This example will only serve an asset to a client with an IP address of
111.11.111.11.

ec_country_allow Defines the set of countries that will be allowed access to an asset
through this token value. Acceptable values for this parameter consist of
ISO 3166 country codes. Multiple country codes may be specified by
separating them with a comma. Please refer to the Appendix A: Country
Codes for a country code listing.

Sample value: US

This example will deny all requests that do not originate from the United
States.

ec_country_deny Denies requests from one or more countries. Acceptable values for this
parameter consist of ISO 3166 country codes. Specify multiple country
codes by separating each code with a comma. Please refer to the
Appendix A: Country Codes for a country code listing.

Sample value: US,CA

This example will deny all requests that originate from the United States
and Canada.

ec_expire Sets an expiration date and time (GMT) for the token value. Set this
parameter to the number of seconds that will pass from Unix time to the
expiration date.

Sample value: 1356955200

This example will set the expiration date and time to 12/31/2012 12:00:00
GMT.

Token-Based Authentication EdgeCast Page 33

Parameter Description

ec_host_allow Defines the set of hosts through which the requesting client can gain
access to an asset. This parameter should not include the protocol portion
of the desired URL (e.g., http://). A comparison will be made against the
value specified in the Host request header. If the hostname matches a
specified value, then the requester will be allowed access. Specify
multiple hosts by separating each one with a comma.

Sample value: server1.com,*.server2.com

This example will allow access to the following hosts:

• server1.com
• secure.server2.com

ec_host_deny Defines the set of hosts for which the requesting client will be denied
access to an asset. This parameter should not include the protocol portion
of the desired URL (e.g., http://). A comparison will be made against the
value specified in the Host request header. If the hostname matches a
specified value, then the requester will be denied access. Specify multiple
hosts by separating each one with a comma.

Sample value: server1.com,*.server2.com

This example will deny access to the following hosts:

• server1.com
• secure.server2.com

ec_proto_allow Defines the protocol that can be used to retrieve an asset. Acceptable
values for this parameter are "http" and "https."

Sample value: https

This example will only allow access to URLs that use the https protocol.

ec_proto_deny Defines the protocol that cannot be used to retrieve an asset. Acceptable
values for this parameter are "http" and "https."

Sample value: http

This example will deny access to URLs that use the http protocol.

Token-Based Authentication EdgeCast Page 34

Parameter Description

ec_ref_allow Defines the set of referrers through which the requesting client can gain
access to an asset. This parameter should not include the protocol portion
of the desired URL (e.g., http://). A comparison will be made against the
value specified in the Referer header. If the starting characters in the
referrer match a specified value, then the requester will be allowed
access. Specify multiple referrers by separating each one with a comma.

Sample value: server1.com/obj1,*.server2.com

This example will allow access to the following referrers:

• server1.com/obj1/index.htm
• server1.com/obj1.html
• secure.server2.com/2012/Graph.xml

ec_ref_deny Defines the set of referrers for which the requesting client will be denied
access to an asset. This parameter should not include the protocol portion
of the desired URL (e.g., http://). A comparison will be made against the
value specified in the Referer header. If the starting characters in the
referrer match a specified value, then the requester will be denied access.
Specify multiple referrers by separating each one with a comma.

Sample value: server1.com/obj1,*.server2.com

This example will deny access to the following referrers:

• server1.com/obj1/index.htm
• server1.com/obj1.html
• secure.server2.com/2012/Graph.xml

ec_url_allow Links a URL path to a token. Only requests that start with the specified
URL path will be allowed access. This parameter should not include the
protocol and domain portions of the desired URL (e.g.,
http://www.domain.com).

