
Automated Password Extraction Attack on Modern Password Managers

Raul Gonzalez
Carnegie Mellon University

Eric Y. Chen
Carnegie Mellon University

Collin Jackson
Carnegie Mellon University

Abstract

To encourage users to use stronger and more secure pass-
words, modern web browsers offer users password man-
agement services, allowing users to save previously en-
tered passwords locally onto their hard drives. We present
Lupin, a tool that automatically extracts these saved pass-
words without the user’s knowledge. Lupin allows a net-
work adversary to obtain passwords as long as the login
form appears on a non-HTTPS page. Unlike existing
password sniffing tools, Lupin can obtain passwords for
websites users are not visiting. Furthermore, Lupin can
extract passwords embedded in login forms with a destina-
tion address served in HTTPS. To determine the number
of websites vulnerable to our attack, we crawled the top
45,000 most popular websites from Alexa’s top website
list and discovered that at least 28% of these sites are
vulnerable. To further demonstrate the feasibility of our
attack, we tested Lupin under controlled conditions using
one of the authors’ computers. Lupin was able to extract
passwords from 1,000 websites in less than 35 seconds.
We suggest techniques for web developers to protect their
web applications from attack, and we propose alternative
designs for a secure password manager.

1 Introduction

Users’ passwords have often been the weakest link in
securing modern web applications. Even when a web
application is reinforced with the most sophisticated se-
curity features, an adversary can often compromise users’
accounts by launching a brute force attack on their login
passwords. A study done by Florencio et al. in 2007
showed that a vast majority of web passwords consists
solely of lower-case alphabetical characters [3]. The habit
of using easy-to-remember passwords nullifies any de-
fenses put in place by web developers and greatly in-
creases the risk of user accounts being compromised.

In order to encourage users to choose unique, secure

passwords for websites without burdening them with re-
membering each password, browser vendors have aug-
mented browsers with a service called password manager.
When a user first enters her password to a website, the
password manager will prompt her for permission to save
the password locally. If the permission is granted, the
browser will store this password and refill it when the
user revisits the same web page. Over the past decade,
password managers have gone through various security
analysis [9, 11], and browser vendors have taken sev-
eral steps to ensure that the password manager cannot
be abused by the attacker. However, despite all of the
existing defenses, we describe a new attack that allows an
adversary with network capability to automatically extract
passwords stored in the user’s password manager.

To demonstrate our attack, we created a tool called
Lupin that allows an attacker connected to a wireless net-
work to steal the saved passwords of other users within
the same network. Lupin operates in four steps; first,
Lupin establishes itself as the victim’s network gateway
by launching an ARP spoofing attack. Second, Lupin
waits for the victim to request to any unencrypted web
page, then piggybacks the attack code onto the response.
The attack code consists of a large number of iframes,
each pointing to a different website that the adversary
wants to extract passwords from. Third, Lupin waits
for the victim’s browser requests for these framed pages
and responds to each request with a bogus page con-
taining a login form and a piece of malicious JavaScript
code. Finally, when the victim’s password manager fills
in the passwords into the bogus login forms, the mali-
cious JavaScript code will extract the information and
send it back to the attacker. Lupin is superior to a conven-
tional network eavesdropper, because Lupin can obtain
passwords submitted to an HTTPS web page. Since it is
a common practice for websites to serve public content
in HTTP and redirect users to HTTPS pages when they
decide to log in, Lupin can gather passwords associated
with these websites, while a passive eavesdropper cannot.



To determine the number of websites vulnerable to
Lupin, we crawled 45,000 most popular websites accord-
ing to Alexa’s top website list. We discovered that at least
28% of all sites are vulnerable to Lupin. Additionally, we
measured the performance of Lupin under controlled con-
ditions using one of the authors’ computers. Lupin was
able to extract passwords from 1,000 websites in less than
35 seconds. To protect users from Lupin, we propose a
fix for Chrome and Firefox’s current password managers
that maximizes usability while protecting users’ HTTPS
passwords from being stolen by the attacker.

The remainder of this paper is organized as follows.
Section 2 briefly describes the background of our attack.
Section 3 details our attack. Section 4 evaluates the feasi-
bility and the impact of our attack. We propose possible
defenses in Section 5. Section 6 describes related work,
and lastly, Section 7 concludes.

