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Abstract

The paper studies the use of the contributions to lack of fit in detecting outliers in linear models with
Gaussian errors (see Haslett and Hayes (1998) for the concept of contributions). The paper shows that
contributions are an important factor behind an observation’s departure from the estimated model and from
the dataset. The paper also shows by illustration that contributions perform better than marginal and
conditional residuals in detecting outliers in a dataset. The demerits of this measure are that they can be
negative and can lead to false identification of outliers.

1. Introduction

This paper examines the use of the contributions to lack of fit in a dataset, first introduced by Haslett and Hayes
(1998), in detecting outlying observations for linear models with (possibly) correlated Gaussian errors. In
the linear model Y = Xβ + ε, the contribution to lack of fit of the ith observation can be expressed as

Ti = d−1
i êiẽi (1)

where êi is an estimate of the marginal residual of the ith observation which measures the deviation of
a point from the fitted trend, ẽi is an estimate of the conditional residual of the ith observation which
measures the deviation of a point from its neighbourhood, and di = Var(ẽi) (see Haslett and Haslett (2007)
for the introduction of these two residuals). Haslett and Hayes (1998) proposed that contributions can be
used to detect abnormality in a dataset under a fitted model. The authors suggested that if Ti is of large
magnitude, then the ith observation is an anomaly in the sense that it either lies far away from the fitted
trend, or lies far away from its neighbouring points, or both. The present paper can be considered as a
critical examination of the proposal of Haslett and Hayes (1998). The paper mathematically proves that Ti,
as a joint effect of êi and ẽi, contributes significantly to an observation’s departure from the dataset as well
as from the fitted model. The paper also shows by illustration that Tis are more effective than êi or ẽi in
detecting abnormal observations. However, the demerits of Tis lie in the facts that they may be negative,
and can be 0 even if one of the residuals is 0 and the other is not.

Contributions can be effectively defined for a block of more than observations, too. If the dataset Y is
partitioned as (Ya, Yb), then contribution for the block of observations Ya can be defined as

Ta = êTaD
−1
a ẽa (2)

where êa is the set of marginal residuals for the corresponding observations belonging to Ya, ẽa is the set of
conditional residuals for the corresponding observations belonging to Ya, andDa = var(ẽa). Haslett and Hayes
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(1999) pointed out that contributions enjoy a unique property of additivity in this respect. They showed
that the contribution for a block of observations is the sum of the contributions of the singletons belonging
to that block. So, when there are some naturalized blocks in a dataset (for example, Linear Mixed Models
(LMM)), the additivity of contributions can be effectively used to find the contribution of a block.

Haslett and Hayes (1998) introduced contributions in diagnostics of the model Y = Xβ + ε where Y is
an n× 1 vector, X is an n× p matrix, β is a p× 1 vector of parameters, ǫ is the n× 1 vector of errors, and
Var(ε) = V . The authors showed that, if P = (a, b, c, ...) is a complete partition of the indexes of Y , and if
ẽa, ẽb, ẽc... denote the conditional residuals associated with this partition and ẽP is the stacked vector of
these residuals, then

D−1
P ẽP = V −1ê = QY (3)

where ê is the marginal residual, Q = V −1
(

I −X(XTV −1X)−1XTV −1
)

, and DP is block-diagonal so that

Da = Var(ẽa) = Q−1
aa , Db = Var(ẽb) = Q−1

bb and so on.
The above argument validates the dual roles of marginal and conditional residuals in a general linear

model with correlated errors. If (Ta, Tb, Tc, ...) is the stacked vector of block contributions as defined in
equation 2, then equation 3 shows that the lack of fit S can be expressed as

S =
∑

m∈P

Tm,

where Ti is the weighted combination of two different types of residuals. Further, the authors showed that
marginal residual measures a global deviation of a point as represented by its distance from its estimated
mean, and conditional residual measures the local deviation of a point as represented by its distance from
its estimated conditional mean. Hence the total lack of fit of a dataset under a fitted model is a joint effect
of both global and local deviations. Since Tis take into account of both kinds of deviations, the authors
suggested that Tis can be a useful tool in understanding the influence of global and local deviations on the
abnormal behaviour of a dataset.

