
• Semi-Persistent User Database (SPUD)
• What is SPUD?
• Using SPUD
• Standard SPUD Fields
• Using SPUD for Custom Fields
• Client-Side SPUD

• Overview
• spud_get
• spud_set
• spud_get_custom
• spud_set_custom
• spud_set_from_url
• spud_populate
• Defining a Callback
• Comprehensive Example

• JSONP for SPUD
• Configuring SPUD
• Using SPUD Data
• The Guts
• To Be Developed

What is SPUD?
SPUD is a mechanism for saving and retrieving information about site users,
without requiring them to log in or set up an account. User's are assigned a
SPUD via a cookie containing a unique identifier. Whenever someone enters
information about themselves on a form (signup, contribution, etc.) it is saved in
their SPUD. The next time they view a SPUD-aware form, the form can be pre-
filled with the saved information.

SPUD allows for different pieces of information to be saved for different lengths
of time. Some information, such as name and address, should not be retained for
too long. Coming back to a site you haven't visited for a year and having it
remember your name is likely to be upsetting to many people. Less personal
information (like zip code or state) can be retained for longer periods of time
without causing any great distress to the user.

https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-SemiPersistentUserDatabase%5C%28SPUD%5C%29
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-SemiPersistentUserDatabase%5C%28SPUD%5C%29
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-WhatisSPUD%3F
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-WhatisSPUD%3F
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-UsingSPUD
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-UsingSPUD
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-StandardSPUDFields
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-StandardSPUDFields
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-UsingSPUDforCustomFields
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-UsingSPUDforCustomFields
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-ClientSideSPUD
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-ClientSideSPUD
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-Overview
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-Overview
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-%7B%7Bspudget%7D%7D
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-%7B%7Bspudget%7D%7D
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-%7B%7Bspudset%7D%7D
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-%7B%7Bspudset%7D%7D
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-%7B%7Bspudgetcustom%7D%7D
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-%7B%7Bspudgetcustom%7D%7D
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-%7B%7Bspudsetcustom%7D%7D
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-%7B%7Bspudsetcustom%7D%7D
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-%7B%7Bspudsetfromurl%7D%7D
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-%7B%7Bspudsetfromurl%7D%7D
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-%7B%7Bspudpopulate%7D%7D
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-%7B%7Bspudpopulate%7D%7D
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-DefiningaCallback
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-DefiningaCallback
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-ComprehensiveExample
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-ComprehensiveExample
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-JSONPforSPUD
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-JSONPforSPUD
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-ConfiguringSPUD
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-ConfiguringSPUD
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-UsingSPUDData
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-UsingSPUDData
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-TheGuts
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-TheGuts
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-ToBeDeveloped
https://confluence.bluestatedigital.com/display/tech/SPUD#SPUD-ToBeDeveloped

In addition to saving a standard set of information about a site visitor, SPUDs can
also contain application specific data/preference settings. For example, a blog
application could use SPUD to remember a user's preferred comment display
style (threaded or unthreaded) even though the user created an account.

Of course, by virtue of SPUDs being cookie based, data is attached to a
particular browser. A user visiting the site on another computer will not have his
or her SPUD data displayed.

Using SPUD
First, include the spud class file:

require_once 'utils/spud/spud.class.php';
Next, get a spud object:

$spud = spud::start();
If you want to take some action (such caching a page) based on the presense of
a SPUD, you can say:

if (spud::has_spud()) {
 $spud = spud::start();
 ... do something ...
} else {
 ... do something else ...
}
Once you have a spud object, you can call the get object function to access and
change standard values:

$firstname = $spud->get ('firstname');
print "Hello, ".($firstname ? $firstname : 'Friend)."!\n";
You can also pass an array to get . If you do so, the result will be an array
containing all of the values you requested that are present in the SPUD:

$values = $spud->get (array ('firstname', 'lastname'));
print "Hello, ".$values['firstname']." ".$values
['lastname']."\n";
To set a value, you can call set object function:

$spud->set('firstname', $_POST['firstname']);
You can also set multiple values at once with the set_from_array and
set_from_object functions. These will locate all array elements or object

variables that have a name that matches one of the standard SPUD variables. It
will then set the values in the SPUD accordingly. For example:

if ($form->validate()) {
 $form_values = $form->exportValues();
 $stg_signup = new stg_signup();
 $stg_signup->assign_from_hash($form_values);
 $stg_signup->save();

 $spud->set_from_object($stg_signup);
}
You can also do the inverse and assign values to object variables that match the
names of SPUD values. For example:

$default_stg_signup = new stg_signup();
$spud->assign_to_object(&$default_stg_signup);

Standard SPUD Fields
The section above mentions "standard" fields. Here is a list of the fields SPUD
knows about and the amount of time they will be remembered:

firstname 2 days
lastname 2 days
addr1 2 hours
addr2 2 hours
city 365 days
state_cd 365 days
zip 365 days
country 365 days
phone 2 hours
email 2 days
userid 30 days
password 30 days
lastlogin 30 days
source 180 days
subsource 180 days

Using SPUD for Custom Fields
In addition to the standard fields mentioned above, SPUD can be used to store
application/module-specific values as well. Retrieving custom fields is done with
the get_custom object function. In addition to a field name, this function also
takes an $appparameter (in this example, "blog"). You should make sure that
your chosen $app is not in use by any other applications/modules.

$comment_style = $spud->get_custom('blog', 'comment_style');

Setting a value is done with the set_custom object function. To set a custom
value, you must specify a time-to-live in seconds. This is the amount of time
SPUD will remember this piece of information.

$spud->set_custom ('blog', 'comment_style', $_POST
['comment_style'], 2592000); /* 30 days */
Note that the various utility functions for setting/getting more than one value at a
time are not available for custom fields.

Client-Side SPUD
Overview
In addition to calling SPUD from within a PHP script, there is a client-side SPUD
library which allows you to call SPUD from within javascript. This library uses
AJAX to communicate with the server to get/set SPUD values. This is useful for
saving UI preferences and other preference information which may be needed by
the client.

To use client side SPUD, first include the required javascript files:

<script src="/utils/ajax/ajax.class.js" type="text/
javascript"></script>
<script src="/utils/spud/spud.js" type="text/javascript"></
script>

• Note that the Control Panel automatically includes both of these files. You
do not need to include these script tags on Control Panel pages.*

Once these files have been included, there will be four functions available in
javascript: spud_get , spud_set , spud_get_custom , and

spud_set_custom . All functions take an object literal containing the necessary
arguments.

spud_get
Arguments:

• field/fields : (required) The name of the field or fields to get. Can be a
string or an array of strings. Each field must be a "standard" field from the
list above.

• callback : (required) A reference to a javascript function to call once the
request has completed. See below for details.

• callback_param : (optional) An arbitrary value that will be passed to the
callback function. This can be used to pass a unique identifier when there
is the possibility for multiple spud requests to overlap.

• Example:*
• <script type="text/javascript">
•
• function my_callback (value, myid) {
•
• alert ("First Name: " + value + "\nID: " + myid);
•
• }
•
• spud_get({field: "firstname", callback: my_callback,

callback_param: "123456"});
•
• </script>
•

spud_set
Arguments:

• field : (required) The name of the field to set. This must be a "standard"
field from the list above.

• value : (required) The value to set for the field.
• callback : (optional) A reference to a javascript function to call once the

request has completed. See below for details.

• callback_param : (optional) An arbitrary value that will be passed to the
callback function. This can be used to pass a unique identifier when there
is the possibility for multiple spud requests to overlap.

• Example:*
• <script type="text/javascript">
•
• spud_set({field: "firstname", value: "Howard"});
•
• </script>
•

spud_get_custom
Arguments:

• app : (required) The app name to use. See the explanation of the PHP
(server-side) get_custom function for details.

• field : (required) The name of the field to get.
• callback : (required) A reference to a javascript function to call once the

request has completed. See below for details.
• callback_param : (optional) An arbitrary value that will be passed to the

callback function. This can be used to pass a unique identifier when there
is the possibility for multiple spud requests to overlap.