2 Background

The browser’s password manager offers an intuitive way
for users to store unique and secure passwords for each
website they visit. However, by shifting the responsibility
of identifying the appropriate login forms away from
users, password managers become an attraction for online
miscreants. To protect password managers from malicious
online entities, browser vendors made an effort to ensure
that users’ passwords are not exposed to attackers. Ideally,
browsers must only present users’ login credentials to
legitimate login forms. However, different browsers have
different notions of when to auto-fill a password. Table 1
describes how different browsers decide the appropriate
location to auto-fill passwords. When a web page presents
the user with a login form, the browser generally considers
three factors before deciding to auto-fill the form with the
user’s login credentials. We describe these three factors
in detail below.

• URL – Intuitively, the most important factor in de-
ciding whether to auto-fill a login form is the location
of the web page containing the login form. When
the user enters her password for the first time, the
browser will record the location of the web page
embedding the login form; we call this the source
location. The next time the user visits a web page
containing a login form, the browser will compare
its location with the source locations of existing lo-
gin credentials in the database. If the two locations
match to a certain degree, the browser will proceed to
the next step. Most of the browsers (with exception
to IE) match the source locations of the login forms
based on their origins, while IE matches their paths.
The security argument accompanying origin-based
matching is that path-based matching does not add

any additional security benefits against same-origin
attackers, since same-origin attackers already have
full JavaScript execution capabilities [7].

• User action – Two of the five browsers we studied,
namely IE and Opera, require users to manually ini-
tiate the password manager. For IE, the user must
enter the first character of her username in order
to trigger the auto-fill process. Similarly, Opera re-
quires the user to manually press the auto-fill button
or enter a special character sequence (ctrl + enter) to
begin the auto-fill process. We discuss in Section 3
how these behaviors affect our attack.

• DOM – In addition to URL and user action require-
ments, many browsers impose additional require-
ments on the DOM to ensure that the password is not
exposed to the adversary. One of the most common
requirements is that the destination address of the
login form (i.e., the target of the form post) must co-
incide with the destination address of the initial login
form where the password was stored; unfortunately,
this defense was recently shown to be ineffective [2].
Besides checking for the destination address of the
form post, Safari has a unique requirement that does
not allow passwords to be auto-filled into iframes.

2.1 Threat Model
We proceed to describe the capability of the adversary as
well as user behaviors assumed for the rest of this paper.
We consider a standard network attacker, where the ad-
versary has the ability to intercept, eavesdrop, and modify
any unencrypted network packets. However, the attacker
does not have the ability to break existing encryption
schemes in order to gain access to SSL traffic.

We treat the user as a security paranoid individual.
That is, the user can distinguish HTTPS web pages from
their HTTP counterparts. Furthermore, the user heeds
all security warnings and refrains from logging into any
HTTP pages while using an insecure network. However,
the user may still visit other HTTP pages while using an
insecure network without logging in.

3 Attack

In this section, we describe our attack in detail. Our
attack exploits the weakness in the Firefox and Chrome
password managers; it allows the network adversary to au-
tomatically explore web passwords stored in the victim’s
browser. To demonstrate the effectiveness of the attack,
we created Lupin – a network level, fully automated tool
for password theft.

We provide a detailed description of our attack be-
low. We assume the adversary to be a network attacker

2



Browsers URL requirement User action requirement DOM requirement
Internet Explorer Source address’s origin and

path must match.
Must enter the first character
of the username

None

Opera Source address’s origins
must match.

Must click on the “auto-fill
button” or press “Control +
Enter”

Destination address’s origins
must match. The “name”
attribute of the input fields
must match.

Safari Source address’s origins
must match.

None Login form must be inside
the top-level frame.

Firefox Source address’s origins
must match.

None Destination address’s origins
must match.

Chrome Source address’s origins
must match.

None Destination address’s origins
must match.

Table 1: Requirements for auto-filling passwords in different browsers where source address represents the URL of the
page that embedded the login form and destination address represents the location the login form is submitted to.

described previously in Section 2.1. Furthermore, we as-
sume the victim visits an arbitrary HTTP web page while
using the insecure network.

1. The adversary waits for the victim to make a request
to an unencrypted page served in HTTP then piggy-
backs onto the response a large number of iframes,
each pointing to a different web page that the at-
tacker wishes to extract passwords from, as depicted
in Figure 1. Web pages embedded in these iframes
must be served in HTTP.

2. After the victim’s browser receives the tampered
response, it will subsequently make requests for the
web pages associated with each of the iframes.

3. The adversary again intercepts these requests and
responds to each web request with a bogus web page
containing a login form and a piece of JavaScript
code.

4. When these bogus web pages are delivered to the vic-
tim’s browser, they will in turn trigger the browser’s
password manager to auto-fill passwords for each of
these web pages. After these login forms are auto-
filled, the malicious JavaScript code will read the
login credentials on the login form and send them
back to the attacker.