There were, however, two shortcomings in the method suggested by Haslett and Hayes (1998) which this
paper addresses:

• The authors did not illustrate how the re-estimation of the variance matrix after deletion of data
points can affect the contributions. Throughout their analysis they assumed that the variance matrix
needs not be re-estimated after each stage of deletion, which in some sense can falsely represent an
observation to be outlier, as shall be shown in our data analysis in section 4.

• The sampling distribution of T is that of a weighted distribution of two independent chi-squared
variables. The cdf and probability interval of such a distribution is very complicated; hence the
authors went to an approximate standardization of T which is useful in the upper tail, being based
on the transformation of a single chi-squared variable. Such an approximation has two disadvantages.
The standardized contribution loses its additive property, and we can not approximate the lower tail
of T which can also be a source of adequate information.

The present paper deals with the first shortcoming by re-estimating V at each stage of deletion by methods
suggested by Haslett and Dillane (2004). We have used two types of deletion diagnostics. The one by
re-estimating V at each stage of deletion, the other by not re-estimating V . The method of re-estimation
proposed by Haslett and Dillane (2004) is a computationally cheaper procedure(See the appendix for more
details) compared with the other previous methods like Christensen et al. (1992). We then compared the
two methods and studied how the change in the variance structure affects the dataset. Re-estimating the
variance parameters is important in the sense that the abnormal behaviour of an observation might be
caused due to large variance which can influence the neighbouring points, too, to behave abnormally. When
the point is deleted, re-estimating the variance parameters would get rid of the influence, if any, of the
point’s large variance over other points.

To address the second shortcoming, we have used some close approximations of the cdf of T derived by
Bhattacharya et al. (2011) which helps to derive the approximate quantiles of the probability distribution.
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Figure 1: Point 9 from the simulated data has normal marginal and conditional residuals, but the corresponding (êi, ẽi) lies
far from the 95% bivariate contour, and hence shows high contribution.

Such an approximation retains the additive property of T and takes care of the left tail of the distribution.
Then we propose to plot Tis along with their corresponding 95% probability intervals, and detect the points
that lie outside the corresponding intervals.

To study the relative merits and demerits of contributions as compared to marginal and conditional
residuals, we aim to validate our argument at theoretical discussion and by simple illustrations. We have
theoretically interpreted contributions as a joint effect of global and local residuals in section 2. We have
also compared the ‘sensitivity’ of contributions with that of marginal and conditional residuals in detecting
unusual observations. By sensitivity, here we meant the rate of change in the value of a measure with the
change in the value of a given observation. It can be shown that even for moderate outliers the contributions
are more sensitive in detecting them. The drawback arises when one of the conditional or marginal residuals
is 0. Then contribution can be 0 but the other non-zero deviation can still be large.

For a quick example, we have studied the observations from a simulated time series data with AR(1)
error. We have analysed the dataset in detail in section 3. For the time being, we only considered observation
9 which shows a high contribution. The observation has marginal and conditional residuals falling well inside
the respective 95% probability intervals, but the corresponding (êi, ẽi) lies far away from the 95% bivariate
contour of the marginal and conditional residuals, as shown in figure 1. So, if we look at the marginal and
conditional residuals for point 9, they do not reflect any abnormality. But the pair of residuals jointly lie
far away from the contour. So, the joint effect of the global and local deviations are large, even though
their individual effects are not. The contribution is 4.35, larger than the upper limit of its 95% probability
interval which is 3.90. This is an illustration to show that contributions can detect abnormalities which may
not be reflected by marginal or conditional residuals by themselves.

To compare the use of the above measures in the context of data analysis, we simulated an AR(1) data in
section 3 and studied the properties of contributions along with their rate of detection for additive outliers,
innovative outliers, and group of additive outliers. We validated our arguments through comparison with
marginal and conditional residuals.

In section 4 we examined two real life data sets where the observations are grouped into a number of
blocks. These two data sets, combined with the simulated one, cover a vast area of examples. The simulated
data is an example of a time-series, Corn data is an example of an LMM, and Ovary data is an example
of repeated measures. Moreover, the simulated data looks at the singletons and the effect of their deletion

3



over the remaining dataset. Corn data has some naturalized blocks and so we can study the effect of block
deletion. Ovary data has naturalized blocks where each block behaves as an AR(1) process. In ovary data,
therefore, we can study the effect of deletion of singletons as well as of the blocks that behave as time series.