• Example:*
• <script type="text/javascript">
•
• function my_callback (value) {
•
• alert ("Favorite Color: " + value);
•
• }
•
• spud_get_custom({app: "colorpicker", field:

"favoritecolor", callback: my_callback});
•
• </script>
•

spud_set_custom
Arguments:

• app : (required) The app name to use. See the explanation of the PHP
(server-side) get_custom function for details.

• field : (required) The name of the field to set.
• value : (required) The value to set for the field.
• ttl : (required) The time-to-live setting (in seconds) for this piece of data.

After this much time has elapsed, this value will be automatically removed
from the user's SPUD.

• callback : (optional) A reference to a javascript function to call once the
request has completed. See below for details.

• callback_param : (optional) An arbitrary value that will be passed to the
callback function. This can be used to pass a unique identifier when there
is the possibility for multiple spud requests to overlap.

• Example:*
• <script type="text/javascript">
•
• function my_callback(result) {
•
• if (result) {
•
• alert("Set Value!");
•
• } else {
•
• alert("Error Setting Value");
•
• }
•
• }
•
•
•
• spud_set_custom({app: "colorpicker", field:

"favoritecolor", value: "blue", ttl: 3600, callback:
my_callback});

•
• </script>
•

spud_set_from_url
This will search through the query string for the requested fields, and call
spud_set with each one found.

• Arguments:*
• field : (required) The field or fields whose values you want to set, if

present in the URL's query string. Can be a string or an array of strings.
• Example:*
•
•

spud_set_from_url('firstname');
spud_set_from_url(['zip', 'email']);

•
•

spud_populate
This will populate a form by fetching each field value using spud_get and
updating the value of the associated elements.

• Arguments:*
• form_elements: (required) A hash whose keys are field names, and

whose values are either the elements or the element ID strings of the
element to be populated.

• Example:*
•

•

spud_populate({
'zip': 'zip',
'firstname': firstnameElement
});

•
•

Defining a Callback
The A in AJAX stands for asynchronous. Because of this, client-side SPUD
uses a callback to alert the client code when requested data is available or when
an action has been completed. The callback function can take one or two
arguments.

The first argument will be the result of the request. In the case of a get or
get_custom call, this will be the value retrieved from the server. If an error
occured, it will be the boolean false . For set and set_custom , the value will
be either true or falsedepending on whether the set succeeded or failed.

The second argument will be the value of callback_param (if specified). If, for
example, there are two form controls on a page, the callback_param could be
set to the name of the form controls for which a value is being gotten or set.

Comprehensive Example
The example below shows how to use client-side SPUD to make a form that
remembers its values between visits. If you change a value of a field, it will be
saved in your SPUD. You can come back to the page for up to 1 day (86,400
seconds) and the last value you entered will still be shown.

<script src="/utils/ajax/ajax.class.js" type="text/
javascript"></script>

<script src="/utils/spud/spud.js" type="text/javascript"></
script>

<input type="text" id="field1" size="20" onblur="save_field
('data1', this.value);" />
<input type="text" id="field2" size="20" onblur="save_field
('data2', this.value);" />

<script type="text/javascript">
function save_field(name, value) {
 spud_set_custom({app: "myapp", field: name, value: value,
ttl: 86400});
}

// when we're loading, set the initial values of each field
spud_get_custom({app: "myapp", field: 'data1', callback:
set_field, callback_param: 'field1'});
spud_get_custom({app: "myapp", field: 'data2', callback:
set_field, callback_param: 'field2'});

function set_field (value, field_id) {
 if (value instanceof Boolean && value == false) {
 alert("could not load value for " + value);
 } else {
 document.getElementById(field_id).value = value;
 }
}
</script>

JSONP for SPUD
While the above AJAX calls are useful for client access on the same host, there
are cross-domain XHR issues (even with sub-domains) which make the libraries
unusable. One work-around is by using a web proxy, but in some cases (i.e., for
those running their web front-end entirely on a CDN) this may not be possible.

The general solution for this is to provide the ability to return JSONP callbacks.
It's a script-injection technique which provides a simple way to work with data
from a trusted source.