Sample value: /000001/dir1/movie1,/000001/dir2

Assuming that the above value was configured for the HTTP Large Object
platform, this example will allow access for the following requests:

• http:// wpc.xxxx.edgecastcdn.net/00xxxx/dir1/movie1.flv
• http:// wpc.xxxx.edgecastcdn.net/00xxxx/dir1/movie1.mpg
• http:// wpc.xxxx.edgecastcdn.net/00xxxx/dir1/movie1/index.htm
• http:// wpc.xxxx.edgecastcdn.net/00xxxx/dir2/movie123.mpg

Token-Based Authentication EdgeCast Page 35

Bandwidth Throttling Reference

This section provides a brief description for each bandwidth throttling parameter that can be
encrypted using Token-Based Authentication. For a detailed explanation of a particular
parameter, please refer to the Bandwidth Throttling chapter in the HTTP Large Object
Administration Guide.

Note: Bandwidth throttling parameters are only supported on the HTTP Large Object platform.

Name Description

ec_prebuf This parameter determines how much data can be downloaded before the
ec_rate parameter takes effect. Although this parameter is specified in
seconds, the actual amount of data that can be buffered is calculated by
multiplying the specified value by ec_rate.

Sample value: 10

Assuming that ec_rate has been set to 64, this example will allow a user to
download 640 KB before bandwidth throttling will take effect.

ec_rate This parameter limits the rate (KBps) at which clients will be able to
download the specified asset.

Sample value: 64

This example will limit a user’s download speed to 64 KBps.

Token-Based Authentication EdgeCast Page 36

Appendix A

Country Codes (ISO 3166)

This section provides a list of country codes that are supported by the ec_country_allow and
ec_country_deny security parameters. These country codes follow the ISO 3166 country code
specification.

Reminder: Country codes are case-insensitive.

Code Country

AF Afghanistan

AL Albania

DZ Algeria

AS American Samoa

AD Andorra

AO Angola

AI Anguilla

AQ Antarctica

AG Antigua and Barbuda

AR Argentina

AM Armenia

AW Aruba

AP Asia/Pacific Region

AU Australia

AT Austria

AZ Azerbaijan

BS Bahamas

BH Bahrain

BD Bangladesh

BB Barbados

Token-Based Authentication EdgeCast Page 37

Code Country

BY Belarus

BE Belgium

BZ Belize

BJ Benin

BM Bermuda

BT Bhutan

BO Bolivia

BA Bosnia and Herzegovina

BW Botswana

BV Bouvet Island

BR Brazil

IO British Indian Ocean Territory

BN Brunei Darussalam

BG Bulgaria

BF Burkina Faso

BI Burundi

KH Cambodia

CM Cameroon

CA Canada

CV Cape Verde

KY Cayman Islands

CF Central African Republic

TD Chad

CL Chile

CN China

CX Christmas Island

CC Cocos (Keeling) Islands

CO Colombia

KM Comoros

Token-Based Authentication EdgeCast Page 38

Code Country

CG Congo

CD Congo, The Democratic Republic of the

CK Cook Islands

CR Costa Rica

CI Cote d'Ivoire

HR Croatia

CU Cuba

CY Cyprus

CZ Czech Republic

DK Denmark

DJ Djibouti

DM Dominica

DO Dominican Republic

EC Ecuador

EG Egypt

SV El Salvador

GQ Equatorial Guinea

ER Eritrea

EE Estonia

ET Ethiopia

EU Europe

FK Falkland Islands (Malvinas)

FO Faroe Islands

FJ Fiji

FI Finland

FR France

GF French Guiana

PF French Polynesia

TF French Southern Territories

Token-Based Authentication EdgeCast Page 39

Code Country

GA Gabon

GM Gambia

GE Georgia

DE Germany

GG Guernsey

GH Ghana

GI Gibraltar

GR Greece

GL Greenland

GD Grenada

GP Guadeloupe

GU Guam

GT Guatemala

GN Guinea

GW Guinea-Bissau

GY Guyana

HT Haiti

HM Heard Island and McDonald Islands

VA Holy See (Vatican City State)