2. Mathematical properties of Contribution

Contribution for a block of observations Ya is defined as

Ta = êa
TD−1

a ẽa.

For Gaussian errors, Haslett and Hayes (1998) showed that Ta can be expressed as

Ta =
γa + φa
2κa

χ2
1,κa

−
γa − φa
2κa

χ2
2,κa

≡ αχ2
1,κa

− βχ2
2,κa

(4)

where κa is the length of the block a, χ2
1,κa

and χ2
2,κa

are independent χ2 variables with degrees of freedom

κa, γa = tr
[

(G.5
aaD

−1
a G.5

aa)
.5
]

, G = V QV , Gaa is the ath block of the block diagonal matrix GP which is
created by taking the diagonal blocks of the matrix G, and φa = tr(V Q)aa.

Let us consider the case when the block of observations Ya contains only a singleton, i.e. a = {i}, say.
Then Ti will depend on three components, marginal residual of the ith observation êi, conditional residual
of the i-th observation ẽi, and members of the diagonal matrix D. This is a drawback of the measure in
the sense that if êi is 0 and ẽi is large (or vice versa), Ti will be 0, without taking into account of the large
conditional residual. So, a risk of falsely identifying an unusual observation to be normal always lies in using
contributions.

Another drawback appears when êi and ẽi are of different signs. Then Ti will be negative. A negative
contribution is hard to explain and it certainly is a departure from our general idea of measures of deviation.
The other well-known measures like Cook’s distance or Mahalanobis distance are all positive, and we can
interpret them as some kind of metrics in the Euclidean space. Hence we can well describe the situation
when these measures are 0. But even when contribution of a point is 0, we can not conclude that the point
has no abnormality. Similarly, when the contribution is negative, we can not interpret what kind of deviation
makes this happen.

d−1
i is defined as the ith element of diag(Q), where Q can be defined as V −1(I −H) where H is the Hat

matrix. If V = I, then Q = I−H . Also, the leverage is defined as diag(H). Hence, high-leverage will imply
that the elements of D will be large. Since Ti = êTi d

−1
i ẽi, Ti will be small for high leverage. The result can

similarly be generalized for a general covariance structure.

2.1. Approximate cdf of contribution

Equation 4 shows that the analytical cdf of T is of complex form and not invertible. We shall use some
close approximation of the cdf of T by using some approximations of the Confluent Hypergeometric function
of the second type (See, for example, Press (1966) and Bhattacharya et al. (2011)). The approximate cdf is
given below:

P (T ≤ t) ≃







































1−A1(β)Γ
(

κ
2 ,

t
2α

)

for large positive t and κ ≤ 2

A1(α)Γ
(

κ
2 ,−

t
2β

)

for large negative t and κ ≤ 2

1−A2(β, α)Γ
(

κ−2
2 , t

2α

)

for large positive t and κ ≥ 3

A2(α, α)Γ
(

κ−2
2 ,− t

2β

)

for large negative t and κ ≥ 3

A3(α) +A4(α)e
−t for small positive t and κ ≥ 3

1−A3(α)−A4(β)e
−t for small negative t and κ ≥ 3

(5)

where

λ =
α+ β

2αβ
,A1(x) = (2λx)−

κ
2 , A2(x, y) = A1(x)

[

κ

2

(

1 +
1

2yλ

)

− 1

]

,
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A3(x) = I γ−φ
2γ

(κ

2
,
κ

2

)

+
c(κ)

Γ(κ2 )

Γ(κ− 1)

Γ(κ2 )
2x (1 + λx) λ−(κ−1),

A4(x) =
Γ(κ− 1)

Γ(κ2 )
2x (1 + 2λx)λ−(κ−1),

where Γ(s, t) = (Γ(s))−1 ∫∞

t
e−uus−1du is the incomplete gamma function of order s and Ia(λ, µ) =

(Beta(λ, µ))−1 ∫ a

0
uλ−1(1− u)µ−1du is the incomplete Beta function.

