
STRICTLY CONFIDENTIAL

Update ID: ASPR-MOZ-1

© 2011 ACROS d.o.o. www.acrossecurity.com page 1

ASPR-MOZ-1: Binary Planting in Mozilla Thunderbird (Import Outlook
Express Address Book / wab32.dll)

General

Title: Binary Planting in Mozilla Thunderbird (Import Outlook Express
Address Book / wab32.dll)

Update ID: ASPR-MOZ-1

Notification date: 6/23/2011

Contributors: Simon Raner

Report type: vendor ASPR

Summary

There is a Binary Planting vulnerability in Mozilla Thunderbird 3.1.11, allowing a remote,
possibly Internet-based attacker to deploy malicious dynamic-link library (DLL) to a user's
Windows machine and have it launched in the context of that user. In particular, Mozilla's
Thunderbird.exe tries to load %CommonProgramFiles%\System\wab32.dll when a
user tries to import an Outlook Express address book on Windows 7, but failing to find it in
the search path provides an opportunity for the attacker to plant a malicious DLL in the
current working directory.

� Problem type: Actual security problem

� Discoverability: MEDIUM

� Severity: VERY HIGH

Affected Components

• Mozilla Thunderbird 3.1.10
• Mozilla Thunderbird 3.1.11

Other versions than the current one(s) or specified one(s) may also be vulnerable. Current
versions are vulnerable on the following operating systems (no tests were done on others):

• Windows 7: YES

• Windows XP: NO

http://www.acrossecurity.com/

STRICTLY CONFIDENTIAL

Update ID: ASPR-MOZ-1

© 2011 ACROS d.o.o. www.acrossecurity.com page 2

Demonstrations

Demonstration 1

1. Prepare a freshly installed and fully updated Windows 7 computer.

2. Install Mozilla Thunderbird on the system (we tested versions 3.1.10 and 3.1.11).

3. Create an empty folder c:\temp (if it doesn't already exist).

4. Place the attached test.eml in c:\temp.

5. Create a subfolder c:\temp\%CommonProgramFiles%\System\ (use actual percent
characters!) and place the attached wab32.dll in it.

6. In Windows Explorer, open c:\temp, then double-click the test.eml file. Mozilla
Thunderbird gets launched.

7. In Thunderbird's Menu Bar, click on "Tools" and select "Import...".

8. In the displayed "Settings" window, select "Address Books" and click "Next" button, then
select "Outlook Express" and click "Next" button.

9. As you do this, c:\temp\%CommonProgramFiles%\System\wab32.dll is loaded,
which pops up a "HACKED" dialog.

Analysis

When launched by double-clicking an .eml file, Thunderbird is started with the current
working directory (CWD) set to the folder where this file resides. If user tries to import an
Address Book from Outlook Express on Windows 7 (this may not even make sense on
Windows 7, but Thunderbird does provide an option to do so), Thunderbird makes an unsafe
call to LoadLibrary("%CommonProgramFiles%\System\wab32.dll"). This DLL is not
found on the system and is thus searched for in the search path and eventually in CWD.

The offending DLL path (%CommonProgramFiles%\System\wab32.dll) is obtained from
the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WAB\DLLPath and
directly loaded with LoadLibrary() function by the Thunderbird code. This path is
different on Windows XP and Windows 7:

• Windows XP: C:\Program Files\Common Files\System\wab32.dll

• Windows 7: %CommonProgramFiles%\System\wab32.dll

The LoadLibrary() function doesn't automatically resolve environment variables such as
%CommonProgramFiles% but rather considers them as literal folder names. Since the
DLLPath registry key only contains an environment variable on Windows 7 but not on
Windows XP this vulnerability only affects Windows 7. (Note that we haven't tested other
Windows operating systems.)

The attacker can mark the malicious DLL and the subfolders it is in as hidden so that per
the default Windows Explorer settings, the user will not see it and is thus less likely to
become suspicious.