HN Honduras

HK Hong Kong

HU Hungary

IS Iceland

IM Isle of Man

IN India

ID Indonesia

IR Iran, Islamic Republic of

IQ Iraq

IE Ireland

Token-Based Authentication EdgeCast Page 40

Code Country

IL Israel

IT Italy

JE Jersey

JM Jamaica

JP Japan

JO Jordan

KZ Kazakhstan

KE Kenya

KI Kiribati

KP Korea, Democratic People's Republic of

KR Korea, Republic of

KW Kuwait

KG Kyrgyzstan

LA Lao People's Democratic Republic

LV Latvia

LB Lebanon

LS Lesotho

LR Liberia

LY Libyan Arab Jamahiriya

LI Liechtenstein

LT Lithuania

LU Luxembourg

MO Macao

MK Macedonia

MG Madagascar

MW Malawi

MY Malaysia

MV Maldives

ML Mali

Token-Based Authentication EdgeCast Page 41

Code Country

MT Malta

MH Marshall Islands

MQ Martinique

MR Mauritania

MU Mauritius

YT Mayotte

MX Mexico

FM Micronesia, Federated States of

MD Moldova, Republic of

MC Monaco

MN Mongolia

ME Montenegro

MS Montserrat

MA Morocco

MZ Mozambique

MM Myanmar

NA Namibia

NR Nauru

NP Nepal

NL Netherlands

AN Netherlands Antilles

NC New Caledonia

NZ New Zealand

NI Nicaragua

NE Niger

NG Nigeria

NU Niue

NF Norfolk Island

MP Northern Mariana Islands

Token-Based Authentication EdgeCast Page 42

Code Country

NO Norway

OM Oman

PK Pakistan

PW Palau

PS Palestinian Territory

PA Panama

PG Papua New Guinea

PY Paraguay

PE Peru

PH Philippines

PL Poland

PT Portugal

PR Puerto Rico

QA Qatar

RE Reunion

RO Romania

RU Russian Federation

RW Rwanda

SH Saint Helena

KN Saint Kitts and Nevis

LC Saint Lucia

PM Saint Pierre and Miquelon

VC Saint Vincent and the Grenadines

WS Samoa

SM San Marino

ST Sao Tome and Principe

SA Saudi Arabia

SN Senegal

RS Serbia

Token-Based Authentication EdgeCast Page 43

Code Country

SC Seychelles

SL Sierra Leone

SG Singapore

SK Slovakia

SI Slovenia

SB Solomon Islands

SO Somalia

ZA South Africa

GS South Georgia and the South Sandwich Islands

ES Spain

LK Sri Lanka

SD Sudan

SR Suriname

SJ Svalbard and Jan Mayen

SZ Swaziland

SE Sweden

CH Switzerland

SY Syrian Arab Republic

TW Taiwan

TJ Tajikistan

TZ Tanzania, United Republic of

TH Thailand

TG Togo

TK Tokelau

TO Tonga

TT Trinidad and Tobago

TN Tunisia

TR Turkey

TM Turkmenistan

Token-Based Authentication EdgeCast Page 44

Code Country

TC Turks and Caicos Islands

TV Tuvalu

UG Uganda

UA Ukraine

AE United Arab Emirates

GB United Kingdom

US United States

UM United States Minor Outlying Islands

UY Uruguay

UZ Uzbekistan

VU Vanuatu

VE Venezuela

VN Vietnam

VG Virgin Islands, British

VI Virgin Islands, U.S.

WF Wallis and Futuna

EH Western Sahara

YE Yemen

ZM Zambia

ZW Zimbabwe

Token-Based Authentication EdgeCast Page 45

Appendix B

Flash Content Security Scenarios

This section provides more detailed scenarios on how to secure a live event and on-demand
content on the Flash Media Streaming platform.

Flash Media Streaming (Live StreamCast)

This section illustrates how Token-Based Authentication and the encoder settings used to
publish your stream determine whether a live stream will be accessible.

Encoder configuration #1:

• Publishing Point URL: rtmp://fso.lax.0001.edgecastcdn.net/200001/Videos

• Stream: MyStream

Encoder configuration #2:

• Publishing Point URL: rtmp://fso.lax.0001.edgecastcdn.net/200001/Secure

• Stream: MyStream

Encoder configuration #3:

• Publishing Point URL:
rtmp://fso.lax.0001.edgecastcdn.net/200001/Secure/Videos/2012

• Stream: MyStream?c1019f8a6942b46a1ce679e66cd579767

We will now examine the effect of securing a location called "/Secure" will have on the above
encoder configurations.