For κ = 2, no approximation is needed for P (T ≤ t) with small t. We can directly calculate the value of
ψ. But for κ = 1, there is no satisfactory approximation for P (T ≤ t) with small t. In that case we can use
the large value approximations which work moderately well for small values, too. Using the form of cdf, we
can now easily find the quantiles and thus the probability intervals of T .

2.2. Comparison with marginal and conditional residuals

For Gaussian errors, the marginal residual for the block Ya, denoted by êa, is distributed as MVN (0, (V QV )aa)
and conditional residual ẽa is distributed as MVN(0, Daa) where Daa = Q−1

aa .
Also,

Cov(êa, ẽa) = (V Q)aaDa.

So,
(êa, ẽa) ∼ MVN(0, Sa) (6)

where

Sa =

(

(V QV )aa (V Q)aaDa

Da (QV )aa Da

)

.

Let us consider Yi and its joint deviation. By joint deviation, we mean the departure of Yi both from its
estimated marginal mean Ŷi and estimated conditional mean Ỹi. So, the Mahalanobis distance of the joint
deviation can be expressed as

Mi = (êi, ẽi)
TS−1

i (êi, ẽi)

= λ1Mêi + λ2Mẽi + λ3Ti

where Mêi = ê2i /Var(êi), Mẽi = ẽ2i /Var(ẽi) and λis are constants depending on the variance parameters.
Mêi can be interpreted as the Mahalanobis distance of Yi from its estimated mean and Mẽi can be

interpreted as the Mahalanobis distance from its conditional mean. ThusMêi andMẽi can be interpreted as
the measures of deviation caused by the global and local characteristics of the underlying error of estimation,
while Ti is the measure of deviation caused by the interaction between these two characteristics.

Hence, three factors contribute to an observation’s unusual behaviour. Its departure from the fitted
model, its departure from the neighbourhood, and a joint effect of the first two kinds of departures. Ti takes
account of the last factor.

This can be similarly generalized for a block of more than one observations. For a block, the result comes
in terms of weighted marginal and conditional residuals.

If a point’s distance from its estimated marginal mean is expressed as l, then Ti can be expressed in a
convex functional form Ti = l(l− α)/di where α is the difference between the marginal and the conditional
mean, denoted as Ŷa − Ỹa. Hence, ∂Ti/∂l =

√

vii/di(2l− α). on the other hand, ∂êi/∂l = 1.

That means, if a point’s distance from its marginal mean is greater than (α+
√

di/vii)/2, its contribution
is more sensitive than its marginal residual to detect additive outliers, because the rate of change in the
value of Ti will be much more rapid than the rate of change in the value of êi when the initial value of
an observation changes. For most practical datasets, (α +

√

di/vii)/2 is a very small value. So, even for
moderate additive outliers, Tis are practically more sensitive than marginal residuals in detecting them. The
result is similar for conditional residuals also.

We discuss these features in details in the next section, where we have analysed the simulated data for
different parametric values.
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Figure 2: Plot (a) shows observations along with estimated marginal and conditional means. Observations 10 and 11 are
particularly far away from the estimated mean. Plot (b) shows the contributions for different values of γ when the additive
outlier γ is put in the 11th place. Methods with and without re-estimation of parameters at each stage of the values of γ have
been compared.

3. Analysis of a simulated data

We have considered a time series model Y = 1 + t + ε where t is time and ε is an AR(1) process.
Using this model, a series containing 30 observations are simulated with correlation parameter ρ = 0.9 and
variance σ2 = 1. Plot (a) of figure 2 shows the plot of the observations with their estimated marginal and
conditional means. Observations 10 and 11 are indicated because they are far from the estimated mean.
Observation 11 lies below the estimated mean as well as the neighbouring observations 10 and 12. We shall
move observation 11 from its initial position to see how the contribution changes. In particular, we shall
make the observation as an additive outlier and study the behaviour of contributions.

3.1. Additive outliers

For a set of observations (y1, y2, ..., yn) with an additive outlier at the kth position,

yt =

{

ut for t 6= k
ut + γ for t = k

(for example, see Fox (1972)). To build an additive outlier, we put a value γ to the 11th observation, and
looked at the behaviour of Ti for different values of γ, both with and without re-estimating the parameters.
Plot (b) of figure 2 shows the two curves of the value of contributions, with and without re-estimation, for
values of γ from 0 to 7 at 0.1 interval. The plot shows that when parameters are not re-estimated, the
curve behaves like a parabola. However, the curve changes at a much slower rate when the parameters are
re-estimated. So, re-estimation is recommended at each stage of the change in the additive outlier because
it can get rid of false detection of outliers. Our analysis throughout has been based on re-estimation of
parameters.