Note that this also works when the .eml file and the malicious DLL are hosted on a network
share in LAN (suitable for an internal attacker with access to a corporate network), and
furthermore, even when stored on an Internet-based WebDAV server (suitable for a
completely access-less attacker); most corporate firewalls are unlikely to stop outbound
WebDAV (HTTP) traffic if they allow outbound HTTP.

http://www.acrossecurity.com/

STRICTLY CONFIDENTIAL

Update ID: ASPR-MOZ-1

© 2011 ACROS d.o.o. www.acrossecurity.com page 3

More information on binary planting can be found here:

• The official web site of the binary planting vulnerability research
http://www.binaryplanting.com

• ACROS Security blog, covering many aspects of binary planting
http://blog.acrossecurity.com

• Online Binary Planting Exposure Test
http://www.binaryplanting.com/test.htm

• A public list of some vulnerable applications
http://secunia.com/advisories/windows_insecure_library_loading/

Error categories: Other

� Discoverability: MEDIUM Since this vulnerability does not reside in a frequently-
used functionality, it can remain undetected for a long
time.

 Mitigating factors: -

http://www.acrossecurity.com/
http://secunia.com/advisories/windows_insecure_library_loading/
http://www.binaryplanting.com/test.htm
http://blog.acrossecurity.com/
http://www.binaryplanting.com/

STRICTLY CONFIDENTIAL

Update ID: ASPR-MOZ-1

© 2011 ACROS d.o.o. www.acrossecurity.com page 4

Attack Scenarios

Attack Scenario 1: Deploying a malicious DLL to Windows workstations from the
Internet

An external attacker sets up an anonymous WebDAV server somewhere on the Internet and
places a number of interesting-sounding .eml files on it. Alongside these files, she places a
hidden malicious wab32.dll in a hidden subfolder (see the above demonstration).

She then sends an e-mail to multiple users containing a hyperlink to a shared folder on the
server, enticing the users to visit the share and open the .eml files. Upon user's clicking on
the link, the content of the remote share is displayed in Windows Explorer. When a user
double-clicks any one of the .eml files, Thunderbird gets launched and sets the current
working directory to the remote share location. Now the tricky part for the attacker is to get
the user to try to import an Address Book from Outlook Express.

One possible way to do that is by mimicking an error message inside the displayed remote
.eml file, informing the user that the content of this e-mail can not be displayed due to an
error with displaying the address of the sender, which will be resolved by the user importing
an Address Book from Outlook Express. The error message also provides exact instructions
for this. By doing so, the user unwittingly causes a malicious DLL to be "downloaded" and
immediately executed on his computer.

� Impact: VERY HIGH Executing arbitrary malicious code on user's computer

� Required access:
(likelihood)

VERY HIGH The attacker needs no access to the user's environment

� Config. depend.: MEDIUM The exploitability of this vulnerability depends on (1) the
Web Client service running on the user's computer (this
service is running by default), (2) the network firewall
allowing outbound WebDAV traffic (almost all do) and (3)
the user's workstation is not actively protected by
Microsoft's "CWDIllegalInDllSearch" countermeasure
(unlikely). In addition, the user must be on a Windows 7
system.

� Simplicity: LOW This attack requires a heightened level of social
engineering.

� Cost: VERY LOW This attack costs nothing

� Detectability: VERY LOW The attacker can make this attack virtually undetectable
for the attacked user. Her malicious code can forward
function calls to the original DLL, retaining the original
functionality of the product.

� Traceability: VERY LOW It is very difficult to determine who placed some files on
a network share. The attacker can also use network
proxies and IP spoofing to hide her origin.

� Severity: VERY HIGH (4.1)

http://www.acrossecurity.com/

STRICTLY CONFIDENTIAL

Update ID: ASPR-MOZ-1

© 2011 ACROS d.o.o. www.acrossecurity.com page 5

Recommendations

There are a number of options for fixing this issue or limiting its exploitability, assuming
that the affected functionality is required at all:

1. Before calling LoadLibrary(), call ExpandEnvironmentStrings() to expand
environment variables like %CommonProgramFiles% (more information are available at
http://msdn.microsoft.com/en-us/library/ms724884%28v=vs.85%29.aspx).