Reminder: A location can be secured under the Directories to Authenticate section on the
Token Auth page corresponding to the desired platform (e.g., Flash Media Streaming).

1. The first encoder configuration points to a live stream whose relative path is "/Videos."
This asset does not require a token since the specified location is not protected by
Token-Based Authentication. As a result, this asset will be served to the client.

2. The second encoder configuration points to a live stream whose relative path is
"/Secure." This asset requires a token since it is stored in a folder protected by Token-
Based Authentication. This asset will not be served to the client since a token was not
specified for this request.

Token-Based Authentication EdgeCast Page 46

3. The third encoder configuration points to a live stream that uses a publishing point URL
path that points to a subfolder of a protected folder. As a result, this stream is also
protected by Token-Based Authentication. The requested asset will be delivered to the
client, as long as the token is valid and the user requesting it meets the requirements
specified in the provided token.

We have just examined how three encoder configurations would be affected when the
"/Secure" location was secured for the Flash Media Streaming platform. We will now examine
how alternate configurations will affect live events streamed for those same publishing point
URLs.

Note: Each row in the following table represents a separate Token-Based Authentication
configuration.

Secured Location Description

/ Live streams generated by all three encoder configurations
will require a valid token.

/Secure/Videos Live streams generated by the third encoder configuration
will require a valid token.

/Secure/Videos/2012/MyStream Live streams generated by all three encoder configurations
will not be protected by Token-Based Authentication.

/200001 Live streams generated by all three encoder configurations
will not be protected by Token-Based Authentication.

Flash Media Streaming (On-Demand Content)

This section illustrates how the following URLs interact with Token-Based Authentication.

1. rtmp://fms.0001.edgecastcdn.net/000001/Secure/Presentation01.flv

2. rtmp://fms.0001.edgecastcdn.net/000001/Secure/2012/Presentation01.flv?
c1019f8a6942b46a1ce679e66cd579767

3. rtmp://fms.0001.edgecastcdn.net/800001/secure.mydomain.com/Secure/Presentation
01.flv

4. rtmp://secure2.mydomain.com/Presentation01.flv?c1019f8a6942b46a1ce679e66cd579
767

We will now examine the effect of securing a location called "/Secure" will have on the above
URLs.

1. The first URL points to an asset stored in "Secure" on a CDN origin server. This asset
requires a token since it is stored in a folder protected by Token-Based Authentication.
The asset will not be served to the client since a token was not specified for this request.

Token-Based Authentication EdgeCast Page 47

2. The second URL points to an asset stored on a CDN origin server. Since this asset is
located in a subfolder of a protected folder, it is also protected by Token-Based
Authentication. The requested asset will be delivered to the client, as long as the token
is valid and the user requesting it meets the requirements specified in the provided
token.

3. The third URL points to a customer origin server. The "secure.mydomain.com" folder is
the name assigned to the customer origin configuration for the server hosting your
assets. Although the requested asset is in a folder called "Secure," it will not be secured
by Token-Based Authentication since the customer origin name was not included in the
specified location. As a result, this request will be served to the client.

4. The fourth URL uses an edge CNAME in the URL. In this particular case,
"secure2.mydomain.com" points to a folder called "Secure" that is located on a
customer origin server called "secure.mydomain.com." Although the requested asset is
in a folder called "Secure," it will not be secured by Token-Based Authentication since
the customer origin name was not included in the specified location. As a result, this
request will be served to the client.

We have just examined how different URLs would be affected when the "/Secure" location was
configured for Token-Based Authentication for the Flash Media Streaming platform. We will
now examine how alternate configurations will affect on-demand content streamed for those
same URLs.

Note: Each row in the following table represents a separate Token-Based Authentication
configuration.

Secured Location Description

/ All requests will require a valid token.