The success of the attack rests upon our ability to
deceive the victim’s password manager into filling the
user’s login credentials into a web page that has been
tampered by the adversary. However, not all password
managers are vulnerable to this attack. Recall from Ta-
ble 1, only Chrome and Firefox automatically fill in saved
passwords for non-top-level frames. Since Chrome and
Firefox currently consist of around 40% of the browser
market share [1], our attack poses a significant risk to a

Figure 1: Attacker controlled iframes are piggybacked
onto the response of a benign HTTP request. These
iframes are used to trigger the victim’s password manager.

large portion of users. We describe below the reasons why
our attack fails to work for other browsers.

• IE and Opera – Both IE and Opera require user
interaction before auto-filling any login credentials.
However, due to the fully automated nature of our
attack, we cannot generate or forge the user interac-
tions required for either IE or Opera.

• Safari – Although Safari’s password manager does
not require any user interaction before auto-filling lo-
gin credentials, it only auto-fills login forms located
inside the top-level frame; that is, Safari will not
auto-fill any login forms inside our injected iframe.
One way to circumvent this is to use popup win-

3



dows instead of iframes, but this would significantly
reduce the stealthiness of our attack.

3.1 Lupin
We implemented our attack as an automated tool called
Lupin, which consists of 800 lines of Python and
JavaScript code. To use Lupin, the adversary simply
connects to a wireless network. Next, Lupin scans for all
available nodes in the network, then proceeds to launch
an ARP spoofing attack on each node to impersonate
the network gateway (this step is done using the “dsniff”
package in Linux). After establishing itself as the bogus
network gateway, the adversary can then carry out the
attack described previously in Section 3. We provide a
more thorough description of the tool below.

3.1.1 Scalability

Figure 2: Lupin arranges the injected frames in a hier-
archical fashion. Each target web page is loaded asyn-
chronously.

Although some adversaries are only interested in pass-
words from a small subset of websites, we believe the ef-
fectiveness of the attack would be significantly increased
if the attacker was able to extract a large number of pass-
words rapidly. Recall from Figure 1 that in order to ef-
ficiently extract a large number of passwords, one must
create multiple iframes and perform the attack in par-
allel. Intuitively, one could create one iframe for each
target web page. However, this would create a burst of
traffic on the network and consume a huge amount of
memory on the victim’s browser, making the attack easily
detectable. Lupin avoids this problem by organizing the
iframes in a hierarchical structure, as depicted in Figure 2.

The top-level iframe holds the bulk of the attack logic. It
dynamically spawns child frames to trigger the victim’s
password manager, then collects the user’s credentials
before navigating the child frames to the next target web
page. After exploring all of the target web pages, the
top-level frame bundles all of the stolen data into a single
web request and forwards it to the adversary.

3.1.2 Stealth

Lupin is designed to provide maximum stealth to the
adversary. First, the malicious iframes are made to be
hidden from the victims. This can be done in several
ways, such as by making the iframes transparent or by
making the size of the iframes one pixel [10]. Second, our
code detects if the user is currently focused on the browser
tab or window containing the attack code and executes
only if the tab or window is out of focus. Both Chrome
and Firefox deploy a status bar that informs the user of any
outgoing web requests; however, by running the attack in
a background tab, the status bar is effectively hidden from
the victim. Unfortunately, there is a minor drawback for
running the attack code in the background tab; that is, it
triggers the browser’s refresh animation when it navigates
the malicious iframes. Figure 3 illustrates how the refresh
animation is seen by the user. We believe this is not a
major weakness, as many legitimate web pages (such as
Gmail) already periodically refresh themselves.

4 Evaluation

In this section, we evaluate our automated password ex-
traction tool Lupin. Our evaluation is twofold; first, we
measure the efficiency of Lupin under controlled labo-
ratory conditions and evaluate the effectiveness of our
attack in terms of number of websites explored per minute
(WPM). Second, we conduct an extensive survey on the
45,000 most popular websites from Alexa’s top website
list and measure the percentage of websites vulnerable to
our attack. We summarize our results below.

4.1 Performance
To evaluate the effectiveness of Lupin in a real-world
scenario, we tested Lupin using one of the authors’ com-
puters. The victim’s browser and Lupin itself were located
inside a virtual machine. We attempted to simulate a nor-
mal victim’s browsing behavior by using two browser tabs
to visit popular websites such as Facebook and Gmail si-
multaneously. We were able to explore 1,000 web pages
in a period of 35 seconds (around 2,000 WPM), with no
noticeable performance degradation. In our study, we pro-
grammed Lupin to wait for 100 milliseconds after a target
page has finished loading, then check to see if the login

4



(a) Chrome refresh animation.
etc.