To compare the performance of Ti with êi and ẽi, we have run 100 simulations for ρ = 0.9 and σ2 = 1.
We placed γ at the 1st and the 11th position, one by one, and studied the rate of detection of the observation
as an outlier for both these cases with the values of γ from 0 to 7 at 0.1 interval. Figure 3 shows the rate of
detection by contributions, marginal residuals and conditional residuals for different values of γ. The figure
shows that contributions behave much better than the marginal residuals in detecting outliers. However, the
conditional residuals perform mildly better than contributions in detecting moderate outliers. For extreme
cases, contribution is the winner.
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Figure 3: Plot (a) shows the rate of detection of the additive outlier when the outlier is placed in the 1st position. Plot (b)
shows the rate of detection of the outlier when the outlier is placed in the 11th position. Values of γ are taken from 0 to 7 at
0.1 interval. Rate of detection of the outlying point by contribution has been compared with those of marginal and conditional
residuals.
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Figure 4: Plot (a) shows the rate of detection of observations 6 to 16 as outliers when γ = 4 is placed in the 11th position.
Three models with ρ = 0.3, 0.6 and 0.9 have been considered. Plot (b) shows the rate of detection of outlying observation
11 when observation 10 is deleted. Methods with and without re-estimating the variance matrix after deletion have been
compared. Plot (c) shows the rate of detection of the observations 5 to 16 when γ = 4 is placed in the positions from 9 to 12.
The proportions of detection for the cases ρ = 0.3, 0.6 and 0.9 have been compared.
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To study the rate of falsely detecting an observation as an outlier, we have run 100 simulations each for
ρ = 0.3, 0.6 and 0.9 and placed γ = 4 in the 11th position. We considered the neighbouring observations
of the outlier and studied if they are detected by Tis. Plot (a) of figure 4 shows that for correlation 0.9,
observations 9 and 10 have been detected by approximately 12% and 18% of times. The same is true for
observations 12 and 13. Observation 11 has been detected 98% of times by contributions. The rate of
false detection is significantly lower when the correlation is low. This happens due to the influence of the
outlying observations over its neighbourhood. The influence has been studied and denoted as ‘swamping’
by Barnett and Lewis (1978) where in a group of observations the extreme outlying observation ‘swamps’
the other points, so that the other points also show high outlyingness. Swamping increases with high
correlation. Hence contributions with low correlation structure in the model show lower rate of false detection
of observations.

Lastly, to study the effect of estimating variance parameters after deletion of a point, we have deleted
observation 10 and placed γ in the 11th position. Then the rates of detection of observation 11 with and
without re-estimating the variance matrix after deletion were plotted in plot (b) of figure 4. The plot shows
that when the variance matrix is not re-estimated, the rate of detection is more than 20% even for a small
γ of value 2. For a moderate value 4, the rate of detection is almost 40% . The rate of detection is much
lower when the variance matrix is re-estimated. So, we can conclude that re-estimating the variance matrix
after deletion of a point gets rid of the undue influence of the variance of the deleted observation over the
other points.

3.2. Group of additive outliers

If, instead of placing γ in a single position, we place γ in a block of positions, then we get a group of
additive outliers. To study the performance of contributions in detecting the outlying group, we placed
γ = 4 in t position 9 to 12. We have then run 100 simulations each for ρ = 0.3, 0.6 and 0.9 and plotted the
rate of detection of observations 5 to 16 for each case in plot (c) of figure 4. The plot shows that for low
correlation, the rate of detection of observations 10 and 11 is significantly lower than the rate of detection
of observations 9 and 12. Also, the rate of false detection of observations 8 and 13 is much lower for low
correlation. So, comparing plots (a) and (c) of figure 4, we can conclude that high correlation structure can
affect the contribution’s detection skill.