/Secure/2012 Only the second URL will require a valid token.

/Secure/2012/Presentation01 None of the requested assets will be protected by Token-
Based Authentication.

/secure.mydomain.com The third and fourth URLs will require a valid token.

/secure.mydomain.com/Secure The third and fourth URLs will require a valid token.

Glossary EdgeCast Page 49

Glossary

A
Adaptive Streaming

This technology, which is based on HTTP progressive download, allows a player (e.g., Silverlight)
to dynamically switch between different bit rate streams, in order to provide an optimal viewing
experience based on a client’s bandwidth and CPU usage. Smooth Streaming is an example of
adaptive streaming.

Asset

This term refers to a resource that contains header information and a body that can be served
to clients. Examples of assets include files and dynamic content.

C
Cache

This term refers to the storage of data to improve data delivery performance. When used in
reference to our CDN, it refers to the temporary storage of an asset on an edge server or an
origin shield server. Cache increases the speed through which that particular edge server can
deliver that asset for subsequent requests.

CDN

Our content delivery network (CDN) consists of points-of-presence (POPs) that are placed at
critical network and geographical locations around the world. This allows us to place content at
the edge of the Internet allowing for faster downloads by your end-users.

CDN Domain

This term refers to a domain name assigned to your account. In the following examples of CDN
domains, xxxx represents your CDN account number.

• wac.xxxx.edgecastcdn.net

• wpc.xxxx.edgecastcdn.net

• fms.xxxx.edgecastcdn.net

• wms.xxxx.edgecastcdn.net

Glossary EdgeCast Page 50

CDN Origin

This term refers to a storage server on our CDN. Our CDN origin servers are in close proximity to
our POPs, in order to provide optimal conditions for transferring data from a CDN origin server
to your end-users via our POPs.

CDN Origin Identifier

This type of identifier in the CDN URL indicates that requested asset should be retrieved from
the CDN origin server. A CDN origin identifier is indicated by "00" as the starting two numbers in
the CDN URL path.

CDN URL

This type of URL identifies a location or an asset on our content delivery network. The following
diagram indicates the different components in a CDN URL. Keep in mind that xxxx represents
your CDN account number.

CDN URL Path

This term refers to the portion of the CDN URL that appears after the CDN domain. It provides
the relative path to a folder or an asset on either a CDN or customer origin server. In the
following examples of CDN URL paths, xxxx represents your CDN account number.

• /00xxxx

• /00xxxx/Videos/2012/11/

• /00xxxx/Videos/2012/11/Presentation01.flv

CDN/Edge CNAME URL Query

This term refers to the query string that appears after a question mark in a CDN or edge CNAME
URL. If Token-Based Authentication is protecting the requested content, then a token value
should appear directly after the question mark.

Glossary EdgeCast Page 51

CNAME

A Canonical Name (CNAME) record is used to indicate that a domain name is an alias of another
domain name. A CNAME record must be registered on a Domain Name System (DNS). This term
should not be confused with edge CNAME.

Content Access Point

It provides a point of reference to any folder on a CDN or customer origin server. This relative
path starts directly after the CDN domain. The proper syntax for a content access point is
"/yyxxxx/path," where yy stands for the identifier and xxxx stands for the CDN account number.
The term path is optional and stands for the path to the folder specified by an edge CNAME
configuration.

Customer Origin

This term refers to a storage server that is external to our CDN. Assets can be delivered from
your storage server to your end-users via our POPs.

Customer Origin Identifier

This type of identifier in the CDN URL indicates that requested asset should be retrieved from
the customer origin server. A customer origin identifier is indicated by "80" as the starting two
numbers in the CDN URL path.

D
Domain Root

This term identifies the top and second-level domains associated with the CDN domain name.
An example of a domain root is "google.com."

E
Edge CNAME

This term refers to the mapping of a CNAME record to a directory on a CDN or customer origin
server. The purpose of this mapping, which is only used by our CDN, is to establish a user-
friendly alias for content served through the CDN. It relies upon your CNAME record being
properly mapped on a DNS server.

