
The future is here...

(Sometimes I'd rather live in the
past)

The Past: Javascript same domain origin policy.

Until recently there was one very small, but important protection
built into web browsers for javascript.

The same domain origin policy meant that javascript run from
one site could not speak to machines within another domain.

Prevented a scripts from one domain from calling other sites.

In the past few years however w3c decided to "improve" upon
this specification by adding new and exciting extensions to the
mix...

The same domain restriction

The future: "Access-Control-Allow-Origin"
* In 2008 the world wide web consortium (w3c) added a new
set of extensions to provide access control for cross domain
XMLHTTPRequests (typically AJAX).

* These controls provide for access checks by the browser for
all requests of this type made to any system outside of the
domain scope of the originating javascript.
* When the second server has a tag including the original
domain of the javascript the browser allows the requests to go
forward. The headers for this look like:

GET /
Origin: http://domain.tld
Referrer: http://domain.tld/index.html
User-Agent: Mozilla 5

OK 200
Access-Control-Allow-Origin: *
User-Agent: Mozilla 5

It works in most browsers but very few sites support
it

The fun starts when the request is
aborted
* For each request successful or otherwise an event is fired on
the XMLHTTPRequest object.

* This OnReadyStateChange occurs at least twice on
successful requests and at least once on aborted
XMLHTTPRequests.

* When a request is aborted due to lacking the header a
supporting browser triggers this immediately.

* When a rejection or an unreachable event occurs the event is
only fired off when the request times out.

* This means you can use a setTimeout handler to trigger the
abort before the timeout actually occurs.

This results in...
* When an abort occurs prior to the setTimeout() occurring we
know that xmlhttprequest sent to the second server is highly
likely to be listening for http style connections.

* When the setTimeout() occurs prior to the abort the target is
either not reachable by the browser or not listening on that port
for http style connections.

* Finally because this is being initiated by another domain's
javascript the results of these aborts can be issued back to the
original requesting server along with the ip address of the
machine that appears to be listening on the port in question.

* In effect you can use any browser supporting this method to
scan arbitrary networks for listening systems upon executing
the javascript.

In some cases it is even worse
* While current releases of safari, firefox, chrome as well as
other webkit based browsers are vulnerable to this one of them
has an even larger hole.

* When Firefox aborts a request due to lack of of the Access-
Control-Allow-Origin header containing the origin header from
the original javascript it leaks additional information.

* Firefox in versions 3.5+ on all platforms also issues allows
retrieval of the "statusText" value from the xmlhttprequest by
the javascript upon abort.

* This statusText includes "OK," "Forbidden" and "Unauthorized
meaning that it can be used to scan individual sites for certain
forms of content.

Proof of concept tool

* I wrote a simple tool in python called xmlhttpscanner.py that
can be used to scan class C address ranges for listening
servers, but is easily modified for other purposes.

* It takes roughly a minute to a minute and a half to scan a
class C, but could be tuned to work faster by increasing the
number of simultaneous requests.

Mitigation

* Use a non-vulnerable browser: Internet explorer 8 and earlier
do not employ this feature yet, but 9 may upon its release.

* A proxy can be used to screen out requests that include the
Origin headers that are used when connecting to secondary
sites using javascript.

* No-script for Firefox will prevent this from working provided
none of the sites that the scanner is attempting to access are in
its allowed list already.

Detection

* On systems access by the a cross domain xmlhttprequest
headers including the Origin will appear along with a referrer
that are easily identifiable if logging is enabled to save these.

* A proxy server in addition to fitlering the headers can also log
and alert when they are employeed.

References and Contact
w3c page specifying the cross origin policy:
http://www.w3.org/TR/cors/

Mozilla development blog:
https://developer.mozilla.org/En/HTTP_access_control

Proof of concept scanning tool:
https://www.bordergatewayprotocol.
net/aricon/software/python/xmlhttpscanner/xmlhttpscanner.py

Email:
nberthaume -[at]- gmail.com

Irc (efnet, freenode):
aricon

Twitter:
@nberthaume