(b) Firefox refresh animation.

Figure 3: Refresh animation induced by running our attack code in a background tab.

form was auto-filled. This makes the result from our mea-
surement a conservative estimate, because most browsers
take less than 100 milliseconds to auto-fill a password.
Furthermore, the speed could be increased if our attack
code was executed inside multiple tabs as opposed to one.
Finally, running Lupin on a host OS rather than a virtual
machine should also improve its performance.

One interesting challenge we faced was that the user
may navigate away from the page executing our attack
code. To combat this, Lupin detects whether a web page
is currently running in the background and only executes
the attack code inside background tabs. Furthermore,
Lupin has the option to simulate the refresh behavior of a
normal website such as Gmail; this is achieved by issuing
periodic refreshes, with each refresh lasting no more than
a few seconds. However, one downside of reducing the
refresh rate of Lupin is that the crawling speed is also
decreased.

4.2 Vulnerability Coverage

Since Lupin cannot obtain passwords stored on HTTPS
web pages, it is important to measure the ratio of websites
vulnerable to our attack. To obtain this information, we
created a web crawler that surveyed the 45,000 most pop-
ular websites from Alexa’s top website list. In our survey,
we considered a website vulnerable if it contained a login
form served in HTTP and did not have the autocomplete
attribute set to “off”. Our results are described in Table 2.
Out of the 45,000 websites we surveyed, atleast 28% of
them were vulnerable to Lupin. Some examples of vulner-
able websites include Facebook, Twitter, LinkedIn, and
GoDaddy.

Some of the websites we surveyed used JavaScript to
dynamically create links, forms, and other HTML con-
tent. Parsing and analyzing these pages using a basic web
crawler was difficult. Therefore, to avoid false positives,
we marked these websites (11,584 in total) as not vulner-
able. Furthermore, we discovered that at least 12% of
the websites in our survey implemented SSL, and 27%

of these sites exposed secure login forms in HTTP pages,
making them vulnerable to Lupin.

5 Defense

In this section, we propose several defenses for our attack
on password managers. First, we provide quick solutions
for web developers to secure their login forms. Second,
we propose and analyze several secure password manager
variants; we leave it to the browser vendors to decide
which variant is best suited for them.

5.1 Web Application Defenses
The most straightforward approach to defend against at-
tacks on the password manager is to turn off the password
manager. Websites may do so by setting the value of the
“autocomplete” form attribute to “off”. However, this may
create undesirable side effects such as inconveniencing
users, forcing them to manually log in, as well as en-
couraging users to create less secure, easy-to-remember
passwords.

Another technique to protect HTTPS passwords from
the adversary is to never embed a login form inside an
HTTP page. If a website wishes to serve a portion of their
content in HTTP, and switches to HTTPS for sensitive
transactions (such as making purchases), they may do so
by redirecting the user to a secure HTTPS login page.

We would like to emphasize that server side solutions
are not enough to completely mitigate the attack, since
previously stored passwords are still vulnerable to our
attack. It is essential for browser vendors to deploy a
password manager that offers the necessary protections.

5.2 Browser Defenses
To protect users from automatic password extraction tools
such as Lupin, Chrome and Firefox could implement
defenses similar to those of IE and Opera. That is, they
could require their password managers to be triggered

5



Vulnerable Not Vulnerable Totallogin form posts to HTTP login form posts to HTTPS
25% (11,313) 3% (1,428) 72% (32,255) 100% (45,000)

Table 2: Distribution of websites vulnerable to Lupin

only through user interactions. However, although this
may mitigate the risk of automated password thefts, it
is accompanied by usability concerns. For example, the
user may now be required to remember the first letter
of her username. Furthermore, even this defense does
not protect against non-automated attacks. If a script is
injected that waits patiently until a login form is filled
in, then the attack would still succeed. In effect, this
approach stops automated password theft attacks but not
password theft attacks in general.

To protect passwords submitted to web pages served in
HTTPS, one could forbid the password manager to auto-
fill any login forms containing an HTTPS destination
address. This would consequently frustrate users into
creating weaker passwords. Similarly, the browser could
refuse to auto-fill passwords on HTTP pages. This would
prevent a network attacker from obtaining any password
stored by the password manager. However, the same
disadvantages as above apply; restricting the password
manager would only encourage users to create weaker
passwords.