Edge CNAME URL

This type of URL takes advantage of an edge CNAME to mask a CDN URL. This allows it to
identify a location or an asset on our content delivery network using a more user-friendly URL.
An edge CNAME URL is specific to the platform (i.e., HTTP Large Object, HTTP Small Object, or
Flash Media Streaming) from which it was configured.

Glossary EdgeCast Page 52

In the following examples, the domain assigned to the edge CNAME is "www.mydomain.com."
In the first example, the edge CNAME references the following CDN URL:
"http://wpc.xxxx.edgecastcdn.net/00xxxx." In the following two examples, the edge CNAME
references the following CDN URL: "http://wpc.xxxx.edgecastcdn.net/00xxxx/Videos."

Edge CNAME URL Points To

http://www.MyDomain.com/ http://wpc.xxxx.edgecastcdn.net/00xxxx/

http://www.MyDomain.com/2012/11/ http://wpc.xxxx.edgecastcdn.net/00xxxx/Videos/2012
/11/

http://www.MyDomain.com/2012/11/
Presentation01.flv

http://wpc.xxxx.edgecastcdn.net/00xxxx/Videos/2012
/11/Presentation01.flv

Edge CNAME URL Path

This term refers to the portion of the edge CNAME URL that appears after the edge CNAME. It
provides the relative path to a folder or an asset on a CDN or customer origin server. In the
following examples of edge CNAME URL paths, the edge CNAME points to the following CDN
URL: "http://wpc.xxxx.edgecastcdn.net/00xxxx/Videos."

Edge CNAME URL Path Actual Edge CNAME URL

/2012/11/ http://wpc.xxxx.edgecastcdn.net/00xxxx/Videos/2012/11/

/2012/11/Show01.flv http://wpc.xxxx.edgecastcdn.net/00xxxx/Videos/2012/11/Show01.flv

Edge Protocol

This term refers to the protocol (e.g., HTTP, RTMP, and MMS) used in a CDN URL or an edge
CNAME URL.

Edge Server

This type of server is located near the edge of the Internet where its close proximity to your
end-users allows it to deliver data more quickly than normal Internet communications. Our edge
servers are integral component of our POPs.

Encryption Key

Token-Based Authentication requires the use of an encryption key to encrypt and decrypt token
values. There are two types of encryption keys, which are a primary and a backup key. Both of
these keys can be used to encrypt and decrypt token values.

F
Flash Live StreamCast

Please see Live StreamCast.

Glossary EdgeCast Page 53

Flash On-Demand

This term refers to the streaming of Flash media content stored on an origin server through our
CDN. This type of streaming uses Real-Time Messaging Protocol (RTMP, RTMPE, RTMPT, or
RTMPTE) to deliver video to your clients.

G
Global Key

This type of Live Authentication key can be used to authenticate all live Flash streams. Only a
single global key can be specified.

H
HTTP Large Object

This platform consists of dedicated edge servers that retrieve, cache, and serve large assets to
your clients. These servers have been optimized to cache assets. A typical asset for the HTTP
Large Object platform is larger than 300 KB.

HTTP Progressive Download

This method of streaming video content is performed through the HTTP protocol. Progressive
downloads are not as secure as other streaming methods, since the entire asset will be stored
on your client’s computer. This allows your client to save and share your content with other
users.

HTTP Small Object

This platform consists of dedicated edge servers that retrieve, cache, and serve smaller content
to your clients. These servers have been optimized to index files. A typical asset for the HTTP
Small Object platform is smaller than 300 KB.

I
Identifier

It identifies how a request will be routed through our CDN. Examples of identifiers are:

• 00: CDN origin identifier

• 80: Customer origin identifier

• 20: Flash Media Streaming (Live StreamCast)

Ingest

This term refers to the process of capturing and transforming video into a stream.

Glossary EdgeCast Page 54

Ingest Server

This term refers to the type of server that is dedicated to the process of capturing and
transforming video into a stream. This type of server will then broadcast that stream throughout
our CDN.