2. Changing the current working directory to a safe location (e.g., to Thunderbird’s home
folder) immediately before the vulnerable call, and reverting it back immediately after it
would fix this particular issue.

3. Calling SetDllDirectory(“”), while generally a suitable solution for DLL-related
binary planting problems, is severely limited by a known Windows bug which sometimes
causes environment variables in the PATH unresolved (for more information, see
http://blog.acrossecurity.com/2010/10/breaking-setdlldirectory-protection.html).

4. Up-to-date developer recommendations are available at
http://www.binaryplanting.com/guidelinesDevelopers.htm

Binary planting issues have been found in almost every Windows application: our research
(http://www.binaryplanting.com) has found 9 out of 10 applications vulnerable, frequently
with multiple binary planting bugs.

Distribution

• Entered into Mozilla’s Bugzilla on 6/23/2011

Contact

ACROS d.o.o.
Makedonska ulica 113
SI - 2000 Maribor, Slovenia

e-mail: security@acrossecurity.com
web: http://www.acrossecurity.com
phone: +386 2 3000 280
fax: +386 2 2000 282

PGP Key: http://www.acrossecurity.com/pgpkey.asc
PGP Fingerprint: FE9E 0CFB CE41 36B0 4720 C4F1 38A3 F7DD

ACROS Security Advisories: http://www.acrossecurity.com/advisories.htm
ACROS Security Papers: http://www.acrossecurity.com/papers.htm

Disclaimer

The content of this report is purely informational and meant only for the purpose of
education and protection. ACROS d.o.o. shall in no event be liable for any damage
whatsoever, direct or implied, arising from use or spread of this information. All identifiers
(hostnames, IP addresses, company names, individual names etc.) used in examples and
demonstrations are used only for explanatory purposes. In no event should it be assumed

http://www.acrossecurity.com/
http://www.acrossecurity.com/papers.htm
http://www.acrossecurity.com/advisories.htm
http://www.acrossecurity.com/pgpkey.asc
http://www.acrossecurity.com/
mailto:security@acrossecurity.com
http://www.binaryplanting.com/
http://www.binaryplanting.com/guidelinesDevelopers.htm
http://blog.acrossecurity.com/2010/10/breaking-setdlldirectory-protection.html
http://msdn.microsoft.com/en-us/library/ms724884%28v=vs.85%29.aspx

STRICTLY CONFIDENTIAL

Update ID: ASPR-MOZ-1

© 2011 ACROS d.o.o. www.acrossecurity.com page 6

that use of these names means specific hosts, companies or individuals are vulnerable to
any attacks nor does it mean that they consent to being used in any vulnerability tests. The
use of information in this report is entirely at user's risk.

http://www.acrossecurity.com/

STRICTLY CONFIDENTIAL

Update ID: ASPR-MOZ-1

© 2011 ACROS d.o.o. www.acrossecurity.com page 7

Glossary

Security Problem Type specifies whether the reported security issue currently presents a real risk to the product’s
users (“Actual Security Problem”) or merely has the potential to evolve into such a risk in the future (“Potential
Security Problem”). An example of the former is a buffer overflow vulnerability that can be remotely exploited for
executing malicious code on the user’s computer. An example of the latter is the same buffer overflow vulnerability
which is only present in the debug build of the product: the vulnerable code might get copied to release parts of the
code in the future, or a debug build could be mistakenly dispatched to the users.

Discoverability defines the likelihood that an independent third party will discover the vulnerability in the foreseeable
future using publicly obtainable information about the product (including its source code in case of an open-source
product). Following the worst-case principle, it is assumed that whoever should discover this vulnerability, would either
announce it to the public (e.g. on security-related mailing lists) before a fix was available, thus causing damage to
vendor’s reputation and putting users at risk, or enable its covert exploitation, again causing damage to vendor’s
customers and reputation. Discoverability is quantified between 1 (very low) and 5 (very high), where 1 means “very
difficult to discover” and 5 means “trivial to discover.”