Here's an example of how a third party would use this:

<script>
function callback(spud) {
 alert(spud.userid);

http://developer.yahoo.com/javascript/howto-proxy.html
http://developer.yahoo.com/javascript/howto-proxy.html
http://ajaxian.com/archives/jsonp-json-with-padding
http://ajaxian.com/archives/jsonp-json-with-padding

}

var script = document.createElement("script");
script.setAttribute("src", "http://my.barackobama.com/page/spud?
jsonp=callback&type=get&field=userid");
script.setAttribute("type","text/javascript");
document.body.appendChild(script);
</script>
The differences from the AJAX support:

• JSONP calls are via GET not POST
• Calls made directly against AJAX resource not using spud.js script
• type 'get_custom' and 'set_custom' not (yet) supported
• multiple field gets allowed via 'getm'

Here is an example of how the 'getm' type is used to retrieve multiple fields:

http://my.barackobama.com/page/spud?
jsonp=callback&type=getm&field=firstname,lastname,email,lastlogi
n

Configuring SPUD
The SPUD system has several [blue_config] important blue_config variables:

$ enabled : If set to 0, the SPUD system will be disabled site-wide. Code that
calls SPUD will still function, but no values will ever be saved or returned.

$ cookie_domain : The domain for which SPUD cookies are saved. Should
almost always be .sitedomain.com. This value should be set to something
reasonable by default, however, if the first access to a SPUD-enabled page
was via a clientname.bluestatedigital.com URL, then the cookie_domain
will be set to *.bluestatedigital.com. *You must change this before the site
goes live on it's official URL.

$ cookie_expire : The amount of time (in seconds) that a spud cookie
containing a unique SPUD key should stick around in a user's browser. This
should be at least as large as the largest possible "retention time" for any
particular piece of data. It defaults to 2 years.

Using SPUD Data
Because SPUD data is collected in the background as a user interacts with a
site, it's important to not put too much trust in it. Here are some guidelines:

http://my.barackobama.com/page/spud?jsonp=callback&type=get&field=userid
http://my.barackobama.com/page/spud?jsonp=callback&type=get&field=userid
http://my.barackobama.com/page/spud?jsonp=callback&type=get&field=userid
http://my.barackobama.com/page/spud?jsonp=callback&type=get&field=userid
http://my.barackobama.com/page/spud?jsonp=callback&type=getm&field=firstname,lastname,email,lastlogin
http://my.barackobama.com/page/spud?jsonp=callback&type=getm&field=firstname,lastname,email,lastlogin
http://my.barackobama.com/page/spud?jsonp=callback&type=getm&field=firstname,lastname,email,lastlogin
http://my.barackobama.com/page/spud?jsonp=callback&type=getm&field=firstname,lastname,email,lastlogin
http://my.barackobama.com/page/spud?jsonp=callback&type=getm&field=firstname,lastname,email,lastlogin
http://my.barackobama.com/page/spud?jsonp=callback&type=getm&field=firstname,lastname,email,lastlogin

1) SPUD data should never be saved into a database without a user first having
the opportunity to edit it. For example, you can use SPUD to pre-fill the "zip
code" section of a form, but you should never assume that the SPUD data is
correct and save a zip code straight from a SPUD.

2) cons data always takes precedence over SPUD data.

3) Never depend on SPUD data being available. SPUD data may exist or it may
not. Data that existed five minutes ago may have expired by the time you go
looking for it again. Code should always fall back to reasonable behavior if the
desired SPUD data is not available.

The Guts
SPUD works by assigning each user a unique cookie. This cookie maps to a row
in the app_spud table in the database. In this table, a user's SPUD data is
saved as a serialized string.

SPUD data is saved to the database by way of a destructor on the spud class.
This is typically called when a script finished running or when no code is
referencing the SPUD. Because of this, data is automatically saved and the
developer using SPUD doesn't have to worry about calling a save function after
making changes.

Although the maximum size of SPUD data is large (16 MB), it should be
remembered that the entire SPUD row is loaded every time the user hits a
SPUD-enabled page. As such, custom values should be kept small to prevent
excessive load.