L
Live Authentication Key

This type of key authenticates a stream on the Flash Media Streaming platform before it is
ingested by our publishing server. There are two types of live authentication keys, which are
global and stream keys. When configuring your encoder, you must specify the stream name, a
token delimiter, and then a global or stream key. The token delimiter that you should use
depends on whether you are using Live Streaming or Live StreamCast.

• Notation for Live StreamCast: <StreamName>?<LiveAuthenticationKey>

• Notation for Live Streaming: <StreamName>/<LiveAuthenticationKey>

Live Ingestion Point

This term refers to the location on a server where our CDN can access encoded media. There are
two types of live ingestion points, which are pull source and publishing point.

Live StreamCast

This term refers to the streaming of a live Flash media stream through our CDN. This type of
streaming uses Real-Time Messaging Protocol (RTMP, RTMPE, RTMPT, or RTMPTE) to deliver
video to your clients.

Live Streaming Identifier

This type of identifier in the CDN URL indicates that requested asset should be streamed from
the live ingestion point. A live stream identifier is indicated by "20" as the starting two numbers
in the CDN URL path.

Load

This feature allows you to cache an asset on all of our POPs. This feature is unsupported for use
with Windows Media Streaming platform or Live StreamCast (Flash Media Streaming).

M
Media Control Center (MCC)

This web application is provided to help you manage all of your CDN needs. The major features
that are available from the MCC are CDN configuration settings, cache management, file
management, reports, and analytics. Additionally, the MCC allows you to configure your

Glossary EdgeCast Page 55

organization’s settings, such as granting or denying access to the MCC. You can access the MCC
through the following URL:

https://my.edgecast.com

O
Origin Path

It references a relative path to a folder or an asset in a CDN URL. This type of path follows the
content access point.

Origin Server

This term refers to the servers that store the assets that will be distributed by our POPs. There
are two types of origin servers, which are CDN origin and customer origin servers.

Origin Shield

This feature provides a layer of protection for your customer origin server by creating an
intermediate caching layer between it and our edge servers. This caching layer resides on one or
more of our point-of-presence (POPs). Requests that have not been previously cached on a POP
will be channeled through the closest origin shield server. The origin shield server will then
either serve a cached version of the requested content or retrieve it from your customer origin
server. This feature reduces the amount of bandwidth used on your customer origin server,
since most requests will be handled by the origin shield server.

P
Player URL

A media player uses this type of URL to stream content. It identifies the location of the streamer
on the live ingestion point.

Point-of-Presence (POP)

A point-of-presence, or data center, is an access point to the Internet. The main components of
a POP are edge servers, CDN origin servers, and publishing servers.

Pre-Cached

A pre-cached asset means that it has been loaded to all of our POPs. Pre-caching your assets
allows even quicker content delivery to your clients, since it ensures that the requested asset
will not have to be retrieved from the origin server.

Publishing Point

This term refers to the location on the publishing server to which your encoder will broadcast
encoded media.

Glossary EdgeCast Page 56

Publishing Server

This term refers to a CDN server that will redistribute encoded media as a streamer that will be
broadcast to your end-users via our POPs.

Pull Source

This term refers to the location on an external server from which a broadcasted stream will be
retrieved by our publishing server.

Pull Stream

This type of stream requires that our servers retrieve, or pull, a live stream from a server with a
public IP address.

Purge

This feature allows you to remove the cached version of an asset from all of our edge servers
and origin shield servers. A purge can be performed on a folder or an individual asset.

Push Stream

This type of stream requires your encoder to send, or push, encoded video to a CDN server.
From there, our server will create a stream and deliver it to clients that request it.

Q
Query String

Additional data can be appended to a URL (e.g., http://www.server.com/index.html?Data=xyz).
This information can be used in a variety of ways. Our CDN allows you to leverage this
information to determine how content will be cached. Additionally, you can choose to store
query string information in our log files. Keep in mind that query string caching is not supported
on the Flash Media Streaming or the Windows Media Streaming platforms.