Impact is the “worst-case scenario” assessment of the damage the attacker could cause by exploiting the
vulnerability, regardless of what special conditions would have to be met in order for this scenario to become possible.
Impact is quantified between 1 (very low impact) and 5 (very high impact).

Required access refers to the access the attacker would need to obtain in order to be able to exploit a particular
vulnerability. It defines the “likelihood” of attacker actually obtaining such access, and is quantified between 1 (very
low) and 5 (very high) where 1 means “very few attackers could gain such access” and 5 means “every motivated
attacker could gain such access”.

Configuration dependence is an assessment of the likelihood that a specific configuration described in the attack
scenario would be used in a real-world production system. For example, if the attack scenario requires the usernames
to be of a specific, unlikely form (e.g., containing question marks), or that two servers must have IP addresses with
matching last octet (which is a 1:255 chance in average), the configuration dependence would be very high. On the
other hand, if the attack scenario assumes a default configuration or a configuration proposed by the product
documentation, the configuration dependence would be very low. Configuration dependence is quantified between 1
(very low) and 5 (very high), and relates closely to the “Number of users affected” metric used by some other
vulnerability assessment methods.

Simplicity defines how likely it would be for an attacker to actually carry out a successful attack by exploiting the
vulnerability, given the required access to the target system. This attribute also includes the difficulty of crafting any
special exploit tools, using special hardware or other equipment and performing social engineering on users. Simplicity
is quantified between 1 (very low) and 5 (very high), where 1 means “very difficult to exploit” and 5 means “very easy
to exploit.”

Cost simply describes the estimated cost of a particular attack for the attacker (per the attack scenario) - in money
and other resources. A very high cost, for example, would be assigned to an attack that required cracking a DES key -
although this has been proven to be possible, it still requires special costly equipment. An attack that requires sending
a billion requests to a web server over a telephone line would be assigned a high cost due to communication expenses.
However, most of the attacks are usually quite inexpensive, thus having “very low” or “low” cost values. Cost is
quantified between 1 (very low) and 5 (very high).

Traceability defines how likely a security-trained system administrator would be able to trace the origin of the attack,
once it has been detected, and therefore also defines the attacker’s exposure to system owner’s legal or administrative
retribution. Traceability is higher when the attack leaves traces of attacker’s IP address, her username, targeted
information, etc. on the attacked system. Following the worst-case assumption, any external logging facilities (e.g.
firewall appliances, logging routers etc.) and non-default local logging facilities are not considered in the assessment.
Traceability is quantified between 1 (very low) and 5 (very high), where 1 means “very difficult to trace” and 5 means
“very easy to trace.”

Severity is calculated with formula: Imp * AVG (Acc , (6 - Conf) , Simp , (6 - Cost) , (6 - Det) , (6 - Trc))/5,
where Imp = Impact, Acc = Required access, Conf = Configuration dependence, Simp = Simplicity, Cost = Cost,
Det = Detectability, Trc = Traceability and AVG = average of arguments. Rationale behind this formula is the
following: (1) Impact affects the severity proportionally: if impact were 0, the severity would also be 0 regardless of
other factors; (2) Required Access, Configuration dependence, Simplicity, Cost, Detectability and Traceability are
“softer” attributes, more prone to subjective opinions. Therefore their average is calculated, normalized and used as a
proportional factor in severity formula. Note that Configuration dependence, Cost, Detectability and Traceability need
to be inverted (subtracted from 6) in order to correctly contribute to severity. According to the possible values of each
attribute used in the formula the resulting severity can have a value between 0 and 5. We round this value to one
decimal place to provide meaningful differentiation between severities of the discovered vulnerabilities. Note that the
resulting severity is merely an orientation source: the assessments of input values are based on our team’s
experience, knowledge and expectations and would almost certainly be somewhat different were they evaluated by
someone else.

http://www.acrossecurity.com/