3.3. Innovative outliers

For a set of AR(1) observations (y1, y2, ..., yn) with an innovative outlier at the kth position, yt =
φyt−1 + ut and

ut =

{

ǫt for t 6= k
ǫt + γ for t = k

(see Fox (1972)). To build an innovative outlier in our model, we placed γ = 4 in the 20th position and ran
the simulation 100 times each for ρ = 0.3, 0.6 and 0.9. Plot (a) of figure 5 shows the rate of detection of
observations 15 to 30 for three correlation parameters. The plot shows that for low correlation, the rate of
detection of innovative outliers is very much similar to that of additive outliers, which is expected, because
for low correlation the future observations behave unaffected for moderate values of γ. Also, the rate of
false detection of observations 16, 17, 18 and 19 is much higher for high correlation. On the other hand, the
rate of detection of observation 20 is lower for high correlation. That means, for innovative outliers, high
correlation structure significantly affects the contribution’s detection skill.

To compare contributions with marginal and conditional residuals, we varied γ from 0 to 7 at 0.1 interval
with correlation 0.9 and ran 100 simulations. Plots (b) and (c) of figure 5 show that when γ is placed at
the 20th position, then the rate of detection of the 20th and the 21st observation is more by contribution
than by marginal or conditional residuals. Strikingly, the rate of detection of an innovative outlier is lower
than the rate of detection of an additive outlier.

So far we have been mostly studying the singletons and the effect of the deletion of a single observation
over the remaining data. How can we detect a block of unusual observations in a dataset and study the
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Figure 5: Plot (a) shows the rate of detection of the observations 15 to 30 when γ = 4 is placed as an innovative outlier in the
20th position. The proportions of detection for the cases ρ = 0.3, 0.6 and 0.9 have been compared.Plot (b) shows the rate of
detection of observation 20 when the innovative outlier γ is placed in the 20th position. Plot (c) shows the rate of detection of
observation 21 with observation 20 as the innovative outlier. Values of γ are taken from 0 to 7 at 0.1 interval. Rate of detection
of the outlying point by contribution has been compared with those of marginal and conditional residuals.

effect of their deletion over other observations? This question is especially relevant when there are some
naturalized blocks in the dataset. In this respect we move to the next section for some real life data analyses
where the datasets contain naturalized blocks.

4. Data Analysis

We shall now analyse two data sets to detect unusual observations using the properties and interval
estimation of T .

4.1. Corn data

We consider an example of a linear mixed model. The dataset is a prediction of areas under corn and
soy-bean for 12 counties in north-central Iowa, based on 1978 June Enumerative Survey and satellite data.
There are 37 segments of those 12 counties. Battese et al. (1988) deleted the second segment of Hardin
county from their analysis as the reported hectares of corn was identical for that of the first segment, and
propose to fit the following model

yij = β0 + β1x1ij + β2x2ij + uij

where i is the subscript of the county, j is the subscript for a segment within a given county, yij is the
number of hectares of corn (we have used the corn data as the y variable) in the jth segment of the ith
county, x1ij and x2ij are number of pixels classified as corn and soy-beans, respectively, in the jth segment
of the ith county. The random error uij can be expressed as uij = vi + eij where vi is the ith county effect
and eij is the random effect. vi and eij are assumed to be iid Normal random variables with mean zero
and variances σ2

v and σ2
e respectively. The reported crop hectares for a crop are positively correlated within
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Figure 6: An analysis of Corn data. (a) Shows the marginal residuals with 95% probability intervals, (b) Shows the conditional
residuals with 95% probability intervals, (c) Shows the contributions of single observations with 95% probability intervals,
(d) shows the contribution of the counties with 95% upper probability limit. Different symbols have been used for different
counties.
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Figure 7: An analysis of Corn data. (a) shows the contributions after observation 5 is deleted and the variance matrix is re-
estimated, (b) shows the contributions after observation 5 is deleted and the variance matrix matrix is not re-estimated,(c)shows
the contributions after observations 5 and 20 are deleted and the variance matrix is re-estimated,(d)shows the contributions
after observations 5 and 20 are deleted and the variance matrix is not re-estimated.
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Figure 8: An analysis of Ovary data. (a) shows the marginal residuals with 95% probability intervals, (b) Shows the con-
ditional residuals with 95% probability intervals, (c) Shows the contributions of single observations with 95% probability
intervals.Different symbols have been used for different mares.

given counties but uncorrelated between different counties. The REML estimates of the variance parameters
give σ̂2

v = 103 and σ̂2
e = 194.