R
Request

A request consists of a set of headers and a body sent from a client. This header data and the
body define the requested content. Typically, a request is sent from a client to an edge server. If
the requested content is not found, then our edge servers will forward this request to an origin
server.

Response

A response consists of the headers and the body sent from a server responding to a request. If
an origin server is returning a response, then this response will be sent to an edge server. The
edge server will then forward the response to a client.

Glossary EdgeCast Page 57

S
Server Side Archiving

This feature allows you to archive live Flash streams on an origin server. This allows you to
provide video on-demand capabilities to live Flash streams.

Stream

A stream consists of the delivery of audio/video content in a format that allows your clients to
play it back through a multimedia player.

Stream Key

This type of Live Authentication key can only authenticate a Flash stream when it is published to
the path associated with it.

T
Time to Live (TTL)

This term refers to the amount of time that a cached asset is still considered fresh. Our edge
servers will continue to serve a cached version of an asset while its TTL has not expired. An
asset's TTL is calculated by the Cache-Control and Expires headers associated with the response
sent by a CDN or customer origin server.

Token

A token or a token value must be provided when a client requests content protected with
Token-Based Authentication. Each token value contains security requirements that have been
encoded using an encryption key. A token value can be specified by appending a question mark
and the token value to the CDN URL path.

Token-Based Authentication

It requires a token value to be supplied when a user requests an asset from a protected folder.
This token value is then decrypted on our server. If the user meets the specified requirement(s),
then the asset will be delivered. Otherwise, the user will be denied access to the asset.

W
Windows Media Live Streaming

This term refers to the streaming of a live Windows media stream through our CDN. Although
this type of streaming can use MMS as the protocol identifier, it will actually use either the HTTP
or RTSP protocol to deliver your video to your clients.

Glossary EdgeCast Page 58

Windows Media On-Demand Streaming

This term refers to the streaming of Windows media content stored on our CDN storage service.
Although this type of streaming can use MMS as the protocol identifier, it will actually use either
the HTTP or RTSP protocol to deliver your video to your clients.

	Disclaimer
	Trademark Information
	About This Guide
	Introduction
	Overview
	How Does It Work?
	Platform-Specific Configuration
	Content Linking
	Handling Client Requests for Secured Content

	Choosing a Platform to Secure

	Setting Up Token-Based Authentication
	Overview
	Setting an Encryption Key
	Changing Your Encryption Key
	Protecting Your Content by Folder
	Securing Content on a Customer Origin Server
	Scope
	HTTP-Based Platforms
	Flash Media Streaming Platform
	Live StreamCast
	Securing Live Streams (Flash Media Streaming Platform)

	On-Demand Content
	Securing On-Demand Content

	Windows Media Streaming Platform
	Live Streams
	On-Demand Content

	Authentication Folder Administration

	Protecting your Content by Request Type
	Interaction with CDN Settings

	Determining How to Protect Your Content
	Overview
	Setting Content Expiration Date
	Allowing or Blocking Users by Country
	Preventing the Reuse of Token Values
	Allow URL Parameter & HTTP-Based Platforms
	Allow URL Parameter & Flash Media Streaming Platform

	Allowing or Blocking Users by Host
	Allowing or Blocking Users by Referrer
	Allowing Users by IP address
	Allowing or Blocking Users by Protocol

	Preventing Changes to Bandwidth Throttling Settings

	Generating Tokens
	Overview
	Manually Generating a Token
	Using Our Token Generation Application
	Building a Token Generator

	Decrypting an Existing Token

	Providing Access to Protected Content
	Overview
	HTTP Large Object Example
	HTTP Small Object Example
	ADN Example
	Flash Media Streaming Example
	Windows Media Streaming Example

	Redirecting Unauthorized Users

	Quick Reference
	Security Parameters
	Bandwidth Throttling Reference

	Appendix A
	Country Codes (ISO 3166)

	Appendix B
	Flash Content Security Scenarios
	Flash Media Streaming (Live StreamCast)
	Flash Media Streaming (On-Demand Content)

	Glossary