One way to achieve a balance between usability and
security is use an approach similar to HTTP Strict Trans-
port Security (HSTS) [8]. Consider an HTTP web page
containing a login form that submits to an HTTPS page.
When the user decides to store her password, the browser
will first attempt to fetch the HTTPS version of the same
page. If the fetch is successful, then the browser asso-
ciates the stored password with the HTTPS version of the
page. When the user revisits this web page, the browser
will automatically redirect the user to the HTTPS version
before auto-filling the password. One limitation of this
defense is that it cannot protect credentials from pages
served only in HTTP. We leave it to the browser vendors
to decide whether this trade-off is acceptable.

6 Related Work

Several researchers have attempted to design a secure
password manager. However, none of them has consid-
ered the effect of a network attacker. PwdHash transpar-
ently produces a different password for each site by using
cryptographic hash functions [9], hence preventing a web
attacker from compromising multiple accounts from the
same user using the same password. Passpet aims to pro-
tect the user’s login credentials from phishing attackers
by associating each trusted website with user-assigned

labels [11].
Internet users’ password strength, as well as their pass-

word management habits, has also been extensively stud-
ied in previous literature [3, 4, 6, 5]. Most of the existing
research has found that the majority of passwords on the
Internet are weak and that users tend to reuse existing
passwords. The attack described in our work does not
target the weaknesses of these web passwords, but rather,
it exploits a vulnerability in the design of several commer-
cial password managers.

7 Conclusion

We describe an automated attack that enables a network
adversary to obtain users’ credentials stored by their
browsers’ password managers. To demonstrate the sever-
ity of the attack, we created a tool called Lupin. We
evaluated Lupin in terms of its performance. For each
user on the network, Lupin is able to explore passwords
stored on 1,000 websites in less than 35 seconds. In ad-
dition, we conducted an extensive survey on the 45,000
most popular websites and discovered that 28% of them
are vulnerable to Lupin.

References

[1] Desktop browser market share, 2012.

[2] CHEN, E., GORBATY, S., SINGHAL, A., AND
JACKSON, C. Self-exfiltration: The dangers of
browser-enforced information flow control. In Web
2.0 Security and Privacy (W2SP 2012) (2012).

[3] FLORÊNCIO, D., AND HERLEY, C. A large-scale
study of web password habits. In Proceedings of
the 16th International World Wide Web Conference
(New York, NY, USA, 2007), WWW ’07, ACM,
pp. 657–666.

[4] FLORÊNCIO, D., HERLEY, C., AND COSKUN, B.
Do strong web passwords accomplish anything? In
Proceedings of the 2nd USENIX workshop on Hot
topics in security (Berkeley, CA, USA, 2007), HOT-
SEC’07, USENIX Association, pp. 10:1–10:6.

[5] GAW, S., AND FELTEN, E. W. Password manage-
ment strategies for online accounts. In Proceedings
of the second symposium on Usable privacy and

6



security (New York, NY, USA, 2006), SOUPS ’06,
ACM, pp. 44–55.

[6] INGLESANT, P. G., AND SASSE, M. A. The true
cost of unusable password policies: password use
in the wild. In Proceedings of the 28th interna-
tional conference on Human factors in computing
systems (New York, NY, USA, 2010), CHI ’10,
ACM, pp. 383–392.

[7] JACKSON, C., AND BARTH, A. Beware of finer-
grained origins. In Web 2.0 Security and Privacy
(W2SP 2008) (2008).

[8] JACKSON, C., AND BARTH, A. ForceHTTPS: Pro-
tecting high-security web sites from network attacks.
In Proceedings of the 17th International World Wide
Web Conference (2008).

[9] ROSS, B., JACKSON, C., MIYAKE, N., BONEH, D.,
AND MITCHELL, J. C. Stronger password authen-
tication using browser extensions. In Proceedings
of the 14th conference on USENIX Security Sym-
posium - Volume 14 (Berkeley, CA, USA, 2005),
SSYM’05, USENIX Association, pp. 2–2.

[10] RYDSTEDT, G., BURSZTEIN, E., BONEH, D., AND
JACKSON, C. Busting frame busting: a study of
clickjacking vulnerabilities at popular sites. In IEEE
Oakland Web 2.0 Security and Privacy Workshop
(2010), p. 6.

[11] YEE, K.-P., AND SITAKER, K. Passpet: convenient
password management and phishing protection. In
Proceedings of the second symposium on Usable
privacy and security (New York, NY, USA, 2006),
SOUPS ’06, ACM, pp. 32–43.

7