A characteristic of the residuals should be noted here. Since the variance matrix is block diagonal with
each block representing a county, the marginal residuals êa for county a will be independent of the marginal
residuals êb for county b. So, a simple calculation shows that the block contributions will always be positive,
distributed as an weighted chi-squared variable. Hence we have plotted the block contributions with 95%
upper probability limit.

Figure 6 shows that observations 5, 7 and 20 have high contributions. But marginal residual detects
observations 5 and 7 only. Conditional residual detects observations 5 and 20. So, if we study only with
marginal or conditional residual, we miss at least one abnormal point. Plot (d) of the figure shows that
contribition of each country falls well within the upper 95% probability limit.

Figure 7 shows how the unusual observations affect the dataset. We first deleted point 5, and then points
5 and 20 together, to look at their influence. Like the simulated data, here also we compared the deletion
diagnostic by re-estimating the variance matrix with the diagnostic by not re-estimating the variance matrix,
as shown in plots (a) to (d) of figure 7. They show that deleting unusual observations one by one does not
affect other unusual observations. For example, deleting observation 5 still makes the observations 7 and
20 as unusual. That is because of the block diagonal structure of the variance matrix. Since the blocks of
observations are independent of one another, and 5, 7 and 20 belong to three different blocks, deleting one
leaves the other two unaffected. Also, we observe that re-estimating the variance matrix after deletion of an
observation has the same effect of not re-estimating the variance matrix. So, for this LME model, deleting
unusual observations would not lead to much changes in the variance matrix.

Corn data showed that no block in the dataset is unusual. One may naturally ask that, if some block has
significantly high contribution, how to detect the observations within that block that are mainly responsible
for this unusual behaviour? Also, if a block is an outlier, can we identify the points within that block that
are really outliers, and the points that behave abnormally due to ‘swamping’? A study of the Ovary data
answers that question.

4.2. Ovary data

Pierson and Ginther (1987) reported on a study of the number of large ovarian follicles detected in 11
mares at several times in their estrus cycles. The data has three sets of observations. The first set is the
mares with ordered factor. The second set is time in the estrus cycle. The data were recorded daily from
3 days before ovulation until 3 days after the next ovulation. The measurement times for each mare are
scaled so that the ovulations for each mare occur at times 0 and 1. The third set represents the number
of ovarian follicles greater than 10 mm in diameter. There are overall 308 observations for these 11 mares.
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Figure 9: An analysis of Ovary data. (a) shows contribution of the mares, (b) shows contribution of single observations after
observation 82 is deleted, (c) shows contribution of mares after observation 82 is deleted. From plot (a) it comes out that
mares 3 and 5 are unusual, having high contribution. Probing into mare 3, it comes out that observation 82, the point with
highest contribution in the mare, is the most influential behind the mare’s unusual behaviour. When the point is deleted, the
contribution of mare 3 comes down to a normal level, as apparent in plot (c).

The underlying model, as proposed by Pinheiro and Bates (2000) is an AR(1) process for each mare with
the fitted trend as

Y = β0 + Sin(2πX)β1 +Cos(2πX)β2 + ε

where Y is the number of follicles and X is time in the estrus cycle. The errors are Gaussian and are
assumed to be uncorrelated between the mares.

In our analysis we took the mares as the blocks. Figure 8 presents an analysis of the 308 observations. It
shows that there are 17 observations having high magnitude of contribution, falling outside the probability
intervals. The numbers of observations having high marginal residuals and high conditional residuals are
14 and 15, respectively. So, here also contributions detect more observations than marginal and conditional
residuals. For example, observation 81 has marginal and conditional residual falling well inside the respective
probability intervals. But it has high negative contribution. Observations 82, 118 and 165 have significantly
large positive contributions.

We do the next step of analysis which we call ‘probing’ into a block. Since mare 3 is unusual, we probe
into the observations belonging to mare 3 in order to find out which observations influence the mare. Plot
(a) of figure 8 shows that observation 82, belonging to Mare 3, has the highest contribution within that mare.
Plot (a) of figure 9 shows that mares 3 and 5 are unusual, having high contribution. In order to look at how
much the observation is responsible for the high contribution of mare 3, we delete point 82 and re-analyse
the other points belonging to that mare. Plots (b) and (c) of figure 9 present the contributions of single
observations as well as the blocks after deleting observation 82. It shows an interesting picture regarding
point 81. Initially plot (a) of figure 8 showed that point 81 has high negative contribution, and apparently
it was an unusual observation. But after deletion of point 82, observation 81 shows a nominal contribution,
lying well inside the probability interval. That means the apparent abnormality of point 81 was caused by
the extreme abnormal influence of the neighbouring point 82. This is an example of ‘swamping’ as discussed
earlier.

Point 82 is observed to be the deciding factor behind the abnormal behaviour of mare 3. If the point is
removed, contribution of mare 3 decreases by a large extent. Mare 5 also has high contribution. If we probe
into mare 5, we shall observe that removing observation 118, the point with the highest contribution within
mare 5, can make the mare behaving normally.

5. Conclusion

The proposition by Haslett and Hayes (1998) that contributions can be used for detecting unusual obser-
vations has merits and demerits. The authors decomposed the total lack of fit into the sum of contributions,
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and showed that it involves two kinds of complimentary residuals that arise in the analysis of linear models.
Their proposition is furthered by the present paper by showing that in a dataset, the joint deviation of
an observation can be decomposed in three parts. Deviation due to global characteristic of the residual,
deviation due to local characteristic of the residual, and deviation due to the joint effect of both these
characteristics. Contribution measures the third part. In that sense, contribution is more important than
marginal and conditional residuals because it takes into account of both kinds of deviations, and hence can
detect more unusual observations in a dataset. We illustrated this feature for the detection of additive and
innovative outliers and a patch of additive outliers in a time series model.

However, the significant demerit lies in the fact that contributions can be negative. A negative contribu-
tion is difficult to interpret as a measure of deviation. Secondly, when one of the marginal and conditional
residuals is 0 and the other is large, contribution becomes 0, even when the observation shows one type of
high residual. That way, the use of contributions can be misleading and should be carefully treated.

Re-estimation of the variance parameters after deletion of a number of observations is another issue
related to the use of contributions. We have illustrated by data analysis that assuming the variance ma-
trix fixed, or known, can lead to false identification of a normal observation as outlier. So, it is highly
recommendable to estimate the variance parameters after each stage of deletion.
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Appendix

Subsets deletion for components of variance in the Linear Mixed Model

The Linear Mixed Model (LMM) may be defined as

Y ∼ N(Xβ + Zγ, V )

where X and Z = (Z1, Z2, ..., Zr) are known matrices, β is a vector of fixed effects and γ is a vector of
random effects with E(γ) = 0,Cov(γ) = D and Cov(γ, ε) = 0. V will then be of the form ZDZT +A where
ZT is the transpose of Z and A = Var(ε).

The above LMM can be equivalently expressed as

Y =Wµ+ ε
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where V = V ar(ε) =
∑r

j=0 σ
2
jZjZ

T
j . Let σ = (σ2

0 , σ
2
1 , ..., σ

2
r )

T . Our purpose is to estimate σ̃(ai) following
deletion of subsets Y(ai)(i = 1, ..., k). Christensen et al. (1992) proposed a method based on REML for the
re-estimation, but Haslett and Dillane (2004) have provided an easier approximation method.

We drop the suffix i for notational simplicity. Haslett and Dillane (2004) proposed the approximation of
σ̃(a) by the following recursive equation:

σ̃(a) ≈ T−1s̃(a)

where the (i, j)th element of the matrix T is defined as tij = tr(QZjZ
T
j QZiZ

T
i ) and s̃(a) is a vector following

the deletion of subset a which has the j-th element as s̃j(a) = tr
(

QZjZ
T
j QVarσ̃(a)

(Y )
)

. The matrix T is
available from the full fit and is thus already available. The above equation leads to an iterative solution of
σ̃(a).

The same form of approximation holds for a time series model, but some details might get changed. For
example, for an MA process, the exact method as described above can be applied, while for an AR process
minor changes need to be made for the approximation of the correlation parameter. Dillane (2004) provides
a detailed analysis of reestimating variance parameters for an AR process.
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